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NOTE ON FILTERING FROM POINT PROCESS

TrRAN HUNG THAO

1. Introduction

The aim of the note is to consider the probiem of filtering and unnor-
malized filtering for a real semimartingale from point process observations,

particularly for the case of Fellerian signal.

Let (@2, F, P) be a complete probability space on which all relevant
processes are defined and adapted to a filtration (#;). "Usual conditions”

are supposed to be satisfied by (7).

The system process will be a semimartingale

. t '
(1.1) X; =Xo+/ H,ds + Z,,
]

where Z; is a Fy-martingale, H; is a bounded F;-progressive process and

Elsup|Xs]] < o0 .
8t .

The observation is given by a point process F; -

semimartingale of the form
o
(12) Y, =Y + / hads + M,,
' T 0

where M, i1s a Fi-martingale with mean 0, My = 0 and k; = h(X;) is a

positive bounded F;-progressive processes.
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Denote by FY the natural filtration of ¥ which provide observation
datas concerning X;. '

Suﬁpose that the processes u, = dis < Z,M >, is Fs-predictable

(s £ t), where <, > stands for the quadratic variation of Z; and M,;. Denote
“also by @ the F) -predictable projection of u,.

* We shall find an equation for the filtering process :
(1.3) (X)) = B(X:/FY) -

and we shall also consider the unnormalized filtering in the general case and

in the case of Markov-Feller observation process.

Let #(h,) be the filtering process corresponding to the process in (1.2).

The following facts are well known :

a) The process
. .
(1.4) ' my=Y; — Yy — / w(he)ds
‘ 0

is a FY -martingale and therefore ¥; is also a F¥ semi-martingale. Note that

m; can be then expressed by

(1.5) my = M, — /0 [hs — m(hs)]ds .

b) o(m, ;s < t) ¢ FY and the process m; is called the innovation of

the point process Y;. -

¢} i m; is the innovation of ¥; and Rt is an .7-?’ -martingale then
. . .
" (1.6) 7 R;=Ry —|-/ K.dm,
o 0
where K, is a bounded F} -predictable process such that

' :
/ | Kslm(hs)ds < o0 a.s.
0
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(See, for example, [1]).

It follows from (a) and (c) that the observations Y; can be expressed

as
. . t ) .
(1.7)  Yi=Y+ / Usdm, (FY — semimartingale)

o -

with some Uy of the same properties as K.

2. Filtering equation.

THEOREM 1. . Under the assumptions and notations mentioned in

the previous section, the optimal state estimation n(X,) is given by '

w(X) =7(Xo) + tvr(Hs)d.s
(2.1) /0 .

4 _
+ / T (R T (Xo—hs) = m( X5 )w(hs )+ 4s)dm,.
0
The equation.is up to an indistinguishability.

PROOF: . It is easy to see that

_ - . : t ‘ :
22) ") = (X0) + [ w(Ho)ds +7(20),

o . . .
where m(Z,) is a 0-mean F}’ -martingale which can be represented in the form
(1.6) with E[Ry] = E[Ry] =0 : |

o (2.3) Rt = W(Z-t): Rg + / stms ¢
0

SO, it is enough to show that the suitable process Ky for n(Z;) is determined

(24) K: = 17 (ho)[m(Zemhe) — 7(Zs=)m(hi) + ).
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" Note that -
E(X.Yy) = Elr(X)Y:] ().
We are going to calculate the two products X;Y; and V,.Y:, where
Vi = w(X}). The diﬁ'ere_:ntiai rule for products gives : '- '
t ' t ‘ '
XYe = XoYo + ] X,_dY, + / Y,-dXs+ [X,Y],,
0 0 :

where the third term denotes the quadratic covariation of the two Fi -

semimartingales X; and Y;. We have

(2.6)
14 . t t t

/ X,-dY, :/ X Usdm, = / Xs_UsdM, -i—/ X Uslhs — w(hy)lds,
0 0 0 0

(2.7) '

i 1 i
] Ys_dstf X3*H3d+f Y,_dZ,.
D 0 4]

Calculations on semimartingale brackets yield :
t ot :
(X:¥]e = [2,Y]: = 2, f Uydma]s = ] U.d[Z, m],
0 0

t : ¢
(2.8) = / Ud<Z, M >,= f Ugu,ds.
_ 0 - 0

Because the first term of the right hand side of (2.6) and the last one of (2.7)

.are 0-mean martingales and
i _ ¢
E[ [ Ususds] = E[/ Uausdsls
Jo 0
we obtain at last :

E(Xt},t) = E(X()Yg) + E(/i Ys,_Hst)
- + B ] Us(Xs_hy = Xo_r(hs) + 15)ds].
. 0 . )
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An analogous calculation for the product of two F} -sernimartingales V, =
(X)) =Vo + f[: m(Hs)ds + f(; Kydms and Y, = ¥ -+ fot Usdm gives

4
VYs = VYo + / V,_Usdm,
[H

(2.10) . .
-I—/ Yo-m(H,)ds +/ Yoo Kodms + [V, Yy,
0 0
where
. ) t t
(2.11) V.Y = [/ Kydmyg, f Usdmls
_ 0 i

i :opl
- / U, K,d < mi,m >,= / U K hsds.
[¢] 0

The expectations of the second and the fourth terms of (2.10) are equal to 0
and E[VoY,] = E[X,Y,]. We have now

E(ViY?) = E(XoVy) + E(/t' Y,_n(H,)ds) + E[V/t\UsKshsds]
(2.12) 0 , 0

, t ot
= E(XoY,) + E(/ Y,_H.ds)+ E[/ U Ksm(hy)ds).
0 0 -
It follows from (*), (2.9) and (2.12) that "
T[Xo-hy — Xo-m(ho)] + @ty =7(hs).K, as. forall s3>0,

hence the relation (2.4) and the asserﬁion of Theorem.

3. Filtering of a Markov process from point process obser-

vation

" In this section, the system process will be a Fellerian process X, and

observations will be provided by a point process Y; of intensity ki

t
Y}:/ heds + M,,
0

where M, is a F;-martingale and independent of X.
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Suppose now, that the state space S is & subspace of R‘,' and denote by

C(S) the space of all real-valued bounded continuous functions over 5.

“The filtering of X is defined now by the conditional distributions

(3.1) r(f(X.) = EIf(X) | 7}, feCS)

A modification of a theorem of Kunita [2,3], for the case of point process

observation will be made :

THEOREM 2. . If A is the infinitesimal generator of the semigroup ‘
P, of the signal process, then 7(f) satisfies the following equations :

a/

(F(Xe)) = m(F(Xo)) + ] n(AF(X,))ds+
(3.2) :

t ] 7 ()[R F (Xam A ) = 7(f (Kam D (B(X) e,

b/
(3.3)
n(f(Xe)) = mo(Pf)+

+ / () (h(Xa)-Pre f(X,s ))—«(Pt.,sf(x (B )dm,

‘where f belongs to the domain D(A) of the generator A and my is the

innovation process of X by the pomt process observatwn Y:.

PROOF: . a) Recall the process ¢l = o f(X;,) Xo) j;] Af(X,)ds
is a F,-martingale. Then a direct application of the formula (2.1) for the

semimartingale

_ t
£ = 5% = [ Afxds + 0

yields (3.2) in noticing that the corresponding process u is '[-], hence 4 = 0
‘because of the independence of C{ and M;.
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b) It is also known that if f € C(S) and t > 0'the process’

Py f(Xs) if s<H,

o
lla

Q:

is an .ﬂ—martiﬁga.le of the Fellerian process X, [4].

Writing the equation (2.1) for the signal Q; at a fixed instant ¢ and

using an argument on a monotone class, we get (3.3).

4. Zakai equatio‘n for unnormalized filtering

4.1. General case. Assumptions are the same as in Sections 1 and 2.
Suppose now that the probability P is obtained from a probability @ by an

absolutely continucus change of measure ¢ — P such that
pr =Y, —t
Cisa(Q, Fr )-martlingale. '
Let us denote E % | F¥'l = L, _
A Bayes forﬁula give us | -

Q[XtLt Iftyl
'EQ[Lt]

. E
Ep[X, | Ff]=

. Denote by o(X;) the unnormalized ﬁlterihg of X, under Q :

o(X:) € Eg[X.Li| FY)

Then we have w(X;) - %(}1%)
We can get from (2.1) by some transformation :
.

(4.17)  o(Xy) =o(Xo)+ /Ohas(Hs)_ds +/0 [G(Xs_hs) - J(Xf_)]dus ,

where p; =Y, —¢.

45




(42

4.5)

‘4.9, Fellerian signal. Assumptions are the same as in Sectionl, where

o(f(X:)) is the unnormalized filltering, f € C(5).

Then o satisfies two following equations :

(%) = ofO) + [ o(AFX ot

+ [ loth (Xem) = o F(Xa- N
0 o
_ o(f(Xe)) = o(Pef(Xo))+
4.3 ' t
: (43) + ‘/(; [o(hs Pes f(Xs-)) — F(Prs f(X = )dpts,
If X, is of continuous sample f)aths, X,_ = X, then the two above

equations can be briefly rewritten as follows

| ol f) = oo(f) + / oi(Af)ds+
(4.4) 0

+ o) = ol

cf:(f) = ao(Pef)+
/ [O's(hPt-—sf) - Gs(Pt sf)] diis.

0

4.3. A stochastic differential equation

Suppose that X, is a homogeneous and continuous Feller Markov pro-

cess taking values in a compact separable Hausdorff space S. The semigroup

_ Pt, t > 0 associated with the transition probabilities Pz, E) isa ‘Feller semi-

group. Denote by M(S) the set of all probability measures over S. Then
M(S) is also a compact Hausdorff space with the induced topology. Assume

that the observation Y;, t > 0 is a real valued point process of P-intensity
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hy = h{X;; € C(S5) and of Q4'iﬁtensity 1. lDenote again g == ¥; —¢ which is an
(}7} , G)-martingale. Let gy be an M (S5)-valued 1‘51__11@021_11 variable iriciePendent
of (). | |

An A{{S)-valued stochastic process oy is cailed a solutmn of rhe fol-

lowing stochastic differential equatmn
- - o
46 o= oo(Pf)+ [ [ohPif) = au(Pro s
. S 0 . : '

* where cr?(f) = [ f(X)da, for f € C(S) and o, € M(S5), if o, is independenﬁ
of o-field o{pt, — py; 8 < u < v) for all s > 0 and satisfying this equation.

One can prove that (refer _to [5], wheré some corrections must be made) ;

TH EOREM 3. There exists a unique solution ot of (4.6) for arbitrary
initial condition og. Furthézjmore,' this solution is measurable with respect
to a(ps — #0; 0 < s <t} Voloo) where (o) is the a~ﬁé1d ‘generated by the .

M(S )-valued random variable og. '

REMARKS: (i) We can prove the existence in noticing that in thxs‘
context, thé unnormalized filtering is a solution of (4.6). Thc uniqueress can

be proved by the method of Picard a.ppmmmatlon.

(i1) We can verify that the solution of (4.6) is a Markov process.
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