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0. Intr_oduction

Variational inequalities and coincidence theorems {or fixed point the- -
orems in special cases) are closely related. The theme has attracted much. -
attention. The purpose of this paper is give a slight extension of a theorem
of Browder on. coincidence ([4]) and derive some new results about varia-
tional inequalities in infinite dimensional spaces. Theorem 1.3 in the first
section extends a result of Browder ([4]) on open inverse images seét-valued
mappings to locally selectionable set-valued mappings defined on nonempty .
convex (non necessarily compact) sets. The main results are given in Section
2. Theorem 2.1 is a version of Ky Fan’s minimax lemma, Theorem 2.3 deals -

with a coercivity condition on the algebraic boundary.
1. Coincidence theorem

Let C,D be nonempty comp.act convex subsets of two topological
“spaces. X and Y, respectively. Let T : C — 20 and S : D — 2.C'be sct-
valued mappings. By a coincidence of 7 and S we mean a point (z,3) € C'xD

such that y € T(x) and 2 € S(y) ([4]).

We recall without proof the following : '

THEOREM 1.1 ([4]). Let X and Y be Hausdorff locally convex
spaces. Let C and D be nonempty compact convex subsets of X and ¥,
respectively. Let §: C — 2P and,T : D — 2€ be nonempty closed conveﬁ;‘—
valued mappings. Assume that S and T are uppér s'en_licontiguous. Then S

and T have a coincidence.
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TIIEOREM 1.2 ([4]). Let X and Y be Hausdorff Ioc‘aﬂy convex

spaces. Let C and D be nonempty compact convex subsets of X and Y

' .respectwe]y Let §:C — 2D and T : D — 2€ be nonempty convex—valued

mappmgs Assume ‘that T' is upper sem:contmuous with closed values and

l(y) is open in C for any y € D. Then S and T have a coincidence.

The aim of this section is to show tha.t Theorem 1.2 1s still valid under

a weaker condition 1mposed on S.

Let X and Y be topological spaces. Bya ocally selectionable mapping

. we mean & set-valued mapping S : X — 2Y with the following property

: for any = € X with S(xg) # @ and yo € S{wo) there exists an open

neighborhood Uy, of zo and a continuous point-valued mapping s : i, =Y

“such that s(2o) = 3o and s(z) € S(z) for all z € Uy, ([2])-.

- THEOREM'1.3: Let X andY be Hausdorff locally convex space. Let
U-and V be nonempty convex subsets of X and Y, respectively. Let C C U
and D C V' be nonempty compact convex subsets. Let § :. U — 2Y and
T : D — 2¢ be nonempty convex-valued mappmgs Assume that T is
closed .valued, upper semicontinuous and the mappmo* R deﬁned by R(’c)
S(z)nN D is locally selectionable with nonempty values. Then S and' T have

a coincidence.

_ LEMMA 1.4. Let X,Y be Hausdorff Iocaﬂ}{'conve_x spaces. Let C and
D be nonempty compact convex subsets of X and Y, respectively; Let R :

C — 2P be a nonempty.convex-valued mapping. If R is locally sclectionable,

‘then R has a continuous selection.

PRooF: We associate with any ¢ € C a,.poin.t y.E.R(:c) and a.local
continuous selection r, : U, — D, where U, is an open neighborhood of
¢. This means that r.(z) = y and rx(t) € R(t) for all t € U,. Since

{Uz }zec is an open covering of the compact set C, C has a finite subcovenng
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{Uzi}ien,. - Let {ai};;  , be a continuous partition of unity associated

with this subcovering. Then the point-valued mapping r defined by
n
r(@) =) ail@)ra(e)
i=1

is a continuous selection of R. Indeed, ?‘Il.(.;:) € R(z) for a;(z) # 0, and from
the fact that R(2) is convex conclude that r(2) € R(zx).

Proor OF THEOREM 1.3: Observe that R : C — 9D iy nonempty
convex— valued, locally selectionable. By Lemma 1.4, R has a continuous

. selection » : €' — D. The set-valued mapping p: C — 2¢ defined by

p(z) = T(r(z))
is upper semicontinuous with nonempty convex values.

Applying Theoreni 1.1 for p and the identity mapph‘lg I of C we
obtain a coincidence (@g,y0) of p and I, i.e. yo = I{2g) = @0 and 2y €
 plyo) = T(r{yo)). This implies g € T(r(x0)). Since r{xq) € R(zo}, we have

a coincidence (xg,r(zg)) of R and T which is also a coincidence of S and T.

2, Variational inequalities.
Let U be a subset of a topological vector space. We denote the alge-
braic interior and the algebraic boundary of U by
CoreU={zeclU, VWyelU, 35>-0::c+ty€U, |t} < 6},
BdryU ={acelU, ¢ CoreU}.
We begin with a version of Ky Fan’s minimax lemma.
THEOREM 2.1. Let X be a Ha.usaox'ff locally convex space, C a

nonempty compact convex set in X, and ¢ a real-valued function on C x C.
% b

Suppose
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a) p(z,x) <0 forallz'e C,

b) the set-valued mapping T d_éﬁned by

T(z) = {y € C/yp(z,y) > 0}
is locally selectionable and has convex values.

Then there exists a vector T in C such that

e(Z,y) L0 forallye C .

- PROOF: Suppose the contrary, i.e. for any x € €' we can find a vector
y € C such that o(z,y) > 0. Then T{z) is nonempty. So T : C — 2% is a
locally selectionable nonempty convex—v;ilued"mapping. Applying Theorem
1.3 for T and the identity mapping I of C (with U = U; = €, = C) we
obtain a coincidence (z*,y*) of T" and I. This means that z* € T(y*) and

y* = I(2*) = z*. Hence p(z*,z*) > 0, which leads to a contradiction.
REMARK: If the function ¢ satisfies one of the following conditions :

b’} The set {y € C ,. p(z,y) > 0} is convex for all z € C and the set
{zeC, ¢(x,y) > 0} is open for all y € C. '
b”) The function (p(ﬁ:, ) is .(.:ohcav_e or evefy fixedz € € and ©(.,y) is lower
semicontinuous for every fixed y € C'; then condition b) of Theorem 2.1 is

satisfied. Indeed, we have b”) = b') = b), i.e. b) is the weakest condition.

Thus we have :

CoroLLARY 2.2. (KyY FAN’s MINIMAX LEMMA). Let X be a Haus-
dorff locally space, C be a nonempty compact convex subset of X and ¢ a

real-valued function on € x C. Suppose

i) o(z,2) <0 forraJI zeC. |
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ii) the function (z,.) is concave for x € ' and (., y) is lower semicon-

- tinuous for all y € C.
Then there exists a vector ¥ in (' such that
(T, y) <t foraliyeC.
THEOREM 2.3. Let U be a nonempty convex subset of a Hausdordf
locally convex space X and ¢ a real-valued function onU xU. Suppose that .
a) p(e,2) =0 forallz e U.

b) There exists a nonempty convex subset E of X such that U N E is
nonempty compact and for every x € UNBdry E we can find a vector
y € UNE such that o(z,y) > 0.

-¢) The f'unction e(x,.) is concave for any x € U, and for anyy € UNE
the set {x € U | w(x,y) > 0} is open. '

Then there exists a vector & € U N E for which w(Z,y) < 0 for all
yel. ' '

REMARK.: Clearly, the Condition ¢) in the statement of Theorem 2.3 .

can be replaced by the Condition h’) piven above.

PROOF OF THEOREM 2.3: Let T be a set—valued mapping defined
by T = {y € U | p(z, y) >0}, zcU.

Let C=U ﬂ E. Then C is a convex compact subset of U.

Suppose now that for any z € U there exists a vector yeuU such that
o{z,y) > 0. By hypothesis ¢), the mapping R defined by R(a':) =T(z)nC

is locally selectionable convex—valued

We claim that R has nonempty-—values, ie. T(z) N C‘ 79 0 for any
z € C. : .

65



Indeed, if # € U N Bdry E, then by assumtion b), T(z)NC # 0. If

2 € U Ncore E, then there exists a number a > 0 such that
g—ecr€E for0<e<a.
Now, let y € U with ¢{z,y) > 0 and 8 a positive number such that
zt+ey€E, for07<€§ﬁ.
By the convéxity of E we get
%(m —ex)+ ";—(.’L +ey)e E for O < e < Min {a, 5} .

Hence T
(1- %5)1‘ + -;-y €'E, for 0 < e < Min {a,} .

This implies
0 —(1—y)a+yweUNE=Clory> 0 s:nall enough.
On the other hand, since ¢{,.) is concave and ¢(z, x) = 0, it follows that
o(x,3°) = ?(w, (1—7)z+vy) 2 (i — ez, z) +ve(z,y) > 0.
So we have 2 € T(z) N C,ie T(x)NC # 0.

Now, applying Theorem 1. 3for T and the identity mapping I of C, we obtain
a coincidence (z* ,y*) of T and I le a* € T(y*)and y* = I(m*) =g*

Therefore ¢{z*,z*) > 0 and this contradicts the assumptxon al.

COROLLARY 2.4. Let X be a Hausdorff locally convex space, U a
nonempty convex set in X and f 1 X —] = o0, +_o<'3] a lower semicontinucus
convex function which is finite on U. Let A X — X7 (dual of X ) be a

mapping such that z — < Az,z > is lower semicontinuous on U KcU
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a. nonempty convex compact set. Suppose that for each x € Bdry K there

exists an element y € I{ for which

< Alz),e —y > > fly) - flz) .
Then t-here exists an ele‘znent z € K such that

<ARF—y> < fly)— f(z) forallye U .

PROOF: Let ¢ be the real-valued function on I/ x U defined by

(P(msy) =< AT:T—y > +f($)"f(y) .
Apply Theorem 2.3, we can find an element & € K such that
(&, y)<0forallyeU .

ie.

<AEZ,T—y>< fly) - fz) forallye U .
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