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AN INTERSECTION THEOREM AND
RELATED PROBLEMS

BUI CONG CUON

: Illtfoductio.ll‘

Many studies on the existence of solutions of various problems mul(l be
reduced to the study of the non-emptnless ‘of the 111tersect10n of a fimto {or an
infinite) family of sets A well-known result eqquivalent to the Brouwer's fixed
point theorem is the Knaster—quatowslu Mazurkiewicz’s intersection theorem
(see Ky Fan [6] for a generalized form) 1s particularly sultable for mauy d])ph-_
cations (2], [3]. However, these resilts’ were valid only for topologmdl veetor

spaces.

In this paper we shall give a new intersection theoreni for Hausdoff topo-
logical spaces. Our arguments f01 prox ing tlns themem are pluol\ topnln;.,u al

and very snnple

Flrst we will introduce the uot]on of weaLly connected mulhfuu( tions
relative to a subset of a Hcqumff topologmal space and consider somo (‘la-;q('s
of these multifunctions (Sechon 1). This notion is a g,enelahz.ahon of the notion
of a-connected function given in [9] and of the multifunctions which lave heen
implicitly used in several papers {1], [3], [20].- Using this new notion we will
obtain an intersection theorem for topological spaces (Section 2). Section 3'ix -
devoted to some related problems including fixed point tlieorems in' Hausdorff -
topological spaces, a generalization of Wen-kll()\\_’ll versions of the minimax the

orems in game theory such as Wu-Wen-Tsun’s [10, Theorem 1} and a-result of "
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Hoang Tuy’s minimax theorem [9]. We will also consider existence theorems in

the theory of variational inequalities in Hausdorff topological spaces.

1. Weakly connected multifUnctions relative to a set

Throughout this paper )L } denote Hausdmﬁ' topological spaces and
C, D nonempty subsets of X,Y, respectwelv Let 2% be the set of all subsets
of C and C(2€) the set of all nonempty compa.ct subsets of C.

A multifunction f: C — 2Y is upper-semicontinuous (u.s.c.}) at'z € C
if for each neighborhood V of f(z) in ¥ there exists a neighborhood T of r in
c such that f(U) cV.

DEFINITION 1: A multlfunctlon f C - 2‘ is sald ‘to be weakly con-.

nccted relatwe to the set D if for every pair of points p, ¢ € C' with the property
(1:1) fp)ﬂDaéﬂ f(q)ﬂD#@but f(p)ﬂDﬂfq)n

there emstb a u.s.c. mu1t1funct10n U [0 1] -, C ('70) such that pPE u( 0) g € u( 1}
and for each ¢ € [0,1],

(1-2)_ + either flu(a)) N DN flp) = 0 “or flu(a)) N DN F(g) = 9.

“The set of such lllllltlfull(‘tl()lm is lar ge enough. We shall pleqent below

some classes of rhcqc multlfuuctlons

Recall 'rhat a bubset D' of D is callcd ron.m.cterl rclutwe to D 1f D’ can not
be 1t-p1 nsvntod as the ulnon of t“o nonempt\ (hq‘]omt leldtne open (or 1c*lat1\e

(low(l) Hlli)\(‘t‘u of D

: Class A Assume that f: C — 7‘ is a multifunction such that for every
P q € C satisfyi ing (1:1) there is a u.s.c. multifunction i [0:1) — C’( 2} such
that p € u(0), ¢ € u(1l)and f01 evelv a € [0:1]. f(u(a}) N D is nonempty- open
, connected relative to D and f (u(a) )HD A(f(MUFlg)) s nonompt\ connected

relative to D, Then f is weal\ly connected relative to D..
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Class B. Assume that f : C — 2 is a multifunction suchi that for

every pair p,q € C satisfying condition (1.1), there is a continuous mapping

u:{0,1] - C with u(0) = p, u(1) =g and for each a € [0 1] the condition (1.2)
‘holds. Then f is weakly connected relative to .

Subclass B;. Let C be an arc connected set in X,and C = C1UC,, D =
D, UD,, where Cy, Cs are disjoint, D1, D, are nonempty dls_]omt Suppose that

f:C — 2Y satisfies the following conditions’
- (i) For any z',z" € Cl, f(z") ﬂD1 N f(z") # 0, and f(a:) Cc Y\ D, for
all z € Cy. .

(i) For any z';2" € Cy, f(z')N Dgh f(2")# 0 and f(z) Cc Y\ D, for
all z € Cs. '

Then f is a multifunction of class B.

Subclass B; . This subclass consists of multifunction f satisfying the

conditions:
7 (i) For every z € C, f(z)}N'D is nonempty, relative close.d., connected
relative to D. - '

(ii) For p,q € C satisfying (1.1), there is a continuous u : [0, 1] - C
such that u(O) p, w(l)=1landforalla € [O 1] fu(a) nbn (f(p) U f(q)) is

nonempty, connected relative to D.

‘Class C. This class consists of 111111t1fu11ct10113 f C — 2V such that

for ever} pan' P.q¢ € C satlsfylng (1.1) one can find a ws.c. mulhfunctlon
: [0,1] — C(‘)C) with u(O) = p, 'u.(l) = ¢ and for all « E [0 1] the followmg,
conditions hold : :

(i) f u(a) NDis nonempty relative clo:;t,d connected 1eIat1ve to D

() fu(@) N D C (F(p)UF@)N D,

- Let o be a real number. Following [9], a real function F : C x D — R! is
said to be a-connected on C x D if the multifunction fo : C— 2P, defined by

falz) = {y € D | F(z,y) > a} for each 2 € C, satisfies the following conditions:
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(i) The set N fa(p,) |2 =1,..;, k} is connected for any finite set {p1,p2,....,

Pk} cC. | o
B (ii) For any pa,lr p, g€C, there exists a contmuous mappmg u: [0 1]

C such-that p = u(0), ¢ = u(l) and L ' '

13 ) € falu) U ol

foranyt t’ t w1th0<t<t’<t"<1

- Clearly, the multifunction f, corresponding to each a-connected real

mapping F is a multifunction of the class C.

T . Subclass ;. Let f : C.— 2P be a multifuniction satisfying the following

conditions ;

(i) For each z € C, f(z) is a nonempty, relative closed, connected subset
of D. '
(i) For any pair p,¢ € C, there exists a continuous mapping ' : [0,1] —

C connecting p with ¢ such that for any y € f(u'([0,1])),

(1.4) either {p,q}\Cy #0 or ¥'([0,1]) C C,,
whereC—{mEC ygéf(a:)} b |

Then fisa mulmfunctlon of the cla.ss C

 Indeed, if {p,q}\ Cy # Dforally € f(u’([O 1])) then y € f(p) U f(q),
hence the condition (ii) of class C is satisfies for all a € [0,1]. For, if {p, g} C Cyr

for. some y'. € f(u ({0, 1])) then there is a point a'. € [0, 1] such that y €
( ’(a')) \ {f(p) U F(q)}. Hence, by (1.4) we obtain u'([O 1)) c Cy It,’f_oﬂows‘
that u'(a’) C C » and ' §1_5 f(u'(a')) a contradlctmn

Subclass Cz Let C be a nonempty convex subset of a Hausdorff topo-

logical vector space. Assume that f:C— 2D is a multifunction such that for
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each z € C, f(z) is-a nonempty, relatively open, connected subset-of D and for
each y €.D, the set

(1,_5) c o Gy =z el y¢f(w)}
is convex. Then f is weakly connected relatlve to D

Indeed, for any’ pa.1r P4 e C, smce C is convex, we can choose the
contmuous arc by settmg for all a€ [0 1], ( ) (1 - a)p + aq Clea.rly, (1 4)
follows from (1.5). R

2. Intersection theorem:

Let f . C = 2Y be a multifunction such that f (z) is nonempty for each
¢ € C. We denote by B(z) the set of all nelghborhood of zin C. For any
B C Clet f(B) =U{f(u) | u E..B}. By f(B) we denote Ithe closure of ‘the set
f(B). CE e e e T s Ty

Let (Ls _f)(:r:) . ¢V 9Y be' the ~multifunction defined < by
(Ls f)(:c) n{F(B) | ‘B € B(z)}. " Recall that ‘the tultifunction f is quasi
upper semicontinuous (q:ws.c.) at 'z € Cif (Lsf)(z) C-f() (sce 2.

THEOREM 1. Let C and D be nonempty subsets of Hausdorff topological
spaces X and Y, respectively. Let D be a compact subset of Y. . Assume

that f : C — 2Y is q. u s.c. on C and weakly connected re]atwe to the set
D. Then f(p) A D ﬂ _f(q) 9& @ for aﬂ paus of elements p,q 6 'C' such that

F@YND#D, f(@)ND#0.

PROOF Suppose tha.t there ex1sts a pa1r of elements P, q €C such that fp)n
D#8, fl¢g)nD 76 0 but flp)N DN flg) = 0. Since fis weakly connected
relative to D, there exists a ws.c. multifunction u': [0,1] = C(2°) such that
p € u(0), ¢ € u(l)and for all a-€[0, 1] ‘either: f(u(a)) Nn-D 0N f(p) = @:-or
F(u(@)) N D N f(g) = B Set: - '

>41=mwosq<yfwmnnﬂnﬂ@;0L~.
Ay ={a|0<agl flula))NDn flg)=0}. .
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We 'ha;ve 0€ A, 1< Ay, AiNAy=0and 0,1} = Ai U As. Now we shall show

that the sets A;, Ay are relative open.

- Let us define a multifunction g : C — 2P by g(z) = f(z) N D for each
z € C. Then the multifunction gu : [0,1] —» 2P is a q.us.c. rnulhfunctmn
defined on [0 1] and gu(a') N g(q) @ for all o' € A4;. T

Let a be an arbltra.ry pom,t of Al a.nd y.€ g(q). Smce gu is q u.s.c. on
[0,1], there are two neighborhoods U(y) of a in [0 1] and V(y) of y in. Y such
that gu(a’) NV (y) =0 for all &’ € U(y).

Thus, the set {V(y) | ¥ € g(¢)} is an open covering of the compact
set g(g). Hence there exists a finite subset {y1,42,...,ym} of g(g) such that
Vi) |i= 1,;2,_...,m} is-a covering; of g(g). K

- Set U(a) =n{U(y:) | ¢ = 1,2, ...yin}. Then for any-a" € U(a), we have
gu(a') Ng(g) = 0. This means o' € A; and hence U(a) C Aj, ie. Ayisia
. relative open subset of [0,1}. By the same argument, A; is a nonempty relative
open subset of [0,1]. But this is a contradiction because-A;y U 4z = [0,1]. = -

Let N (C) denote the set of all subsets Uy of C consisting of k- different -
elements of C, k= 1,2, .... '

 ‘We define
CSK) = {0{f(@3) i = Lok, @ € Uk} [ Uk € Ni(C)},
S(D)={DNB|Be Sk(f), k=1,2,..}u{D}.
A multifunction f: C— 9Y \ {@} is called connected relative to the set
1f fis weakly connectcd relatwe to each closed set of S(D).

THEOREM 2 Lei: D bea nonempty subset of Y. If a g.u.s.c. muItlfunc—
tion f: C — 2¥is connected relative to D such that for each x € C, f(m) nD
is nonempty, then the set N{f(z) | z € C} is.nonempty. -

PROOF: We shall show that ‘DN N{Ff(z) |z € C} # §. Since f is

gu.s.c. on C, f(z) is closed, it suffices to show that
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DN ({f(@e) | k=1,.m, 2 €C}#0..

- We proceed by induction on the number n. First we consider the case

n = 2. Since f(z1)ND and f(z2)ND are nonempty, using the weak conriection
relative to the set D, we have f (:cj)l"lD Nf(ze) # 0 by Theorem 1. Assume that
Dn ﬂ{f(:rk) 1 k= 1 2,. iy Tk € C} # @ for all ¢ <n and con51der n points of
":cl,' Ty ey Ty Of C. “We fixn — 2 points L2y T3y ey Tt of C. By the induction
hypothesis, DN[f(z2)N...0f(zn-1)INf(z1) # 0 and DN{f(z2)0...NF(za1)]N
f(zn) 75 B. Since D' = DN N{f(zi)|i =2,3,...,n—1} is a closed subset of S(D)
and f is connected relatlve to .D' we obtam Dbn ﬂ{f t) | i=1,2,...,n} #0.

REMARK By a snmlar a,rgument we obtam the. followmg result

A multifunction f: C — 2Y is said to be i-connected relatively to the set
D if f is'weakly connected relative to every closed set of the form

. S{D).={DNB|BeSf), k=12..,i}U{D}..

THEOREM 2°, Let D be a nonempty compact subset: of a Hausdorff
_topologmal space Y and let f: C— 2Y be a q.u.s.c. multifunction defined on

_C Suppose that D N f(:c) # @ for all z € C and that for some- integer 1, fis

i- connected xelatwe to D. Then

DN {f@e) [k=1,i 42} 0

for any arbitrary subset of ¢ + 2 points z1,T3, ..., Ti42 of the set C.

3. Related problems R

A first 1mmed1ate consequence of our inter section theorem is the followmg

ﬁxed pomt theorems for Hausdorﬂ" topolog,xcal spaces R
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THEOREM 3. Let C be a nonempty subset of a Hausdorff topological
space X and let f 1 C =2 bea g.1.s.c. :multifunction ‘defined on C. If there
exists a nonempty compact subset D of C such that f is connected relative to
D and f(z)N D # § for each_ T e C', then f has a fixed point in C.

PROOF Let Y = X. Then the mult1funct10n f satlsﬁes all cond1t1ons
of Theorem 2, hence the set D' =Dn f(z) | G C} 7é ) and every pomt
z' € D' C C' is a ﬁxed pomt of the mu1t1funct10n f,ie. :c €f (:c')

- A modification of this result-is the followmg S

THEOREM 3. Let C be a nonempty subset of a Hausdorﬁ' topologmal
space X and let f : C = 2% If there exists a nonempty compact subset D of C
,s_:u‘cl‘lrthet the restriction f' = f | D of f on D is connected relative to D and is
g.u.s.c. on D and f(z)ND ;é_@ for_each z € C, then f has a fixed point in C,

Now we give a generalized mlmmax theorem in Hausdorff topological
spaces which’ includes well- known minimax theorems of Ky Fan (5], Wu—Wen- :
“Tsun [10] and. Hoang Tuy [9]. '

“Let C D be nonempty subsets of Hausdorff topologlcal spaces A and
Y, respectlvely Let F :Cx D — R be a real- va.lued functmn Put tg ;

11€1f supF(m y). Assume that ¢, < +o0.
x

Assocxa,ted W1t11 F'is the multifunction fic — 2D defined by.
f@)={eD | Fz,y)2t},z € c

The function F is called connected on C xD 1f its assoc1a.ted multlfunctlon

| f is connected relatlvely to D,

Let Z be a nonempty subset of a Ha.usdorff topologlcal spa:ce and o € R1
A real-valued function G : Z — R! is called upper semicontintous in Z at
if the set {z € Z | G(2) < a} is relative open in Z. The funétion G is upper

semicontinuous (u s.c.) in Z if G is u.s.c. in Z at every & € RY.
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" THEOREM 4. Assume that D is compact and F is a function connected
on.C x D such that F(z,.) is us.c. iny for-all z € C and the graph of { is a

relative closed subset of C' x D. Then

31) S ‘sup mf F(:c, y) 1nf sﬁpF(-m,y) :
yeD *€C. *€Cyed

PROOF Smce the mequa.hty

" “sup 1nf F(a: y) < 1nf supF(:c y)
yeD *€

is tnwa.l we only need to show tha,t the 1ntersect1on N{ f(a:) | z E C}is
nonempty For a ﬁxed 4 e, smce D 1s compact end Fis usc. in ¥, the
set f(z) is nonempty Moreover since the graph of f is a relative closed subset
of C x D, the_m_ultlf_nnctzon f is g.s.uc. on C and it-is connected relative to
D. Hence by Theorem 2, {f(z) |z €C}#9...

COROLLARY }. If D is compact and F isa funct:on connected onC xD
thch is u. s c. in (:r: y) at to such that F(a:, ) is u.s.c. m y for all € C, then
(3 1) ho]ds

' Now we present another class of multifunctions weakly connected to the
set D. |

Class D. This class consists of multifunctions f: C — 2Y guch that for

every pair of elements p, ¢ € C satisfying (1.1) one can find a u.s.c. multifunction
[0 1] - C(2C) such tha,t the followmg cond1t10ns hold |

1) pe u(O) g E u(l)
" (ii) Foreach a € [0 1] (1 2) is satlsﬁed

_ (m) For each y € {p,q}, if fu(a) ﬂ D n f(y) = @ then there xs a ne1gh—_
borhood U of ain [0 1] such that fu( ’) n D ﬂ f(y) @ for all a € U
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~We say that a real function F' : C x D — R! is connected on C x D

of type D if its associated multifunction f is weakly connected relative to each
closed set of S(D). B

It is not difficult to prove the following

THEOREM 5 IfDis compact, F is connected on C' x D of type D and
F(z,.)is us.c. iny for all ¢ € C, then (3.1) holds.

Theorem 1 of [9] and Theorem 1 of [10] (heﬁce Ky Fan’s minimax theorem

[5]) are consequences of Theorem 5. To see it we only need to use the following

LEMMA 1. Assume that D is compact and F is tg connected. Suppose
that F(.,y) and F(z,.) are u.s. c.inx and in y, sepaaate]y for a.H (:r, y) € CxD.
Then Fis connected on C' x D of type ZD Hence (3 1) hoIds '

- PROOF: Since D is compact and F(z;.)is u.s.c. in y, f(:c) isa nonempty

closed subset of D, f(z) is nonempty coinpact for alzeC.

Suppose that p, ¢ € C such that f(p)N f(¢) = §. Since F is ty-connected,
there exists a continuous mapping u : [O,.'l] — C such that (1.3) .holds"fc.)r
0<# <t < <1, ie flu(t)) C f(u(t"))U f(u(t?)) and p € u(0), ¢ € u(1),
and fu(a) is connected for all a'€ [0,1]. Thus, eithér a € 4; or a € Az, where -

Ar={a|0<a<1, fula)nflg)=9},
Ag—{a|0<a<1 fu(a)ﬁf(p) B}..

Fm a€ Al, y € f(q) We have F(u(a),y) < to Smce F( ,y) is u.s. c
in z at 2y, the set {z €C: F(:c y) < to} is a relative open subset of C’ whlch
contains a neighborhood of u(a) in C. Using the c_ontmmty of i, we have a
neighborhood U(y, a) C [0,1] of a(i.e. there are fwo points o', a" € [0,1], ¢’ = a
if a = p) such that a € U(y, a), F(u(t),y) < to for all t with ¢’ <t < a”. Since
F is u.s.c. in y at to, there are two ne1ghborhoods V(a ¥ V(a" ,y} of y in

D such that F(u(a'),v) < t, for all v E V(a ) and F(u(a") v) <t for a.ll
v € V(a",y).
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Further, since F is fo-connected, using (1.3) we can see that F(u(t),v) <
t(} for all (t /u) such that te U(y,a), v e V(y) where V(y) V(a ,y)ﬂV(a YY)

| S1nce the set f(q) is compact and {V(y) l)y E f (q)} is an open covermg |
of f(q), there ex1sts a.ﬁmte covering {V(y,) |i= 1 T, yJ € f(q)} of f(q)

Let Ula) = ﬂ{U(y,,a) ' =1,..,m}.. Then F(u(t) v). < g for all
vE f(q) t € Ula), ie. fu(t)) nf(q) = foralit € U(a). Hence the condition
(iii) is verified for the point ¢. Similarly, this condition is also satisfied for the
point p. So F is a function connected on C x D of type D '

. Finally we are concerned with ,existenceltheoﬂr'ei;'r_ll's .f_c')ry‘v'arlji'ztti‘orr__la.li 'in'eqpal_
ities. | |

Let G C X D — R1 be a rea.l valued functlon We: assomate w1th G the
multlfunctlon g: C — 2D deﬁned by

g(w)~{y€D|G($ y)>0}
W:th a similar a.rgument we can- prove ‘the followmg

THEOREM 6 If G is ws.c. in (x,y) at 0 and 1f there e.usts a nonempty
compact subset D, of D such ‘that 1ts associated multjfunctlon g is connected

relative to Dy and lrelfc sup G(z,y) > 0, then there exists yo € Dy such that
yeD,
G(z,yo) > 0forallz € C.
COROLLARY 2. If D is compact and G is u.s.c. in (A,y) at 0 and
if moreover its associated multifunction g is connected relative to D and if

ue%squ(m, y) > (), then there exists yg € D such that G(z,y) > 0 for all
z yeD

zeC.

A modification of Theorem G is the foﬂowing

L]

THEOREM 7. If G(x,.) isw.s.c. iny at 0 for all z € C and if there exists
a nonempty compact subset D) of D such that -
(i) inf sup G(z,y) 2 0,
CyeD, =
(ii) G is connected in C x Dy of type D.
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Then there exists yy € D such that G(z,yo) >0 forallz € C.

Using the generalized Knaster-Kuratowski-Mazurkiewicz principle (see
[3],‘ [6]), from the definition of the class C and Lemma 1 we can also see that
Theorem 1 of [1] which deals with variational inequalities in Hausdorff topolog-

ical vector spaces is a direct consequence of Corollary 2 or of Theorem 7.
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