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ON #-SURFACES MINIMIZING A FUNCTIONAL
WITH A CONVEX LAGRANGIAN IN k"

"TRAN VIET DUNG
0. Introduction

The problem of minimal cﬁrrents and surfaces in Riemannian mani-
folds was studies by A.T, Fomenko [1], Dao Trong Thi [2], H. Federer, W.H.
Fleming [3], and others. '

The aim of this paper is to investigate some properties of k-surfaces

b

minimizing a functional given by a lagrangian. In the case when k = 1

minimal curves were described in [4].

§1. Preliminaries '

Let R" be the n—-dimernsional Euclidean space,‘ ArR™ and A¥R™ be
the vector spaces of k-vectors and k-covectors on R respectively. Let M
be a Riemannian manifold. Denote by E*AM and By M the vector spaces

of differential k-forms and k-currents. Consider a functional J on E’k]i/f A

k-current S is called absolutely minimal with respect to J if J(5) < J(S§")

_ for any k-current §” such that S~ § is closed.

A lagrangian L of degree & is a mapping L : AM — R such that

its restriction to each fibre AyM, is positively homogeneous, where A, is

~ the tangent space to M at z. Fach lagrangian L of degree k on M defines a

positively homogeneous functional J on ErM by the formula

J(S) = ] L(5.)d |ISl(2), S € ExM,
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_:wl‘lere- the k- vector § 15 deﬁ.nedi-'by 5,15 H is'-’th,e ydrlational rn_eé.-snce:'-g-iven.'-
_bY S (See [2]) llell =1.-

Each or1ented compact varzety v in M can be 1dent1ﬁed Wlth & k-
current [V] by the formula,

W (.;A)‘%-’/ v, @EEM:

Then t.he or1ented tang;ent space V at.z can be. 1dent1ﬁed with the -

k- vector [V]

.I-n this paper, assume tha;_t'\the lagrangian L is '_parell:'el, wiv.e.- .not: de-

: p'e_ndent on &. Put

N Ci= {fe /.\.kRE:.-‘_’-‘jL(S):-:S_ _i'_'};'--

and

SL = {f E /\ka ¥ L(f) = 1}

We a,lso assume that C pisa convex polyhedron of d1rnens1on (") 1n- the -

space /\;. R} = /\L R" = R( ). Thiis lagran an is called convex polyhedra,l
gl

For a set Z in a ﬁmte d1men31onal Euchdean space RN, a, hyperplane H*.

'.-1s called supportmg ‘at a: €Zif there is‘a lmear form w on, RN such that
: _w({) = h for every£ €. H* and w({) < h, for every § € Z where h € R. Then
' the set H H "N Z isa face of Z. For any A m RN denote by CZ the set

C’Z_{tg,sez t>0}

From Theorem 3. 6 and 3. 7 in [2] we, have

THEOREM 1 Let J be a functwnai on EkR" g:ven by a convex poly- _
hedral lagrangxan L The k- current S .lS absolutely munmal wn‘:h respect to



J if and only u" theze is a-face H of Cy such that S e CH for almost every

t € R" in the sense of the measure ||S[|

- The k- surf'lces mmnmzmg J in- the class of all Eicurrents w1th the.
“same boundary are descnbed by Theorem 1. Next we shall find conditions
for the mmlma,hty of L surfaces in the class. of all orlented compact k-surfaces

- with, the same boundary

',-§2 On minimal k-surfaces '

L G1ven a lagrang;an L of deglee k in R™ as above. Denote by G( L n)
the set of all orlented k- planes passmg through the origin inr R™. Each k-
) plane of them can - be identified with a simple ‘k-vector in R", the'norm of
Wthh equals to unlt Thus G(k n) is contaaned in the unit sphere in the
space R( = AxR™ Put ' '

- CG(k n)= {tf, t>0, fe G(k, n)}

) If 1-< k< n =1, then the set CG(A n) ﬂ CL is not convex in /\;;Rn
By using faces of the set CG(k,n) we can obtam a suﬁiczent condmon for

the mmnnahty of L surfaces 111 R™..

T}[EOREM' 2. LetJ be the funct;ion on E;\-R“' gﬁei: by the lagrangian, .7_7
L. Let S be'a compact oriented k-surface of dxmens;on kin R*. If there
is a face H of CG(k n)NSg such that. S € C'H for every = € S, then S :
185 mmumzrng the function J in the class of alI compact orlented k- s*urfacesr ‘

- with the same boundary

"PROOF: Let H be a face of C G(L n) NSy deﬁned by a hyperplane
in R( ) We shall show that H “ does not contain the or igin 0 in RG )

‘ ‘Fll‘St of all assume that 0e H*. There are two cases.
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- 1) There is a k-vector § EV(C'G EnynSp) \ H . Then there exists
t >0 such that —t£ € C’G(A n)N Sy. 'f&ssurne that w(f) = h is the equatmn
of H* and w(ﬁ) < h for every £ € CG(A n) S, Smce 0€ H"‘,' 1t follows
h =0. For a point £ € (CG{k.n)N Sp)\ H* we have w(€) < 0. Then for
t >0, w(- t{j —tw(f;’) > 0. It follows —t{ ga? CG(E n)ﬂSL for any t > 0'

That is a contradlctlon

- 2) There is no k-vector in (CG(L n)ﬂSL)\H* Then CC’(L n)ﬂSL C

H*. It followsthat C’G(L,n)ﬂC’L C H* and CG(k,n) C H*. Butin- CGk,n) .

there are {}) linearly independent k-vectors and dim H* = (}) ~ 1. Hence

we obtain a contradiction.

Thus, we can assume that H * does not contain the or1g1n 0 ni R( ) -

* Hence, there is a linear form w on R( ) such that H* has the equatmn ‘

“w(€) = 1 and w(€) < 1 for every £ € CG(k,n) N Sz. Then w(f) = L(§) = 1

for every £ € H, It follows that w({) <- L{&) for every { € CC(L n) andi 3
equality holds if and only if£eC H. S

_ Denote by & the constant coefﬁuent d1fferent1a1 A-form correspondmg L
to w, 1.e. wx = w for every € R* Itis easy to see that @ is closed hence '

exact, i.e. there'is a dlﬁ'erentlal (k — 1)-form & such that d9 w.

It H is a face of CG(k,n) N Sy that satisfies the assumptmn of the

theorem, then

G R C O

for every z € S. ‘Henc'e-

On the other ha,nd

®) f /L(S)dusn 5S),
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@w fw:fw.
. . . ) V - S . . S .- .

- It follows that 3 o '
O o J(S) / do

T By the Stokes s theorem, we have o

© f‘”—'/"
S - Jas

. Let S’ be an arb1trary compact or1ented k-surface wh1ch ha.s the same
bounda.ry Wlth S Then ' .

G (2 f / suwns*u(x)

From the 1nequa,11ty L(f ) W) it follows

t@)‘i'  fL>f
.. By the Stokes theorem, we have -

© fw_f e_f 6=J
_ - s 85" as T
‘ From (7) (8) (9) it follows | '
| A IS)

' Thus, the mlmmallty of S is proved &md the proof of the theorem Is-;'

completed

By 1 the a.bove theorem for a fa,ce' T of the set CG(L n)N St L there is

a class of mmlmal k- surfaces whlch satlsfy the a,ssumptmn of the theorem h

Denote it by F(H ) We shall descnbe F(H )
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'_(fn_) |

7 respectwely, ie.

_ RE&IAEI\ If L is the norm in R(: ) 1£id'uced by the Eeclidean norm in, - .
R™ then €' G(l n) NSy = C’(i\ n) and vie: obtam a condltlon for. the volume— '

mnnmmhty of a k- surface

LEMMA 1. Let {1 and §2 be two noncoﬂmear Sxmple k- Vectozs Tbe‘ '

streught line’ < &y, {2 > corisists of- szmple [ vectors if and only if tbere exist-

X hneazlymdependent vectors €1, - ) €k 6L+1 in. R such that -

f=er Ao e Ae,
52 =er A Ao Aepgrs

PROOF 1) Assume that § a.nd £y have the form- (11) For;ahy (€ -

-< {1,62 > { = t{'l + (1 — t)fg, whelet € R It follows

.-"5‘—*tezA /\ea 1/\61.-1—(1——15)61/\ “Aeg— 1/\ek+3 '
.'_elA /\e; 1A(te,~ +(1—t)ek+1) '
Hence f 1s a sunpie k- vectm

. 2) Now assume that the straight line < El,fz > conslsts of sunple

k- vectors Denote by V(El) V(fg) the vector spaces assoc;ated to {;'l,fg

eV <=>e A& = 0 =12

Assume that dnn V((‘jl) N V({g) =1. Then there ex:st vectors €y, ,

' 'eg L ER 1D V(fl) and €1,°7 €ty - S€k41s 7 5 E2k—1 n V(Eg) such tha,t the

B system {el, e Ryt » €2k 1} is hnearly mdependent and

',§1=6_1 /\"'-/\.61/\"'/\'61;,

. Ea=erA--Aey A_ék.;.] AcrAegr=1.
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By the assumptlon, 2{1 252 is a sxmple L vector It foﬂovvs that .
; 51 + 52 18- a sxnlple k- Vector Assume that 51 + fg = f1 ./\ s Where, .
f, € R™, é = 1 2 Iy '

Let us-choose vectors 62;, 14102 -‘., e, such that the system '{el,eg,

en} is a basu: of the space R™. We have -

‘ fi :-zmi_.feja i :112,1'1':'1 " i
=l T '

and . B

: : Tyi $1 | . R
(14) f /\ﬁc = Z det l - } ez Aree ey
’ . ’ 31< <!k ¢L1 xl\,tk ' ' ’

On the other hand .
_ (15) /\fx_—uell\ /\ek-i-el/\ 61 A€L+1A /\eu_l

Smce the system {etl '/\ e,-‘} is hnearly independent' by (14) (15)
all coefﬁments of 6,1 A A €iy in (14 are equa.l to zero except the coeﬁiments _
:,O_f ey A--Aeg and elA AelAeH_l/\ - A €ip—y.
”'_qu,assume that 1~-'<-}.:,—- 1, then © °
_ Jlil T TIR=1T k4 .
ey .. det | 0 |=0,i=1,2,+ k=1
B $k1‘-?wkk—1wkk+i | \
_ Consider' 0.;1,012.,'..' ,Q2p-1 € RL glven by aJ = (1:11, s 1:-)‘3')
1, 2,... 2k —1. If the system {ay,- - ,a e 1} is llnearly dependent then the

‘ System {al_, T 1,ak} is’ also Tinearly dependent Hence

‘ -1'11 T1k
det |3 i1 |=0

Ty - ot Thk
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and. it.follows that the coefﬁcmnt of e; /\ - A ey in (14) equals to zero. This

'_ isa contrachctxon to (15).
-If__the system {ay, o, LOrp—1} 18 -1ineérly'iﬁcielaelidex}t, then-
(16) R : ak'_,.i:: til(f_l‘l-l"i"—}‘.ték_lak_li‘
fori=1,2,-- k1. |
It éasy to see that the systém alr, e Oy Ol st s 02— is linearly
dependent. Tt. follows ' | ' |
N | S T o ¥ ‘ s:vlkw]-l ST T12k—1 .
det ' : : ' 1 -0
TEL it‘ke_.' Tgk+1 00 Th2k-1d
Thus, the coefficient of ey A -+ A 61‘/\ e;,.i.l' A /\.621; 1 in (14) eqﬁals

to zero. That is a contradiction to (15). Hence we obtain £ =& — 1 and the

proof of the lemma, 18 completeq

LEMMA 2. Let {jo, £y, ,{m be linearly 1ndependent simnple k- Ve('tozs

: _and < 50,51, oo € > be the m-plane in R( ) defined by €0.61+ v Em.

 Assume that < &,61,.&m > consists of only simple I vectors. Denote

by V(Eo) V({m) the Vector spaces associated to £o, ., {m respectively.
Then ' ' - | '

- dim [V(ﬁu) + V(fl) o+ V(ER) Sk A+ m.

' PROOF Smce < 0,81, b > consists of only bnnple k-vectors,
- the stralght 1111e < E,, ‘f J > consmts of only s:mple k-vectors. By Lemma 1,

o (19 o '- dim V({;)ﬂV(gJ)_-L—l for i#3:
On the other hand

dtm V(&) + V(& )] = dim V(fo) + dim V{€)—
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“dim V(E)NV(E) =k +1
dim [V (&) + V(&) +V(&)] = dzm [V(an) + V(a )+
dim V(&) —dim V(&) + V(EN] N V(6). -
Tt folloy;rs dim [V(€0)+V(§] J+V(€2)] £ k+2. Analogously, we obtain
L dim V() + V(&) -+ V(ER)] Sk +m.
Thus the .lémma-is prb\'red. '
LEMMA 3. Let H be anm- chmensmnal face of CG(k,n)N Sy which is

' _contamed in an m-plane Let §g, 51, - Em be hnearIy mdependent k-vectors
in H Then for every{ €H, '

CONMN (15 C[V(fo)+V(£1)+ +v(em)]'

PROOF: By the asssumption, it easy to see that H C < &, €1,--+,
'Em >. Denote by < 50, i > the i-plane defined by 0,61, 6. We
shall show by induction that for any £ €< &g, €1, ,& > -

V(€ C V(&) + s o VIE]
For i = 1, by Lemma 1 we have |
ey V(E) C V(&) + V(&)
By the induction hypothesis.

(22) O VE V) FTED) o+ V(Ema)):

for every €€ < &,61,- yEm—1 >
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Let £ be a k- vector in H W1thout loss of g,enex ahty we may assume .

:that < ﬁm,f > ﬂ < 50»511 >€m~—1 > = E then V(ﬁ) C [V(fo] + V(ﬁﬂ + '

—I— V(Em })] On the other hand hy Lemma 1

Ve (am>+vm1
Hende we obtain -
've)cnner+vwﬂ+ +Ve;nv
A Thus, the proof of the lemma is completed |

THEOREM 3. -Let. H beé anm- dunenszonal face of CG(k n)ﬂS L W}nch

'. 15 contamed m an m—pIace Let 5 be a mm1ma1 k- surface correSpondmg to -

H (1 e § € F(H)) Assume that S'is a.rcwxse connected Let 50,51, e bm :

- ' be linearly mdependent k- Vectors i H and W be the (k + m)-plane in R* -~
',".deﬁned bV vector space V(fo) + + ‘V({m) and a pomt :co € S Then :
| Scw. | - - o

PROOF ‘Since- S' is contamed in F(H) .S' € CH f01 evely T € S

‘ Where S, is. Avvector deﬁned by the tangent space Sz at 2 = S By Lemma,- ,

_ 3. we- ha,ve

V(s ) C [Vig) + V(E) Foo vu:m i

Let Y be ¢ an arbltlary pomt on S. Smce S is ar cwise connected there ' .' .

is a d1{ferent1able curve g paesmg through Ton Y- Then every tangent vector_-

to 'y is contained in V(ﬁo) NEN V(Em) Hence 'y is contamed in W'

The themem is proved

§3 011 the convex1ty of CL -

In the case When CL is convex, every k- pla.ne I\. i’ R" is mlmmal,_

-w1th respect to J. Actually, flom the cOnvexxty of Cy, 1t follows that for eachr
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{ E S L there is face H conta,mlng £. Obv1ousiy, Is. s a ﬁxed k- vecto1 fo1

every x There ex;sts t > 0 such that tIx,,- € .S'L Hence there is a. face H of'

CL such that le € CH. By Theorem 1, the k- plane I& is m1n1ma1

In the case When C'L 1s not comex the above statement is not true

For example assume that k= 1. Smce Cr.is not convex there are. two pomts

‘a € Sy, Ly be S i such that the straaght segment’ [a b] is. not contamed in C.

"Hence there isa pomt £ € [a b} \ Cr. Then there is a. poins {1 10, [0 al suchl
' that [E 51] | [0, 8]. Let 52 be a pomt 1n [0;8) such that [{, Ez] || [0 a] Then
§ =&+ £a. Moreover £ = t1a, & = (1 — tl)b where t1 € R.- Denote by -
{0, &2, f]_ the broken lme passmg through Q, §2,§ Then _We lleve ' ‘

([0 52,5]) = J([O 52])+J([§23 })
1.—Ho—m+bf—&%¢£ﬂ+ﬂh)

T -—L(tla)-{-L((l-t,)b =tH-n=1

‘ 'On the othe1 hdnd puttmg f [0 &n .S'L we have -

ey a0, = e

Jr([0 &) = L(§ )= L.

] Smcef —t§ 0 <t<1it follows ._ :

Les L =mes

' F;:Oﬁj (25)We have

en s
) .: A. . Fro1n k‘)4) (25) (9() we obtam 7 '

'X%L{f_.‘ff[.Jmsn>ﬂme,u 
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Tlms, the broken line [0 Eg, £ is shorte’f than the s'traighty segnlgnt"
[0 5] Hence [0 5] is not mm1ma.1 w1th respect to the’ functxona,l J -
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