ON COINCIDENCE THEOREMS FOR SET-VALUED MAPPING AND VARIATIONAL INEQUALITIES

DUONG TRONG NHAN

0. Introduction

Variational inequalities and coincidence theorems (or fixed point theorems in special cases) are closely related. The theme has attracted much attention. The purpose of this paper is give a slight extension of a theorem of Browder on coincidence ([4]) and derive some new results about variational inequalities in infinite dimensional spaces. Theorem 1.3 in the first section extends a result of Browder ([4]) on open inverse images set-valued mappings to locally selectionable set-valued mappings defined on nonempty convex (non necessarily compact) sets. The main results are given in Section 2. Theorem 2.1 is a version of Ky Fan's minimax lemma, Theorem 2.3 deals with a coercivity condition on the algebraic boundary.

1. Coincidence theorem

Let C, D be nonempty compact convex subsets of two topological spaces X and Y, respectively. Let $T: C \to 2^D$ and $S: D \to 2^C$ be setvalued mappings. By a coincidence of T and S we mean a point $(x, y) \in C \times D$ such that $y \in T(x)$ and $x \in S(y)$ ([4]).

We recall without proof the following:

THEOREM 1.1 ([4]). Let X and Y be Hausdorff locally convex spaces. Let C and D be nonempty compact convex subsets of X and Y, respectively. Let $S: C \to 2^D$ and $T: D \to 2^C$ be nonempty closed convex-valued mappings. Assume that S and T are upper semicontinuous. Then S and T have a coincidence.

THEOREM 1.2 ([4]). Let X and Y be Hausdorff locally convex spaces. Let C and D be nonempty compact convex subsets of X and Y, respectively. Let $S: C \to 2^D$ and $T: D \to 2^C$ be nonempty convex-valued mappings. Assume that T is upper semicontinuous with closed values and $S^{-1}(y)$ is open in C for any $y \in D$. Then S and T have a coincidence.

The aim of this section is to show that Theorem 1.2 is still valid under a weaker condition imposed on S.

Let X and Y be topological spaces. By a <u>locally selectionable</u> mapping we mean a set-valued mapping $S: X \to 2^Y$ with the following property: for any $x_0 \in X$ with $S(x_0) \neq \emptyset$ and $y_0 \in S(x_0)$ there exists an open neighborhood \mathcal{U}_{x_0} of x_0 and a continuous point-valued mapping $s: \mathcal{U}_{x_0} \to Y$ such that $s(x_0) = y_0$ and $s(x) \in S(x)$ for all $x \in \mathcal{U}_{x_0}$ ([2]).

THEOREM 1.3: Let X and Y be Hausdorff locally convex space. Let U and V be nonempty convex subsets of X and Y, respectively. Let $C \subset U$ and $D \subset V$ be nonempty compact convex subsets. Let $S: U \to 2^V$ and $T: D \to 2^C$ be nonempty convex-valued mappings. Assume that T is closed valued, upper semicontinuous and the mapping R defined by $R(x) = S(x) \cap D$ is locally selectionable with nonempty values. Then S and T have a coincidence.

LEMMA 1.4. Let X, Y be Hausdorff locally convex spaces. Let C and D be nonempty compact convex subsets of X and Y, respectively. Let $R: C \to 2^D$ be a nonempty convex-valued mapping. If R is locally selectionable, then R has a continuous selection.

PROOF: We associate with any $x \in C$ a point $y \in R(x)$ and a local continuous selection $r_x: U_x \to D$, where U_x is an open neighborhood of x. This means that $r_x(x) = y$ and $r_x(t) \in R(t)$ for all $t \in U_x$. Since $\{U_x\}_{x \in C}$ is an open covering of the compact set C, C has a finite subcovering

 $\{U_{x_i}\}_{i=1,\ldots,n}$. Let $\{\alpha_i\}_{i=1,\ldots,n}$ be a continuous partition of unity associated with this subcovering. Then the point-valued mapping r defined by

$$r(x) = \sum_{i=1}^{n} \alpha_i(x) r_{x_i}(x)$$

is a continuous selection of R. Indeed, $r_{x_i}(x) \in R(x)$ for $\alpha_i(x) \neq 0$, and from the fact that R(x) is convex conclude that $r(x) \in R(x)$.

PROOF OF THEOREM 1.3: Observe that $R:C\to 2^D$ is nonempty convex—valued, locally selectionable. By Lemma 1.4, R has a continuous selection $r:C\to D$. The set–valued mapping $p:C\to 2^C$ defined by

$$p(x) = T(r(x))$$

is upper semicontinuous with nonempty convex values.

Applying Theorem 1.1 for p and the identity mapping I of C we obtain a coincidence (x_0, y_0) of p and I, i.e. $y_0 = I(x_0) = x_0$ and $x_0 \in p(y_0) = T(r(y_0))$. This implies $x_0 \in T(r(x_0))$. Since $r(x_0) \in R(x_0)$, we have a coincidence $(x_0, r(x_0))$ of R and T which is also a coincidence of S and T.

2. Variational inequalities.

Let U be a subset of a topological vector space. We denote the algebraic interior and the algebraic boundary of U by

Core
$$U = \{x \in U , \forall y \in U , \exists \delta > 0 : x + ty \in U , |t| \le \delta \}$$
,
 $Bdry U = \{x \in U , x \notin Core U\}$.

We begin with a version of Ky Fan's minimax lemma.

Theorem 2.1. Let X be a Hausdorff locally convex space, C a nonempty compact convex set in X, and φ a real-valued function on $C \times C$. Suppose

a)
$$\varphi(x,x) \leq 0$$
 for all $x \in C$,

b) the set-valued mapping T defined by

$$T(x) = \{y \in C/\varphi(x,y) > 0\}$$

is locally selectionable and has convex values.

Then there exists a vector \bar{x} in C such that

$$\varphi(\bar{x},y) \leq 0 \text{ for all } y \in C$$
.

PROOF: Suppose the contrary, i.e. for any $x \in C$ we can find a vector $y \in C$ such that $\varphi(x,y) > 0$. Then T(x) is nonempty. So $T: C \to 2^C$ is a locally selectionable nonempty convex-valued mapping. Applying Theorem 1.3 for T and the identity mapping I of C (with $U = U_1 = C_1 = C$) we obtain a coincidence (x^*, y^*) of T and I. This means that $x^* \in T(y^*)$ and $y^* = I(x^*) = x^*$. Hence $\varphi(x^*, x^*) > 0$, which leads to a contradiction.

REMARK: If the function φ satisfies one of the following conditions: b') The set $\{y \in C , \varphi(x,y) > 0\}$ is convex for all $x \in C$ and the set $\{x \in C , \varphi(x,y) > 0\}$ is open for all $y \in C$.

b") The function $\varphi(x,.)$ is concave or every fixed $x \in C$ and $\varphi(.,y)$ is lower semicontinuous for every fixed $y \in C$; then condition b) of Theorem 2.1 is satisfied. Indeed, we have b") $\Rightarrow b$ ') $\Rightarrow b$), i.e. b) is the weakest condition. Thus we have:

COROLLARY 2.2. (KY FAN'S MINIMAX LEMMA). Let X be a Hausdorff locally space, C be a nonempty compact convex subset of X and φ a real-valued function on $C \times C$. Suppose

i)
$$\varphi(x,x) \leq 0$$
 for all $x \in C$.

ii) the function $\varphi(x,.)$ is concave for $x \in C$ and $\varphi(.,y)$ is lower semicontinuous for all $y \in C$.

Then there exists a vector \bar{x} in C such that

$$\varphi(\bar{x}, y) \le 0$$
 for all $y \in C$.

THEOREM 2.3. Let U be a nonempty convex subset of a Hausdorff locally convex space X and φ a real-valued function on $U \times U$. Suppose that

- a) $\varphi(x,x) = 0$ for all $x \in U$.
- b) There exists a nonempty convex subset E of X such that $U \cap E$ is nonempty compact and for every $x \in U \cap Bdry E$ we can find a vector $y \in U \cap E$ such that $\varphi(x,y) > 0$.
- c) The function $\varphi(x, .)$ is concave for any $x \in U$, and for any $y \in U \cap E$ the set $\{x \in U \mid \varphi(x, y) > 0\}$ is open.

Then there exists a vector $\bar{x} \in U \cap E$ for which $\varphi(\bar{x},y) \leq 0$ for all $y \in U$.

REMARK.: Clearly, the Condition c) in the statement of Theorem 2.3 can be replaced by the Condition b") given above.

PROOF OF THEOREM 2.3: Let T be a set-valued mapping defined by $Tx = \{y \in U \mid \varphi(x,y) > 0\}$, $x \in U$.

Let $C = U \cap E$. Then C is a convex compact subset of U.

Suppose now that for any $x \in U$ there exists a vector $y \in U$ such that $\varphi(x,y) > 0$. By hypothesis c), the mapping R defined by $R(x) = T(x) \cap C$ is locally selectionable convex-valued.

We claim that R has nonempty-values, i.e. $T(x) \cap C \neq \emptyset$ for any $x \in C$.

Indeed, if $x \in U \cap Bdry E$, then by assumtion b), $T(x) \cap C \neq \emptyset$. If $x \in U \cap core E$, then there exists a number $\alpha > 0$ such that

$$x - \varepsilon x \in E$$
, for $0 \le \varepsilon \le \alpha$.

Now, let $y \in U$ with $\varphi(x,y) > 0$ and β a positive number such that

$$x + \varepsilon y \in E$$
, for $0 < \varepsilon \le \beta$.

By the convexity of E we get

$$\frac{1}{2}(x-\varepsilon x)+\frac{1}{2}(x+\varepsilon y)\in E\quad \text{for}\quad 0<\varepsilon\leq Min\ \{\alpha,\beta\}\ .$$

Hence

$$(1 - \frac{1}{2}\varepsilon)x + \frac{\varepsilon}{2}y \in E$$
, for $0 < \varepsilon \le Min \{\alpha, \beta\}$.

This implies

$$x^0 = (1 - \gamma)x + \gamma y \in U \cap E = C$$
 for $\gamma > 0$ small enough.

On the other hand, since $\varphi(x,.)$ is concave and $\varphi(x,x)=0$, it follows that

$$\varphi(x, x^0) = \varphi(x, (1 - \gamma)x + \gamma y) \ge (1 - \gamma)\varphi(x, x) + \gamma \varphi(x, y) > 0.$$

So we have $x^0 \in T(x) \cap C$, i.e. $T(x) \cap C \neq \emptyset$.

Now, applying Theorem 1.3 for T and the identity mapping I of C, we obtain a coincidence (x^*, y^*) of T and I, i.e. $x^* \in T(y^*)$ and $y^* = I(x^*) = x^*$.

Therefore $\varphi(x^*, x^*) > 0$ and this contradicts the assumption a).

COROLLARY 2.4. Let X be a Hausdorff locally convex space, U a nonempty convex set in X and $f: X \to]-\infty, +\infty]$ a lower semicontinuous convex function which is finite on U. Let $A: X \to X^*$ (dual of X) be a mapping such that $x \to < Ax, x >$ is lower semicontinuous on U, $K \subset U$

a nonempty convex compact set. Suppose that for each $x \in Bdry\ K$ there exists an element $y \in K$ for which

$$< A(x), x - y >> f(y) - f(x)$$
.

Then there exists an element $\bar{x} \in K$ such that

$$< A\bar{x}, \bar{x} - y > \le f(y) - f(x)$$
 for all $y \in U$.

PROOF: Let φ be the real-valued function on $U \times U$ defined by

$$\varphi(x,y) = \langle Ax, x - y \rangle + f(x) - f(y).$$

Apply Theorem 2.3, we can find an element $\bar{x} \in K$ such that

$$\varphi(\bar{x}, y) \leq 0$$
 for all $y \in U$.

i.e.

$$< A(\bar{x}, \bar{x} - y) \le f(y) - f(x)$$
 for all $y \in U$.

REFERENCES

- 1. Allen G., Variational inequalities, Complementary problems and duality theorems, J. Math. Anal. Appl. 58 (1977), 1-10.
- 2. Aubin P. and Cellina A., Differential inclusions, set-value maps and viability theory, Grundlebren der mathematischen wissenschaften 264, Springer-Verlag, 1984.
- 3. Berge C., Espaces topologiques et fonctions multivoques, Dunod, Paris 1966.
- 4. Browder E., Conincidence theorems, Minimax theorems and variational inequalities, Comtemp. Math. 26 (1984), 67-80.
- Karamardian S., The generalized complementary problem, J. Optim. Theory Appl. 8 1 (1971), 161-169.
- Fang C. and Peterson L., Generalized variational inequalities, J. Optim. Theory Appl. 38 3 (1982), 363-383.

INSTITUTE OF MATHEMATICS, P.O. BOX 631, BO HO, HANOI, VIETNAM