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7 Introd uctio n

"' In order to find irreduciblé umtary répresentations of ‘a connected and
sxmply connected Lie group G, Kirillov's ‘method of orbit furnishes a procedure
of quantization starting from _lmear bundles over a G-homogeneous symplectic
manifold (seer (5, §15]). In [1] and [2] Do Ngoc Diep has proposed a new pro:
cedure of quantization for the. general case, sta.rtmg from arbitrary 1rreduc1b1e
G-bundles associated with the given Hamiltonian mechapical system In [4] M.
Duﬂo proposed three methods for- constructmg large subsets of the umtary dual
of Lie groups. To avoid the Mackey’s obstructions when reducing Kirillov’s or-
bits method to special contexts, M. Duﬂo lifted the character of the stabilizer

to Z-covering by using metaplectlc structures .

In this paper usmg the techmque of P L Robmson and J.H. Rawnsley

(see [6]) we shall lift the character to U(l) covermg via Mp®-structures instead
of M p-structures. Qur.purpose is also to eliminate the Mackey’s obstluctlons
to obtam hnear representatmns from the projective ones. First of all, in the
Bargmann—Segal model we present an account of the character of the stabilizer.
econdly, by using new results of P.L. Robinson and J.H. Rawnsley (see [6])
\and a new notion of p051t1ve polarlzatlons we shall construct un1tary mduced
representations of G denoted by Ind(G, N, (aa,)x 7 , o9, p). Finally, they w111

be’ 111ustrated as representatlons -obtained from the procedure of geometncal
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multidimensional quantization which is a natural generalization of Kirillov -

Kostant - Souriau’s procedure of quantization.

1. Positive polarization - The character of the stabilizer.

1.1. Positive. polarlzatlon Let G be a contiected and simply con-
nected Lie group. Denote by G the Lie algebra of ‘G and by G* its dual space.
The group G acts on G by the adjoint representation Ad, and on G* by the
coadjoint representation Ad*. We shall simply call it K -representation. Let
F € G* be an arbitrary point in a K-orbit 2, and G the stabilizer of this
point. Denote by G its Lie algebra. The bilinear form Bp on G given by
Bp(X,Y) =< F,[X, Y] > has Ker Bp = g #. We write By for the symplectic
form:on G/Gr induced fr_o_m Br and Bgq the Kirillov 2-form on Q_ . Denote by
Sp(g/gp,ﬁp) or simply Sp(G/GF) the sympletic group. - g

-DEFINITION '1.1: A complex subalgebra N of gc g ® C is called a
Dos1t1ve pola,rlzatmn HE o e P e e e S

1) N is 1nvar1ant under the actlon Ad of G F

L J 11) The subspace N / g 7. denoted by L in gc / g (TFQ)C s_atisﬁe_e. the
followmg three cond1t10ns ‘

(a) dime NYGE == dnnn Q,

(8) Br(X, Y)—Oforall)i Yel,

('y) IBF(X X) > 0 for all X E L

where ,X is the con_]uga,tmn of X in. the complex space, Gt/ g ¢

i) A s G- 1nvar1ant in the sense that for all’ g € G F' = K (g)F SO
Adg_lN/gF sat:sﬁes (’)’) in the space QC/QF, R S

3 VVe say that J‘\f is stnctly poqltwe 1f the 1nequa11ty (7) is strlct for nonzero
o 1 2. The 111tegral kernel of the- character XFe:Let. N be a positive
polarization. We write N H,N: = HE, H= NNG, MC _N‘ +:ﬂ, M=
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E '-(N +jf n G. Let H =GpH, and M’ be the corlespondlng analytic: subgroups
. of H and M, where Hy is the connected component-of the. 1dent1ty of the
subgroup H. S :

‘Let h be a fixed positive number,!s_ajr. the normalized Planck’s constant,

and h 27rﬁ the Pla,nch s constant

& DEFINITION 1 2 A K orb1t Q is called an 1nteg,ra1 orb1t 1ﬁ' there ex1sts
a umtary ‘character XF G Fo— T = S.1 such that its dlfferentlal dx F satlsﬁes

the condltlon

(dXF)(X) = E(XF(CXPiX)) |t—- o

E<FX> VXEQF

The above defin1t1on is equivalent to the condltlon that the form %
belongs to an integral de Rham’s cohomology class. o '
- Su'ppose' that-there exists an extension:U of the character xF on H such

that the followmg equahty
U(epr) = xp(epr) = exp{ < F X)}
satlsﬁes in a nexghbourhood of the 1dent1ty of H (see [5 §15])

We shall construct the space of vacuum states on whlch the subgroup H
acts (see [6, §3]). Let L= N /GS be a pos1t1ve polarization in the symplectzc
':'_‘spa.ce (Q/QF,BF) “Set D H/QF We have L n L= Dc Dl M/Qp =
(N -i-ﬂ) n g)/gp ‘where DJ' is glven by

__.{,X c g/gF/Y €D= BF(X Y) = 0}

Then D C DJ', or D is an 1sotrop1c subspace of (Q/QF,BF) B"y 'the -
xsotropm réductmn Br descends to a symplect1c structure on the space D'L /D -
denoted by BF D (see 8. §4]) We have '

- DY/D = (M/Gr). / (H/Gr) = M/H
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'Thus there exists a symplectic structure on the space M/H with the strictly
- positive polarization I'p of (D*/D,Brp) in the sense of P.L. Robinson and
J.H. Rawnsley (see [6, §3]), which is defined as follows : S

Tp = (N/GS) | (HE/GE) = N/Hc

PROPOSITION 1.1. The subgroup H acts on the Bargmann space.
H{M /'H) and preserves the one-dunens:onal 'space of vacuum states

{€ (ME/HEYNINHE

PROOF: Since M/H is a symplectic space, we have a rigged Hilbert

space in the sense of Gelfand as follows :
| ( ME/HE) H(ME/HE) € ¢ (MS/HE)
*(see [6, §1)). In this éa.se, o
(£ (ME/HEOWNIME = {f € £ (ME/HEYW(v)f =0, W e N/HC}, |
where W ; ME [HE ~ Bad € (ME/HE) is defined by
(W (01 + i02) (=) = ~df.on + ) +om < zu — Jup > £(2).

Here < .,. > is the scalm product in ME /’Hc and J denotes the multlphcatlon
' by Z on M/ 'H ' ‘ '

' Since I‘ D = N/HE is a stnctly posxtwe polanzatmn
{€ (MC/HC)}N /M€ is a complex line with basis vector fD (see [6 §4]). The"
action of H on {&’ (MC/'HC)}N/u is given by

URp)w) = Uh)fo(v), v € MEJHE.

. In a certain neighbburyood of the iden.tit_y. of fhe subgroup-H ) we hg;;ve o
xr(exp X).fp = i/MEX) ¢ |

We may therefore consider th; a.cticin- of" H ;)n H(MC/HC) given by

exp X e(‘./")p(x).f,
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where I = zd(H(Mc/'HC)) Then H preserves (€ (MC/HC)}N/HC .

PROPOSITION 1. 2 e('/“)F(X) IJS a umtary operator ofH(MC/‘HC) and 7
 its mtegral keme] u(X z,w) is ngen by |

' u(X z, w)_-u(z w)...exp ﬁ'{zI"'(X)-f- <zw> ——i<w w>}, .

Where z we MC/'HC

_ PROOF Slnce the 1dent1ty operator I= 1c1(H(.Mc / 'Hc)) has 1ts lntegral
kernel glven by kemel I(z,w) (Iew)(z) = ew(z) = exp( % <.% w > - <

w, w >), the operator

(e*"”‘) )= [exp( FX))]f

t:' P

is umtary, and its kernel is

w(z ) = exp(—z—F('X)'-{- lj< 'z,'%w > '-ﬁ <ww3)

" REMARKS: 1) It6:Gp F = U (V) is an 1rreduc1ble umtary representatmn
of Gr in the Hilbert space V then

(a ® xp‘”)(v f) = a(v) ® xF“’(f)

S

‘has an integral kernel given by

u(z,w,v).= é(ﬁ).exp{EE(X) +§1£ < zaw S _Z% < w,w >}.

2) If we use the )"H-pr‘ihcipal bundle H + M — M \ H and the represen-
tation U : H — £ (M€ / HC)N/ -ﬂc, we can also construct the unitary induced
representation of M. In this case the scalar produc:t of the basis ifec_tof Spis
defined by ST . CT T L TR -

R (oito)= [ o,

._," Ce

where i is the Gauss:an measure on .M/ 'H wﬂ:h the dens1ty funct:on 8 given by

6(zy=h"m exp(——%i-—), z€ M/'H, m = dime M/H.
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2. A llft of the character to U(1)- coverlng

- 2.1, U(1)- covering of stabilizer G Fe The symplectlc group Sp(G/GF)

consists of all the real automorplnsms that preserve the symplectlc form B F-

IfGr # G,ie. G/GF is not trivial, then Sp(G/Gr) has an U(l) connected
covering Mp° (G/Grp, Bp) or simply Mp© (g/gp) (sge 16, §2). KU € Mp*(G/Gr),
then U has parameters (A, g} such that |\>detCy| = 1 for.some A € C, g €
S5p(G/Gr) and Cg = (g — iy _;z) We have a surjective group homomm'phlsm o
from Mp* (G/QF) to Sp(g/gF) defined by a(U) = - g w1th Ker o bemg prec1sely

the- umtary scalar operator U (1) Thus ‘we have a central short exact sequence
1_+;q1)j{34p%g/gp) (G/QF)*+1

If G = G, then taking Mp°(G/Gr) = (1) We_ha.ve a split short exact
sequence SR EPRRERE LR

1 - U(l) — Mpc(g/gp) —1—=1.

PROPOSITION 1 Tbere emsts a group bomomozp]usm _] from GF to

SpG/Gr).

PrOOF: Let ¢ GGF Then.-Adg™ :.G — G is a real automorphism.
Denote by Edg_l G/ gp — G/G F the realéﬁtbmorp}ﬁsm induced from Adg~!.
We have ﬂ T ST TR

 Be(Adg R, Kag™F = Br(adg ™ X, 4dgT'Y) o
=< K@F [X, J$—<FH}D—J_W
fg;<FA@WXﬂ>—BAXY) |

for all g€ GF Hence #(g) = Adg™ ~1'is the desired homomorplii31ﬁ'.' e

Denote by G'Uu) the Lie subgmup of the cartesian product of Lie groups
Gr X Mp“(G/Gr) conszstmg of all pairs (g, U) such that a([ ) = A(IJ lie. g
and U liave the'same image i’ Sp(G /G F)- : B
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PROPOSITION 2.2. The.te exists a commutative diagram of the form
| 1 —-»U(l) —. GU‘” % GF -‘-,—{1
L Lk L
f 1 ~4U(1) o MPC(g/gF)  5p6/Gr) = 1

" PROOF: We have G va )_ {(g,U) | o(U) =" J(g) 4dg 1} \\hele
Ue ]\Ip"'(g/gp) has- paramete1 ()\ f) with f € Sp(G/gp) and A € C such that
|A2Det Cf| = 1 with C'f (f - zfz) commutmg mth i€ C (i? ='——1)

Smce G(U) f = Adg . every member of G F( 3 has the form
(g: (A, Adg'“l)) such that )

[\Det Cg, | =1.

Put k(g; (A, Adg~1)) = (), .ng‘__l) € Mpc(G/gp). Then kisa group homomor-
phism ffqm_Gg(l-) to Mp‘f(G/Qp), and q,—(g,()\,ﬁr_lg'fl))_f_— g: It is ga,s_ilj* seen

that this homomorphism k makes the above cfiagram conimutative:.
| From Proposmon 2.2 we obtain the short exact sequence -
1-->U(1)_$GU“’ i ('F -—'»1-. |
Hence GF isa U(l) covermg of GF

-2, 2 Llftmg the character of G" to GU(I) -We clo not assume. that
Q passing F € §* is an mtegral orbit, i.e. there does not exist a'character \p

OfGF Since P Sl _
| 1—>U(1)—->GU“) % Gr 1

is a short exact sequence, we ha,ve a split short exact sequence of the corre-

sponding Lie alg,ebra,s A ‘
: 0-—._;U(1)—rL1eG m———-*gF—’O

Thus the Lie algebra of GF(- ) is Gr ® U(1) (see [6; §5]').':'3 -
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- DEeFINITION 2.1: The K-orbit Qp is called U (1)-admissible iff there
exists a unitary character }tF{I) GU(I) — S! such that (dXU(l))(X,tp) =
L(F(X) + k), where (X,¢) € Gr & UQl), kel

REMARK: The case k' = 0 is considered in the previous section. For
k 75 0, it is enough to consider the case k = 1. Set j(U(l) Xgm_ If Qp is an
integral orbit then it is U (1)-admissible, but the reverse does not hold.

PROPOSITION 2.3. Ina nelghbourhood of the Jdentjty of G ue ) we have .
W(F(l)(g, A, Adg 1)) = exp{ L(F(X)+ @)}, where @ € R satisfies the relation A2

Det C, gt = = ek¥. The integr. aI kernel of X F M s given by the formula

u(z,w) = exp( (F(X)+n,o)+— <nw> —— <ww ),

. | 4k
where z,w € M%/HE.
-PR0.0F: In the special case Fy = 0, we ha,ve: GV = @ x (1)
Xr exp X,p) = e# (Fo(X) +¢) = ex?. Henee |
d -
thF( Yexp X 1 29))imo = dt[exp{ 1‘I‘F(J&)} exp tv}h o

= g F(X)+ ﬁcp: —(F(-’k)ﬂo)-
I U(l)
In the general case, the character xp

(1,(1,1)) of Gg(l) is given by

in a neibourhood of the identity

“’(g (0 Adg™)) = exp(L(F(X) + ),
where g = exp X and @ E'R such that A2 Det C . en e,

Slmlla,rly as in the proof of P10p051t1on 1.2 in Sectlon 1 we can show

that the integral kernel of )L F ) is g1ven by the stated formula.

2.3. Extension of the character on HV() = GU(I) LS Ho. Let Hy be

" _the connected component of the 1dent1ty in H then Hy i 1s a normal subgroup in

H, and G has the adjoint action on Hy. Moreover, we have the homomorphism
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o GU“) - GF Thus GF( ¥ acts on Hy, and we can deﬁne the sem1d1rect

product G F(l) X Ho The followmg dlag,ram is. commutative -

Tz_dz-; - T_-PHQ' T Py
- 1—U) — 6P X Hy — GrHo— 1.

where Py, is the quot1ent homomorphlsm Hen.ce GU“) X Hy is the. U (1)-
covering of H = CFHO Set BV = GU(” X Hg The L1e algebra of: HU(” is
- H @ u(l).

We now assume that the K: orb1t lis U(l) adrmsmble and Nisa posm\ e
polarization in G&. Let & be a fixed 1rreduc1ble umtary representatmn of Gg in
a separable Hilbert space V such that the restriction of-XF( . (Go;) to (GRHY

Q)

1s a mult1ple of the character y F where a; is the homomorphlsm defined in

: Propos1t10n The pola.rlza.tlon N is called closed if all the: subgroups Hy, M,
and H =G FHO, JI =G FJMO are closed in G In wha,t follows We assume that
A is closed, et o ' Co

DEFINITION 2.2 The triplot (Nopioo) is called a (5,20

pol’ariza.tion if

1) og is an irreducible umtary representdtlon of the subgroup (H, va )) in

a Hilbert space 1 such that
GOICU(I) n (HU(I)) (cr'arj '_";U(]}).

11) p isa representatlon of the complex L1e alg,ebra N =) u( ) inVv such
that - N T O S 1 O L T

oy = plaigucy

PROPOSITION 2. 4' I Q5 is U(lj ad}nissiole “and (Afrp, og) is a
(a X F( )) -polarization, then there exists a unique Jrreduczble representation
HU(” — U(V) such that '

‘ PPN g
O’OIGF-(- -)“= (UO'J‘)XF(' )')"'la'nd wdo = PI’}{@MI)' l
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PBOOF Simxla,rly as in the proof of Theorem 2 in (1}, using the fact
that aoIGU“) N (HU(”) = (aa,)xF( )) and dcroA Pluae() We can extend o’u

un:quely to an irreducible representation as inthe above statement.

3. Induced representatlons

3. 1 Induced respresentation obtamed from the (G, F( )) - po-
larization. "If weé choose Fo =0 € g* then G F, = G. According to the
deﬁmtxon of Mpc(g/gpo,Bpo) = U(l) we put GV = G x U(1).

PROPOSITION 3 1

G x HU(” =G X G"“’ = GUm
in the category of pnnapal bundIes

s PROOF' Fix a connection I‘ bn the principal bundle H —» .G - H\G.
and let Pri: G — H be the pro_}ection induced from T. -We can construct the
covering map Prp fmm GU“) to HV() by the following commutative dlag1 am

(in the category of top._olqglca.l_spa.ces and continuous maps)

1 U(1) — GV 6y 1
‘ {id |Pre  |Prg
1 —=UQ)—= YW g
Obviously, the maps Pry and ﬁ'.F induce the isomorphisms of the statement.

' Because of the isomorphisms of - P1o§osition 3.1 we have a 7p1incipal
- HYM) -bundle on H '\ G and a principal G F( \-bundle on G F \ G as follows

Y v .GU“’HGU“)

CH\G & Gr\G

“where 7 is the natural projection from G p \Gto H\G. -
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“-Denote by E, » = = @UQ) ;U( ) -V the vector bundle on H\ G associated
: HY( -

Wlth the representa.tmn o: HV) 5 U(V) The mverse Image bundle B, y

and GV . V are equlvalent in the category of smooth vector bundles
AR lepdy N T R TTRTL

Denote by S (71'* o,0) the space consmtlng of all smooth sectlons of the

bundle #*E,,. ~ The connection T~ induces a connéction I' on

GU(I) - GUM s Q. We. obtain ‘an afﬁne connection 7! on the associated

bundle GU(I) ‘ X V. Put
. e} ()(0'6 )XU(I)" '

‘S~(1r ,p)—-{sGS(n’* ,,,,)|v£—0 V{EL}
The na.tural representatxon ‘ of G i S (W*E, ,,) denoted by
Ind (G, N, (&orj)xg,( , 00, p) is- called the mduced representatmn (see [5, §13)).

3.2. Induced unitary representatlon.' To obta.m a umtary represen-

~ tation we shall apply the pa,ulng used in [6]

Forv € G/Gr, a umta,ry operator VV(U) on H(gc/gr) is defined by
(IfV(v)f)(z) = exp{—w < 2z v, > f(z - v)}

where f € H(g‘:/gp) and z € QC/GF

Themap W : G/Gr — AutH(g € / g ) is an 1rreduc'1b1e projective unitary
representation of the vector group of G/GFr w1th mult:pher exp{:g Bp} ‘The
differentiated pro;ectxve representatlon W of G / g F on & (G© / G F) complexifies
to yleld R - o

o W :_.(G/_gp)c :—,-~+-’_End 8.'(9;‘?/9%) N
Wlth R i
‘ "1' T ET T
(IV(vl + wg)f)(z) = —dfz(vl + ng) + T ng > f(z)

for 2V € g/gF and f.€ £ (gC/gg)

For convenlence in what follows we denote by P the punmpal G( 1)

bundle GU“) GU(I) 5 Gr \ G. By the | group homomorphxsm ke GU(”
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Mp*(G/Gr) and -the metaplectic representation u : Mp*(G/GF) -
End £(G¢/G%) (see [6, §2}), we obtain e'bunclle associated with P -via the
homomorphism y o k& with g (gc/g F) as the typical fiber. We consider the
homomorphlsm (anXF( ))(p o k) defined by R

(oo k): G2V — B 7 8’(5‘°’/"g£")1 N
(6,0) = @ojxp Ng. V) @ (nok)g.U)

Denote by &, o(F) the vector bundle associated with P vie the rhr'omom'orprhiSfﬁ
(GUJXF( ))(# o k) with 1% ® 5 (gc/gp) as the typlcal fibre.

PROPOSITION 3 2 For each F s Q there isa canom.ca,l linear map
o We (TF:Q) - — End _(EU'P(‘P)_)‘Fr . : |
such that if X,Y € (TsQ)C then
| e W (@) = L Be(E,P),
PROOF: Each pE }.’p:.deterr{i‘ipest.he.isomerphis:msl_ |
i VeEEEn - P
o piE/eeT - -(T.F'mc' |
We deﬁne . ) ' l- .. L S
Wp(X) = pOW(p-l(X))op-l for A € (TFJQ)C

This definition is independent of the choice of p (see [6, §3]). The commﬁtation
relations for Wes come- from those for W. Since &c’r,'xg(l) € (Gp Gy ¥ is a
representation such that its restriction to (G%)V(!) is just a multiplier of xU(l)
the comrnutatlon relations for, W can be provzded by a dxrect computatlon as

done in [1:3]."

We assume that dima 2 = 2m. Recall that the canonical bundle of Lis
the top exterior power KL= A"’(L”) of its anmhllator (L)o C (TQC)* Then
Klisa complex line bundle in A""(TQC) W1th the basm vector denoted by lC~
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Put g (P)F' = {f E 80. p(P)F’ l X E LF! # WFr(X)f = 0} Then
£, p(P)L is a tensor product of the complex line bundlé £ (P)L associated with
the representation P(go;x F( M, Arguing as in Theorem (6.9) of [6] we'obtain

the following result.

PROPOSITION 3.3. There exzsts a canomca.l 130morph1sm of compIeA
bund]es -

! p(P)L ®E (P)L ® KL ‘= P(GajxsMy.,
In. our multldlmentlonal s1tuat10n, by puttmg \". k |
QP =¢, (PLoKE, . |
we have , : | :
| Q(P)E = (anxF(l)) ®E (P)L ® KL :

Hence, | _
QP = P(ao;xp( )& Plaop V) £ (P)L of(PloxTo K
Taking Proposmon 3.3 into account we get

QP = P30, ) ® & (P ot (Pl okl oKt
= [P(0, \’U“)J]z ® KL |

As in the above section, v is the connection in P(aa, X F( )) Indeed, Yl @ T+

I®L (where L is the usual Lie derivation) gives a connection in [P((aa i) )\g(l))]

| and so umquely defines a connection in Q(P)L denoted by vl Denote by
S~(Q(P)L) the space of all sections of Q(P)L for which V-E s=0,veeL Put~
Hy = {s € 85 (Q(P)L) | the density < s,s >3 has compact-support } An:
inner product is defined on H; by integrating the density < s,t > over the
lea,f space {}7. Denote by ‘H~ the Hilbert space which is the completion of the

space H~ (see [6 §8])

Now we summarlze the obtamed results as. follows
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THEOREM 1. With any (a,xF( ))-polauzatzon (N, p,cro) there exists

_ a natural umtary repzesentatlon of G In “Hy written by Ind(G N (UUJX (1)

0y, p) as in Section 3.1.

4. Unitary representatlon arlsmg in the procedure of multidi-

mens:onal quantlzatlon.

In this sectlon, applying the procedure of mult1d1ment1ona1 qua,ntwa-

tion of [3], we shall propose a mecha.mcal 1nterpretat10n of the representa,tmn
Ind(G, N, (5a;)x 2" 0'0,[)) SRR

4.1 The c011d1t10ns of a“‘p‘rocedu're of quantization. As a model of
the quantum system we choose the Hilbert space H~ of Section 3.2. We shall

use the bundle Q(P)L (aa, X (1))®8 (P)L®I ' to construct the procedure

“of quantization :
V0 £(G%/66) o KX P )8 € (P)e
: . > S v 3 .
More _precisely, we doﬁllt-*"thc '1.)1'oc'edu1‘e of ciua.ntiza.tion as follows
() C'“(Q) — E(H~)

f 'F;-
f'—"f f+ ng»

~

‘where L(H7) is the space of'all (unbounded Hermitian operators on H;and v/ é’f
is the coveriant donvanon associated with the conne(‘tlon v on the G-bundle
,Q(P)L We recall that VE is defined by the fomlula '

k=L, + };Q(E_f.)a

where the 1-form fa is the connection form of yZ, Le , is the Lie derivation

along the strictly Hamiltonian vector field ¢ ¥ ccirresﬁondiﬂg to f (see [5]).

By a similar argument as in [3], we obtain the following result.
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... PROPOSITION 4.1. The following three conditions are_equij{a.;ezgt :

i} The application f - f is a procedure of quantization, . .-
ii) Curv (V) (&) = — 4 Bal&,n).1,
1'1'1') d ;a(§,n) = “Bsz(f,??)-f-

. PROOE:, By the Lelbmz rule, V ® I + I ® L is the connectlon on
(Q(P)L)2 5nd we have e ' : .

AR T T

curv (V ®1+I1eL)(E, TI) = curv (V )(‘f ??)

Moreover by the deﬁmtmn of v we have

cury (VENEm) = curv (97 @ 1+ 10 D)e,n) =
=iV ®I+I®L)(§) (V' RI+I®L)m] = (V" ®I+1® L)y
= [Ve + Lg, Vq + Ln] - V[f,:]] - L[&m] o
= curv (V")(¢,7). e
Hence, if we assume that curv.(gU)(&;9) = —%Bg‘(f »1).1, then repeating the
proof of [3] we get the assertion.’’. .. - =, : E :

4.2. Representation arising in the procedure of quantization.
Ha.vmg the above plocedme of quantization, we obtam the followmg 1epresen-

tatlon of the L1e algebra g in the space £(H~) e '.
A g — E(’H~ |
XA =gh

~ where. X € G and fx € C%(Q)is the generating function of the hamiltonian
field {x corresponding to X'. If G is connected and simply connected, we obtain

a unitary representation T of G defined by
T(exp A) = exp(/\(i)) Xed.

We say that 1t is the reprefsentatlon of G arxsmg in the p1ocedu1e of

multidimensional quantlzatlon As'in [9] we also have the followmg result
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PROPOSITION 4.2, The representation A arising from the procedure of

multidimensional quantization coincides with the representation .
v G — L(H7)

_’M¢(1)~L5\’+ {m +Of(€\)}

whe;e o is the 1- frum such that a is the connectmn fonn ofv and 28 Q —
R is defined by o x(F) = F(X). '

ProOF: We have

|~

5y .(90\+ﬁv.g,‘) ﬁ‘P\'-{"VgA ,

= Le.\- + g{,@x {r_q(_{.\-)-},_ Lo R
=(X).

'REMARK? It is easy to see that in ‘th’t='7‘g1'0up'-1evel this‘-representation P

lifts to the representation Ind(G, N, (6a;)x F“') g, p)s

Summlng up, we have proved the followmg result.

THEOREM 2. W:th any, (0' x )-polauzation (J\f , p,ao) the mu1t1d1—
mensional quantization pr ocedure gwes us a repi esentat:on P which lifts to the

- representatzon Ind(C,,\f,(an)XF ,0‘0,-)0)- ST
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