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ON THE LANGLANDS TYPE DISCRETE GROUPS. I1
THE THEORY OF EISENSTEIN SERIES

Do Ngoc Diep
0. Introduction

Let G be a reductive Lie group, K a maximal compact subgroup of
G, T a Laﬁglands type discrete subgroup (see, for example, [4], [14]) and
(7,V) some unitary Imodule. Our final aim is o study the Eilenbe'rg-
MacLane céhomology groups H*(T', V). If T acts freely on the contractible
space X = K \ G, the quotient X/T" is a smooth manifold and is also an
Eilenberg-MacLane space K(T',1). Therefore H*(T',V) are isomorphic to
the centinuous cohomology groups H*(X/T', 7V} with coefficient in a lo-
cal coeflicient sheaf system FV, assocmtcd with the induced representation
u‘d" {r, V).

The homogeneous space X has a natural RIPmanman structure with
negu,tne defined scalar curvature. Thus for continuous cohomology classes
with compact support one can develop the ordinary Hodge theory. From the
long exact sequence for the pair of space X/T' and its boundary, the "suple-
mentary” part is closely related to the boundary of X/T". Following A. Borel
and J.P. Serre, in the first paper [4], we have constructed compactification
fcusp/'l" of X/I', the boundary of which is hometepic to the quotient by
I' of the cuspidal part X cu sp of the Tits building, conszstmg of aIl cuspdal

parabolic subgroups.

With each cuspidal subgroup R.P. Langlands [13] associated a fam-

_ily of Eisenstein series. The. 3pectral theory of Eisenstein series provided
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us (see [1], [13]) a spectral decomposition of the (twisted) regular repre-
sentation Ind®(r,V). It is convenient to recall that the spectral theory of
Eisenstein series was first studied by Selberg [17]. It was then completed by
R.P. Langlands in & manuscript which was twelve years unpublished until
its appearance in the Springer Lecture Notes in Mathematics [13] in 1976.
The Langlands theory was for a long time very difficult to understand and
to use, see for example Godement’s talk {7] in Bourbaki Seminar. Harish-
Chandra, in his lectures at the Institute for Advanced Studies [10] refined
the theory for semi-simple algebraic Lie groups with arithmetically defined
discrete subgroups in a more‘comprehensive form by using the Maas-Selberg
relations. In other papers [11] he developed an analogous theory of Eisen-
stein integrals to study the Plancherel measure. This was an excellent work
of Harish-Chandra, showing the (second) important application of the theory
to Harmonic Analysis on real reductive groups, closely connected with the:
famous Langlands programme. Its {third) application to Algebraic Topology
was done in the works of G. Harder [8], [9]. For parabolic rank one arithmeti-
cally defined discrete groups, G. Harder described the cohomology classes at
infinity. J. Schwermef [16] has considered the case of SL, as well, as I_F.
Lai [15] has generalized some results to SP,, case. In all these theories the

Eisenstein series was constructed as finite-dimensional vector-valued ones.

Near 1980, M. Duflo [5], [6] in one hand and the author [1]-[3] in
the other hand, have seen the necessity to construct the Multidimensional
Orbit Method. In general, we must consider Hilbert induced bundles of
finite or infinite dimension. There appears a question whether the Eisenstein )
series can be constructed as the (in)finite-dimensional vector-valued ones.
This paper is devoted to developing such a theory of (in)finite dimensional
vector-valued Eisenstein series related to cuspidal parabolic subgroups. Qur
main results are : 1) finiteness of the spectrum of Ind®(7,V) on the space

Av(G/T,a,x) of automorphic (in)finite dimensional vectorvalued forms, 2)
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a construction and some properties of Eisenstein series. We intend also to

study the cohomological usage of this theory [12].

We keep therefore all the notations*appeared in owr first paper [4].
It must remarked that in [4] for avoiding a misprint, the definition of per-
cuspidal subgroups must be precised as follows. A cuspidal subgroup P is
called percuspidal iff °P/T'N P is compact. Qur exposition is much influ-
enced by Harish-Chandra’s [10], [11], Landlands’ {13] and Arthur’s [1] works.
We would like to address them our deep thanks for having brought to our
knowledge of their remarkable works concerning Eisenstein series and trace

formulae. The author thanks Dr. Dinh The Luec for valuable comments

Contents :
0. Introduction
1. Ay(G/T', 0, x) has finite spectrum

2. Definition and properties of Eisenstein series

1. Ay(G/T,0,x) has finite spectrum

Recall that G is a reductive Lie group, i’ a maximal compact subgroup
of G, I a fixed Langlands type discrete subgroup and (7, V) some unitary
I-module of any dimension. We do not restrict to the finite dimensional case
because for the Langlands type discrete groups the irreducible I-modules

are i_ngenera,l infinite dimensional, for example, the restrictions of irreducible
G-modules to T. Let P = MAU be a cuspidal subgroup of G. We fix the

standard normalization of left invariant Haar measure dx on G by
dr = e2¢(°9%) dkdmdadu,

if ¢ = kmau € G = KMAU. Since G = K.exp P, P = LieP, following
Harish-Chandra [11] we can defined functions |} - ||,, and = on G by

HX1] == ||k.exp Xlaols E(k.exp X) = ZE(eap X)
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Remark that in general ||-[|,, and = are independent of the choice of P, and
we shall denote || - ||5, simply by || - ||. ¥ P = py = MpAsUs is a minimal

parabolic subgroup, then
E(z) = / g=ero(Hpy(zk) gj, Tormally / (zk)~e gk,
: K ko .

Let {(0,V) be a unitary representation of K on V such ‘that every
o(k) (k € K) commutes with any 7(y) (y € I'), x : 2 = Cent (U(gc)) €
EndgV a representation of the center of the universal enveloping algebra
U(Gc) on V commuting with any o(k) (k € ). For this reason we shall use
the right actions of I and Z = Cent U(G¢). The representation o enables
us to define the representation oy of Kpy:=KN°PinV by

ou(mppe(k) = o(k) (k€ Ky).

Recall that the Lie algebra G = Lie G acts on the smooth functions
on G by the left regular representation A and by the right regular anti-

representation g

X)) 1= 5 lemo £z eap X) i= f(z;X),

. d :
(e(X)F)(@) = & limo flewp Xo) = F(X;2).

These actions of § can be extended to the corresponding action of U(Gc) X
U(Gc) on the smooth functions on G, f v (91 @ g2)f (g1,92 € U(Ge)),
(91 ® 92) f(2) := f(01d; 92). '

Let us consider the following functional spaces

CF(G,0) = {f € CP(0); f(ha) = o(k)f(z) (€K, z € G))
Cv(G/T,0) = {f € Cv(G); flkey) = o(k)f(2)7(7) (k € K,z € G,y € T)}
LUG/T,0) = {f € BY(G)i flke) = o(W)f(@)r(y) (k € K,z € Gy € T}
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Ay(G/T,0) 1= {f € Cv(G/T,0):VD € U(Gey x U(Gey, 3r €R
StipIDf(ﬂ«‘)IE(fﬂ)"I(l +1z|[)7" < oo}
Av(G/T,a,x) = {f € Av(G/T,0); (Zf)z) = f(=)x(2) (Z€Z)

f is K — finite and is of £ — finite spectrum}

The last conditjon means that if f € Ay(G/T',0,x), then the set {fy;

fr(z) = f(kz)} gel_lerates a finite dimensional subspace and the set {Z f; z €
Z = Cent U(G )C?} is a G-invariant subspace on which Ind®(7, V) has finite
spectrum, i.e. every-irreducible G-invariant closed subspace has a finite mul-

tiplicity.

Recall that t‘he elements of Ay (G/T, 7, ) are called the automo1ph1
forms of type (o, x) We set

v(G/T,0,x) = Av(G/T,0,x) N CV(G)-

Let f'e L3(G/T). It is easy to see [10] that the following three

conditions are equivalent :

(1) P'= MAU, - p € C(G/U)
| e@)fa)s =
G/U
(2) FP(z):= fU}Unr f(zu)du =0, V cuspidal P,

(3) fP(§U) 1= -fU/Unf fzu)du =0, V percuspidal P.

If one of these equivalent conditions holds we say that f is a (V-valued)
cusp forrn and denote f € °L3(G/T) = "LY(G/T)&c V
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THEOREM 1. If & € Co(G) and A = IndS(r,V) then °Aa) =

Ma lozz (gry is of finite spectrum.

ProoF: From Gelfand-Shapiro’s theorem, it is easy to see that
®Aa) forz(g/ry is compact. So it has only discrete spectrum, i.e. every

eigenvalue has finite multiplicity. The theorem is proved. B
LEMMA 1. YAy (G/T,0,x) = LA (G/TYQ V

PROOF: f € Av(G/T,0,x), then it is analytic Z-finite and K-finite
(see Harish-Chandra [11]). Also following Harish-Chandra, there exists a €
CP(G) such that f = a * f. So we have
flgiw) = (a* f)(giz) = (g'a * f)(2)
= [dawirtv o).

§

£(gi)] € C+ g |l =y ~a) / da(y)dy
< €'+ I EE N + el E) f ¢'a(y)dy
< C (@21 + el |
In other words, f has tempered growth. i

LEMMA 2. (A MODITIED GODEMENT’S LEMMA). Let X be a locally
compact space, dy a (positive} probability measure on it; HC LE(X,du) a
closed subspace. If every function f of H is essentially bounded, then H s’
finitely generated, i.e. H C ol @ V for some n.

Proor: We have ||fll2 £ [If|lec- So the identity map Id :
(H, |i*llso) — (M, 1|-ll2) is continuous. In virtue of the closed graph theorem,

this map is a homeomorphism, i.e.

CMIfllee Sellfllz (VF € LH(X, dp).
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If fi,-+-, fa is an orthonormal system, then so is |fi],-- -, |fu] in L3(X, du).
Thus for almost all z € X,

1/2
Izajlfj(w)l IS#( > [ajl2) y ()

1<i<n
a={a1," ,a,)€C .,
* holds for almost all z € X and a in some countable dense subset D C Cn.

For a fixed z € X, (+) holds for whole C .

Taking ¢; = |f;(z)|, we have
Y i) < e
=1

Hence,

n < k.

SoHCC @ V=Ve&---aV. 1
S mimanst
ntimes
LEMMA 3. ‘In the space *Ay(G/T, 0,x) the mduced representation
Ind%(7, V) has finite spectrum.

~ PRrOOF: We take X = G/T, dp = de, H = “Ay(G/T, o, x). Follow-
ing Lemma 2, we only need to prove that H is closed. Indeed, if ¢, € H
and ‘.(pin — ¢ in the distribution sense, then Zgon — Zy (VZ € Z).
Thus Z.p = ¢.x(2), ¢ € °LY(G/T,0,x) = °L¥G/T,0,X)V. Follow-
ing Harish-Chandra, we also have ¢ = a * ¢, a € C(G). So we conclude
that ¢ € *Ay(G/T,0,%)- 1

In fact, we have *Ay(G/T,0,x) = °L%(G/T, 0, x). ‘With any uni-

tary equivalence class < ¢ > of representations of K, we define also the
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"scalar” autoﬁomhic forms spaces A(G/T', < ¢ >, ), which is generated by
the functions 2 — < v, flz) > (veV, fe€ Ay(G/T,o,x)}

THEOREM 2. dim¢ (G/T,o,x) < o and the representation

Ind“(+, V) of G on Ay(G/T, 0,x) has finite spectrum.

ProoF: The first assertion dime A(G/T,0,x) < oo is proved in
Langlands {13] and Harish-Chandra [10]. ' .

The proof of the 2"¢ assertion is similar to the proof of the same

assertion in finite dimensional case (see Harish-Chandra [10]), (use induction

on rank G).

If rank G = 0, we have Ay (G/T,a,x) = °Ay(G/T,0,x) and it has

finite spectrum by Lemma 3.

Consider the case rank G = £ > 1. Let P = M AU be an own cuspidal
subgroup, f € Av(G/I',,x). Recall that for Z; = Cent (U(Mc + &¢)) ~
Cent (U(Mc) ® U(dc)) there exists a canonical injective homomorphism

4 Z = Cent U(G) — £, = Cent U(Mc + a¢)

such that Z; is a free Z-module of finite rank. Let us denote by gp the
half-sum of positive roots of P = M AU |

+1
ep(X) = —é—-tru(a'dX)

and put X' = X + pp(X) for X € My = M +a. SoX X' can be
extended to homomorphism from U{Mc + &c¢) into itself. It is well-known
that for 2 € Z, Z — u(Z) € U(Ge)! and |

w(Z) = dp' op(Z)odp
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in the sense_of differential operators on M, where
dp(m) := |det (Adm)]'/? and
dp(m)(a) = e??®  (me M, a€ A).
We define now np : Ay (G/T,0,x) — .A(M/I‘M,JM® 1‘, xa) by the

map f > @5 |u, o
wpi= Y (Grpf) @,

i=1

where (1, ...,{, € 21 such that (},..., C,. form a basis for Zf = Z;/Ker.x and

s " a basis for Z1*,

DN eE) = G e
n=1

i=1

S CCmrf) @) = S Cpf 0 (G0,

x1: 21 = End (V ®c 2°),

(@ xiln)=ve (™,

Cor=wal) (€ € 24),

Hor=opa(H) (He _3»'),.

and finally o
- o1 i=0 &> npf =0.

So we have Ay(G/T,0,x)/Ap < Avezy (M/Tr,0m®1, x01) where
Ap := Ker mp. By the induction hypothesm, AV®zt-(M/I‘M,aM ® 1 XM )
has finite spectrum, then so is AV(G/F a’, x)/.Ap

If P,---,P, are the representatwes of all’ I"-conjugation classes of
percuspidal subgroups. Then iy Ap, =0 A(G/T, o, x) shich also has finite

spectrum in view of Lemma 3. 3 the theorem is proved |
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If P is a cuspidal subgroup, and f € Av(G/T,0,), then its cuspidal
component fp has tempered growth.
Langlands’ Theorem 3

For every cuspidal subgroup (P, A) and for every ¢ €° Ay (M/Ty,

TM, XM) If
/ (¢(m), fp(ma))dm =0 for almost all a€ A
M /Tar .

then f = 0.

PRrOOF: No change is needed in the Harish-Chandra’s exposition for

finite dimensional case by remarking that

°Li(G/T, o) = closure ( Z ° Ay (G/T,0,x))
y&Char Z

2. Definition and properties of Eisenstein series.

Let (P, A) be a cuspidal subgroup of &G, < A, > the scalar product
on df associated with the Killing form B on G¢. For all A € A, there
exists a unique element Hy € G¢ such that A(H) = B(H), H). So we have
< A\ p>= B(Hy,H,). Let us denote by a, ..., ap the simple roots of (P, d)

and Ap, ..., A¢ the corresponding fundametal weights, < A;, a; > = 635,
at:={Hed; a;(H)20, 1 <i <4},
ta:={Hed; MH)>0, 1<i< ).

Since the matrix (< a;,a; >)~! only has positive entries, T& > at. We

introduce the complex domain

(@t ={ledy <-A+ga> >0, Ya e A(P/A)},
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(‘EL 3 —{Ae cLC, Re)\e (a5t}

_ Let P M’ AU be a cuspuhl suboroup of G, (cr V) a finite spectrum’
-‘representa,tlon of I\, @ E L (JVI /T a1 MO M) a oar- func_tmn_ on M. We extend
.c,otoaafunctmnt,o,a\ELVGcr)1 /\E& ,on G by '

" oa@) = p(kmav) —U(?»)so(m)e (eaHe@) = gE)p(m)a e

formally

'Remark that in the decompusit.ioﬁ x = kmau, a = ia('a-')'is unique,
Hp(a) = log a(z), and k = k(z) can be changed'up to afactor k' € Kpr. I
Lz = (kk')(k' " m)au then wa(x) = a(kk Jo(k'"Tm)u™ "¢ = o(k)p(m)a™ "¢ o

= cp,\(kmau)' Thus the extended o4 is just a fun(‘tion on'G

Tt s easy to show (%ee Langlc\nds [13] and Hansh-Chandla [10]) tha,t
. for any compdct Q C G we can choose a constant ¢ and an element H L € a;

such that

oy / foaly™ zg0m)ldy < c||¢||1:(w)(1 + umm?
761"/1"r‘1P
6( A+9}{H (e N+~ A+ (H) o _
Y (**)
o I<=A4o,a >
aEA(P]A) ’

for all Yo €. Q r € Sg, .the Siegel domain H HP 1A A € (EL’")+ and
_/\ = £, associated to Py. where Py is the percuspidal subgroup such that
(P A =5 (P.A) = (Po,Ao). B
Remark. that vol (M/Tar) < oo, then from the assumption ¢ €
L%/(M/FM,U) one deduces that ¢ € LI,(JW/FM,O') what is used here.
DEFINITION Let ¢ e L} (M/FM oM, x) /\ € (&* )+, T e G Con-_f |

' s1der the | series .

" - de.f | '-
E'(/\ Jep :c) = Z tp,\):v'y)
o e +€0/INP
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. {ngal;ly > (_ (m))‘:"(m)m) e
) ' —yer/rnp -
- It convera*es absolutely and umform]y on any compadt wa c C’ X (a* )+ Tis -
" sun is a funct:on of class C®(G % (& )+) holomorphic on /\ € ( ag)*t ngh‘ N
‘ _1"-1mar1ant on the vanable z and ao- -function .on ¢, satlsfymg equatxons.:

-..ZE(/'\ Lp) = E(/\ cp)x(p,\(Z)) and ﬁnaﬂy is an automorph:c form ﬁom :

PG/, a,x)if Pis per cuspxdal Ita is caﬂed an Emsenstem serxes assoczated

W.lﬁh B,

The propert1es 1nd1cated in" this deﬁmtmn is ea,sﬂy dediiced from the

preceedmg estimation- (¥*). -

_ Recall that ‘two- cuspldai subg,roups P = M; A U,, i = l,h., are sa:d'
_ "to be assocmted if thete exists,y € r ‘such that 'yAlfy A2 We denote by
C W(ay, Ay) the group of all 1som0rph1sms a, —.dp (see L'mglands [13 §H, ‘
“p. 33)). K& C Char Z is a finite set of characters then '
& .

G/I" a, f) = ZOLzr(C/F o*,,\
L ; - ER A o _
THEOREM 4. For anv ﬁmte stubset £C CharZ s € W(ay, ;) and

(&T c) there e;usts an umque Imeax opemtox
C(S A)’ -OL (Ml/rﬂf['naﬂ’fﬂé) —') LV( ?LI] /Fﬂffzs O-ﬂfg é)

such that

1)itisa holomoxphic funct;on on A € (& * and inten.vines the M;-module .
structux es, ' ‘
2) (b(s,_/\‘)ap)(_;r')-j: éa:ja(-t—s A +Qp2,'Hp2(,t?)) Il o @lauy)du

. ‘_ ) . Ugr’lwul /Fn[.'rzﬁwu ' _

3) EP2 Aig: 2= % (el f\)so)(a) ewp((—s/\ epz)(HPQ(a(’r))

SEW( au ,az) '
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The pr oof of thls theozem is the same as in ﬁmte dlnlensxonal V- valued

_case, and “e omit it.

Now we ﬁmsh the paper by. statmg the main theorem of the 5pectrum.
theory of Exsenstein series w1thout proof because it is completely s1rn1lar to
Lang,lands theorem 'Some of the statements are aheady proved The othels_

reqture an- analytlc contlnuatlon of Elsenstem series- [13] [10] [1]
: THEOREM 5, (a) Suppose that © €° L (M/FM,GM, ) then :
( 1) E(/\ t,o z) and ¢s : /\)n,o can be analytlcaﬂy conf:mued as mer omorp}nc
‘ funciuons on the whole . '
_ 2) On e&* (/\ @) is 1e0'u1a1 and c(e /\) is unitary.
For a I\ bnnvanant function f E C(GY¥ andt E W(Elq, (12) we ha,ve :
the foHong funct;onal equatmnS :
(i) B(A : Ind§ (or & exp(A + QP)(f)<P :c) ff(y E(/\ so)J)dy
(i) E(sA z ofs ; A ): B(h:e" w)
(m) c(ts /\)Lp = c(t .s/\)c(s /‘\)go.,

( b) Lei‘r < P >a s be a cIass of assoaated cusp.tda] subgmups
- L<’P>m ?=' {F= (Fp)pe<P>,,, FP z‘a’P - I}, P(M/TM,GM,,\)}

(i) Vs e w(ay, arz), Fpy(sh) = efs.: /\)Fpl(/\)

(H) HFIP- T Al ) A ||Fp||2€l/\ < o0’
' PE<P>¢13 . - “l’P - .
- 'Where n{4) is the number of chambers in-&. Then

L<P>,.,, ‘"'LV<P>a (C‘/T);*L (G/F) and -

L’“’w(a/r) o) Lmh“w/r)
C K Paps .

The direct -sume.. lS taken over the Set of ail 1eprese111:at10ns of asqocm.ted :

I .cla,sses of cuspxdal subgroups '
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