NOTE ON FILTERING FROM POINT PROCESS

TRAN HUNG THAO

1. Introduction

The aim of the note is to consider the problem of filtering and unnormalized filtering for a real semimartingale from point process observations, particularly for the case of Fellerian signal.

Let (Ω, \mathcal{F}, P) be a complete probability space on which all relevant processes are defined and adapted to a filtration (\mathcal{F}_t) . "Usual conditions" are supposed to be satisfied by (\mathcal{F}_t) .

The system process will be a semimartingale

(1.1)
$$X_t = X_0 + \int_0^t H_s ds + Z_t,$$

where Z_t is a \mathcal{F}_t -martingale, H_t is a bounded \mathcal{F}_t -progressive process and $E[\sup_{s \leq t} |X_s|] < \infty$.

The observation is given by a point process \mathcal{F}_t semimartingale of the form

(1.2)
$$Y_t = Y_0 + \int_0^t h_s ds + M_t,$$

where M_t is a \mathcal{F}_t -martingale with mean 0, $M_0 = 0$ and $h_t = h(X_t)$ is a positive bounded \mathcal{F}_t -progressive processes.

Received by the editors February 3, 1988

Denote by \mathcal{F}_t^Y the natural filtration of Y which provide observation datas concerning X_t .

Suppose that the processes $u_s = \frac{d}{ds} < Z, M >_s$ is \mathcal{F}_s -predictable $(s \leq t)$, where <, > stands for the quadratic variation of Z_t and M_t . Denote also by \hat{u}_s the \mathcal{F}_t^Y -predictable projection of u_s .

We shall find an equation for the filtering process:

(1.3)
$$\pi(X_t) = E(X_t/\mathcal{F}_t^Y) .$$

and we shall also consider the unnormalized filtering in the general case and in the case of Markov-Feller observation process.

Let $\pi(h_t)$ be the filtering process corresponding to the process in (1.2). The following facts are well known:

a) The process

(1.4)
$$m_t = Y_t - Y_0 - \int_0^t \pi(h_s) ds$$

is a \mathcal{F}_t^Y -martingale and therefore Y_t is also a \mathcal{F}_t^Y semi-martingale. Note that m_t can be then expressed by

(1.5)
$$m_t = M_t - \int_0^t [h_s - \pi(h_s)] ds.$$

- b) $\sigma(m_s; s \leq t) \subset \mathcal{F}_t^Y$ and the process m_t is called the innovation of the point process Y_t .
 - c) If m_t is the innovation of Y_t and R_t is an \mathcal{F}_t^Y -martingale then

$$(1.6) R_t = R_0 + \int_0^t K_s dm_s$$

where K_t is a bounded \mathcal{F}_t^Y -predictable process such that

$$\int_0^t |K_s| \pi(h_s) ds < \infty \quad \text{a.s.}$$

(See, for example, [1]).

It follows from (a) and (c) that the observations Y_t can be expressed as

(1.7)
$$Y_t = Y_0 + \int_0^t U_s dm_s \qquad (\mathcal{F}_t^Y - \text{semimartingale})$$

with some U_t of the same properties as K_t .

2. Filtering equation.

THEOREM 1. Under the assumptions and notations mentioned in the previous section, the optimal state estimation $\pi(X_t)$ is given by

(2.1)
$$\pi(X_t) = \pi(X_0) + \int_0^t \pi(H_s) ds + \int_0^t \pi^{-1}(h_s) [\pi(X_{s-}h_s) - \pi(X_{s-})\pi(h_s) + \hat{u}_s] dm_s.$$

The equation is up to an indistinguishability.

PROOF: . It is easy to see that

(2.2)
$$\pi(X_t) = \pi(X_0) + \int_0^t \pi(H_s) ds + \pi(Z_t),$$

where $\pi(Z_t)$ is a 0-mean \mathcal{F}_t^Y -martingale which can be represented in the form (1.6) with $E[R_t] = E[R_0] = 0$:

(2.3)
$$R_t \equiv \pi(Z_t) = R_0 + \int_0^t K_s dm_s$$

So, it is enough to show that the suitable process K_t for $\pi(Z_t)$ is determined by

(2.4)
$$K_t = \pi^{-1}(h_t)[\pi(Z_{t-}h_t) - \pi(Z_{t-})\pi(h_t) + \hat{u}_t].$$

Note that

$$E(X_tY_t) = E[\pi(X_t).Y_t] \qquad (*).$$

We are going to calculate the two products X_tY_t and $V_t.Y_t$, where $V_t = \pi(X_t)$. The differential rule for products gives:

$$X_{t}Y_{t} = X_{0}Y_{0} + \int_{0}^{t} X_{s-}dY_{s} + \int_{0}^{t} Y_{s-}dX_{s} + [X, Y]_{t},$$

where the third term denotes the quadratic covariation of the two \mathcal{F}_t -semimartingales X_t and Y_t . We have

$$\int_{0}^{t} X_{s-} dY_{s} = \int_{0}^{t} X_{s-} U_{s} dm_{s} = \int_{0}^{t} X_{s-} U_{s} dM_{s} + \int_{0}^{t} X_{s-} U_{s} [h_{s} - \pi(h_{s})] ds,$$
(2.7)
$$\int_{0}^{t} Y_{s-} dX_{s} = \int_{0}^{t} X_{s-} H_{s} dt + \int_{0}^{t} Y_{s-} dZ_{s}.$$

Calculations on semimartingale brackets yield:

$$[X;Y]_{t} = [Z,Y]_{t} = [Z, \int_{0}^{t} U_{s} dm_{s}]_{t} = \int_{0}^{t} U_{s} d[Z,m]_{s}$$

$$= \int_{0}^{t} U_{s} d < Z, M >_{s} = \int_{0}^{t} U_{s} u_{s} ds.$$
(2.8)

Because the first term of the right hand side of (2.6) and the last one of (2.7) are 0-mean martingales and

$$E[\int_0^t U_s u_s ds] = E[\int_0^t U_s u_s ds],$$

we obtain at last:

(2.9)
$$E(X_tY_t) = E(X_0Y_0) + E(\int_0^t Y_{s-}H_sds) + E[\int_0^t U_s(X_{s-}h_s - X_{s-}\pi(h_s) + u_s)ds].$$

An analogous calculation for the product of two \mathcal{F}_t^Y -semimartingales $V_t = \pi(X_t) = V_0 + \int_0^t \pi(H_s) ds + \int_0^t K_s dm_s$ and $Y_s = Y_0 + \int_0^t U_s dm_s$ gives

(2.10)
$$V_{t}Y_{t} = V_{0}Y_{0} + \int_{0}^{t} V_{s-}U_{s}dm_{s} + \int_{0}^{t} Y_{s-}\pi(H_{s})ds + \int_{0}^{t} Y_{s-}K_{s}dm_{s} + [V,Y]_{t},$$

where

(2.11)
$$[V,Y]_t = \left[\int_0^t K_s dm_s, \int_0^t U_s dm_s \right]_t$$

$$= \int_0^t U_s K_s d < m, m >_s = \int_0^t U_s K_s h_s ds.$$

The expectations of the second and the fourth terms of (2.10) are equal to 0 and $E[V_0Y_0] = E[X_0Y_0]$. We have now

(2.12)
$$E(V_t Y_t) = E(X_0 V_0) + E(\int_0^t Y_{s-} \pi(H_s) ds) + E[\int_0^t V_s K_s h_s ds]$$

$$= E(X_0 Y_0) + E(\int_0^t Y_{s-} H_s ds) + E[\int_0^t U_s K_s \pi(h_s) ds].$$

It follows from (*), (2.9) and (2.12) that

$$\pi[X_{s-}h_{s}-X_{s-}\pi(h_{s})]+\hat{u}_{s}=\pi(h_{s}).K_{s}$$
 a.s. for all $s\geq 0$,

hence the relation (2.4) and the assertion of Theorem.

3. Filtering of a Markov process from point process observation

In this section, the system process will be a Fellerian process X_t and observations will be provided by a point process Y_t of intensity h_t

$$Y_t = \int_0^t h_s ds + M_t,$$

where M_t is a \mathcal{F}_t -martingale and independent of X_t .

Suppose now that the state space S is a subspace of R, and denote by C(S) the space of all real-valued bounded continuous functions over S.

The filtering of X_t is defined now by the conditional distributions

(3.1)
$$\pi(f(X_t)) = E[f(X_t) \mid \mathcal{F}_t^Y], \quad f \in C(S).$$

A modification of a theorem of Kunita [2,3], for the case of point process observation will be made:

THEOREM 2. If A is the infinitesimal generator of the semigroup P_t of the signal process, then $\pi(f)$ satisfies the following equations:

(3.2)
$$\pi(f(X_t)) = \pi(f(X_0)) + \int_0^t \pi(Af(X_s))ds + \int_0^t \pi^{-1}(h_s)[\pi(f(X_{s-})h(X_s)) - \pi(f(X_{s-}))\pi(h(X_s))]dm_s,$$

$$(3.3) \\ \pi(f(X_t)) = \pi_0(P_t f) + \\ + \int_0^t \pi^{-1}(h_s) [\pi(h(X_s).P_{t-s}f(X_{s-})) - \pi(P_{t-s}f(X_{s-}))\pi(h(X_s))] dm_s,$$

where f belongs to the domain $\mathcal{D}(A)$ of the generator A and m_t is the innovation process of X_t by the point process observation Y_t .

PROOF: . a) Recall the process $C_t^f \stackrel{\text{def}}{=} f(X_t) - f(X_0) - \int_0^t Af(X_s) ds$ is a \mathcal{F}_t -martingale. Then a direct application of the formula (2.1) for the semimartingale

$$f(X_t) = f(X_0) - \int_0^t Af(X_s)ds + C_t^f$$

yields (3.2) in noticing that the corresponding process u is 0, hence $\hat{u} = 0$ because of the independence of C_t^f and M_t .

b) It is also known that if $f \in C(S)$ and t > 0 the process

$$Q_t \stackrel{\text{def}}{=} \left\{ \begin{array}{ll} f(X_t) & \text{if} \quad s \ge t, \\ P_{t-s}f(X_s) & \text{if} \quad s \le t, \end{array} \right.$$

is an \mathcal{F}_t -martingale of the Fellerian process X_s [4].

Writing the equation (2.1) for the signal Q_t at a fixed instant t and using an argument on a monotone class, we get (3.3).

4. Zakai equation for unnormalized filtering

4.1. General case. Assumptions are the same as in Sections 1 and 2. Suppose now that the probability P is obtained from a probability Q by an absolutely continuous change of measure $Q \to P$ such that

$$\mu_t = Y_t - t$$

is a (Q, \mathcal{F}_t^Y) -martingale.

Let us denote $E[\frac{dP}{dO} \mid \mathcal{F}_t^Y] = L_t$

A Bayes formula give us

$$E_P[X_t \mid \mathcal{F}_t^Y] = \frac{E_Q[X_t L_t \mid \mathcal{F}_t^Y]}{E_Q[L_t]}$$

Denote by $\sigma(X_t)$ the unnormalized filtering of X_t under Q:

$$\sigma(X_t) \stackrel{\text{def}}{=} E_Q[X_t L_t \mid \mathcal{F}_t^Y]$$

Then we have $\pi(X_t) = \frac{\sigma(X_t)}{\sigma(1)_t}$

We can get from (2.1) by some transformation:

(4.17)
$$\sigma(X_t) = \sigma(X_0) + \int_0^t \sigma_s(H_s) ds + \int_0^t [\sigma(X_{s-}h_s) - \sigma(X_{s-})] d\mu_s ,$$

where $\mu_t = Y_t - t$.

4.2. Fellerian signal. Assumptions are the same as in Section 1, where $\sigma(f(X_t))$ is the unnormalized filtering, $f \in C(S)$.

Then σ satisfies two following equations:

(4.2)
$$\sigma(f(X_t)) = \sigma(f(X_0)) + \int_0^t \sigma(Af(X_s))ds + \int_0^t [\sigma(h_s f(X_{s-})) - \sigma(f(X_{s-}))]d\mu_s,$$

(4.3)
$$\sigma(f(X_t)) = \sigma(P_t f(X_0)) + \int_0^t [\sigma(h_s P_{t-s} f(X_{s-})) - \sigma(P_{t-s} f(X_{s-}))] d\mu_s,$$

If X_t is of continuous sample paths, $X_{s-} = X_s$ then the two above equations can be briefly rewritten as follows

(4.4)
$$\sigma_t(f) = \sigma_0(f) + \int_0^t \sigma_s(Af)ds + \int_0^t [\sigma_s(hf) - \sigma_s(f)]d\mu_s,$$

(4.5)
$$\sigma_t(f) = \sigma_0(P_t f) + \int_0^t [\sigma_s(h P_{t-s} f) - \sigma_s(P_{t-s} f)] d\mu_s.$$

4.3. A stochastic differential equation

Suppose that X_t is a homogeneous and continuous Feller Markov process taking values in a compact separable Hausdorff space S. The semigroup P_t , $t \geq 0$ associated with the transition probabilities $P_t(x, E)$ is a Feller semigroup. Denote by $\mathcal{M}(S)$ the set of all probability measures over S. Then $\mathcal{M}(S)$ is also a compact Hausdorff space with the induced topology. Assume that the observation Y_t , $t \geq 0$ is a real valued point process of P-intensity

 $h_t = h(X_t) \in C(S)$ and of Q-intensity 1. Denote again $\mu = Y_t - t$ which is an (\mathcal{F}_t^Y, Q) -martingale. Let σ_0 be an M(S)-valued random variable independent of (μ_t) .

An M(S)-valued stochastic process σ_t is called a solution of the following stochastic differential equation

(4.6)
$$\sigma_t(f) = \sigma_0(P_t f) + \int_0^t [\sigma_s(h P_{t-s} f) - \sigma_s(P_{t-s} f)] d\mu_s,$$

where $\sigma_t(f) = \int f(X_t) d\sigma_t$ for $f \in C(S)$ and $\sigma_t \in \mathcal{M}(S)$, if σ_s is independent of σ -field $\sigma(\mu_v - \mu_u; s \leq u \leq v)$ for all $s \geq 0$ and satisfying this equation. One can prove that (refer to [5], where some corrections must be made);

THEOREM 3. There exists a unique solution σ_t of (4.6) for arbitrary initial condition σ_0 . Furthermore, this solution is measurable with respect to $\sigma(\mu_s - u_0; 0 \le s \le t) \vee \sigma(\sigma_0)$ where $\sigma(\sigma_0)$ is the σ -field generated by the $\mathcal{M}(S)$ -valued random variable σ_0 .

REMARKS: (i) We can prove the existence in noticing that in this context, the unnormalized filtering is a solution of (4.6). The uniqueness can be proved by the method of Picard approximation.

(ii) We can verify that the solution of (4.6) is a Markov process.

REFERENCES

- 1. Brémaud P., Point Processes and Queue Martingale Dynamics, Springer-Verlag (1980).
- 2. Fujisaki M., Kallianpur G. and Kunita H., Stochastic Differential Equations for the Non-linear Filtering Problem, Osaka J. Math. 9 (1972), 19-40.
- 3. Kunita H., Asymptotic Behavior of the Nonlinear Filtering Errors of Markov Processes, Multivariate Analysis 1 4 (1971), 365-393.
- 4. Kunita H., Watanabe S., On square integrable martingales, Nagoya Math. J. 30 (1967), 209-245.
- 5. Thao T.H., Optimal state estimation of a Markov process from point process observations, Proceedings of the Summer School on Probability Theory at Saint Flour 1990, Ann. Univ. Clermont-Ferrand (1990).

INSTITUTE OF MATHEMATICS, P.O. BOX 631 BO HO, HANOI, VIETNAM