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ON THE CONVERGENCE OF THE
HOSCHSCHILD-SERRE SPECTRAL SEQUENCE
FOR THE CONTINUOUS COHOMOLOGY
OF PARABOLIC DISCRETE SUBGROUPS

- NGo Mann Hung

0. Inti'oduction

The Eilenberg—Maclane cohomology group H*(T, p, E) of a discrete
sugroup I' of a reductive algebraic @ -group G with coeffiecients in a finite,
dimentional I-module (p, E} is equivalent to the continuous de Rham coho-

mology of the corres?onding Riemannian symmetric space
X/T=K\Ggp /T

of a maximal compact subgroup: K in Gr with coefficients in the induced
P-module - o
E,=E ;\( G/T

(see [12]). So the scope is focused in the spectral .decomposition of the I’
equivariant Laplacian A on the space of smooth section of E, IT is co-
compact, spectrum of A is discrete and one also has reasonable Hodge :
theory (see [1], Chapter II and III). The theory becomes more complicated
in the non-cocompact case. G. Harder [7] had studied the case when @ is of
parabolic rank 1, K.F. Lai (11] the case when G = Sp(n), and J. Schwermer
[13], {14} the case when G = SL3(Z) and G = SLn(Z). The main idea is
based on the index theorj; of elliptic operators (the kernel and cokernel of

which are finite-dimensional) and the Hodge -decomposition.
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At the present time, the orbit method has attained a flourishing devel-
‘opment in the multidimensional context and in the multidimensional quanti- -
zation procedure (see D.N. Diep [2],' 4], [6]). This developmet shows that the
description of the dual of Lie groups leads to the infinite-dimensional unitary
representation, the non-compact coadjoint orbit can be of finite covolume.
One hopes therefore to develope the theory of continuous cohomology in
the non-compact ‘case with infinite-dimensional continuous I'-module (p, E).
Analysing the index theorem of elliptic operators, D.N. Diep suggested an
idea of replacing the finiteness of thé kernel and the cokernel by the finitely
generated property, and the compactness of symmetric spaces by the condi-

tions of compact support at square-integrability.

Following Diep’s ideal, we develope the Hodgé theory for the case of
square- integrabie differential forms with coefficients in a Hilbert fiber bun-
dle £, over non-compact symmetnc space. Applying this theory, we shall
prove the theorem on the convergence to a direct sum of the E;-terms of
the Hochschild-Serre spectral sequence for the square-integrable cohomology
classes of parabolic discrete groups {(Theorem 3.5). This result extends a
result of Harder ([7], Theoremn 2.8).

I would like to express my deepest gratitude to Dr. Do Ngoc Diep for
posing problem, for inspiring suggestions and encouragements.
1. The cohomology of discrete subgroup

Let G be a Lie group, K a maximal compact subgroup, I a discrete
subgroup without torsion of G. Then X = K \ G is homeomorphic to an

Fuclidean space, and X/T is a (T, 1)-space and the projection
G/T % X/T |

is a principal K-bundle.
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Let p : G — Aut (E) be a differentiable representation of G in a
Hilbert space E with finite spectrum. The restrictions of p on K and T’
induce the actions of these groups on E. The fibration B, = E ﬁ G/T ig
a vector bundle associated with the principal K-bundle pg with the fiber
E. Denote by 7 the flat canonical connection on E, (see [3], p. 92 for the
definition of connection on thé infinite-dimention vector bundle and (7], p-
150 for the construction of this connection). Now, we consider the coho-
: mologjlr H*(T', p, E) of the group I’ with cocfficients in a T-module E. It is.
- well-known that H*(T, p, E) ~ H (X/T, E,), where the right hand side is
the cohomology of the Rham complex {Q(X/T, E,);dy} of the differential |
forms of X/T' with values in the bundle E,, and the differential dg, is defined

as follows _
(1) dow(li,:yépt1) = Z (=1 w(&r,er iy e Epra) +
_ T 1<i<p+l : :

+ Z (—1)i+jw([€i:§j]$§11‘:Ei',gja-5€p+1)

o i<i<j<p+i
Let G = Lie G, K = Lie K be the Lie algebras of the Lie groups G
and K respectively. Put P =VG/IC_. The adjoint action of & on'G induces
the - representation ADp of K in P. Then the tangent bundle TX/T of X/T"
is itself the vector bundle on X /T associated with the principal K-bundle ﬁﬁ
and with the representation Adp (see [7], p.131).

The representations Adp and p define the action v{k) = A? Adp(k) ®
p(k) of K on APP* @ E. ‘

For any p-forms w of QP(X/T', E,) we have a v(k)-invariant smooth

function

@ ¢u: GJT — APP* Q E.

15



.- Denote by_C‘f‘{‘;(G/I‘, APP* @ E) the space of v(k)-invariant smooth
functions as in (2). Then there 1san isomorphism o
(3) C2(G T, NPP* @ E) = Homy(APP,C=(G/T, E))
= C?(G, K;C®(G/T, E)),

where the last space consists of the relative cohomology cocycles of the Lie
algebra G modulo K with values in C*(G/T,E). We have the following

lemma whose proof is straightforward.

LEMMA 1.1. There exists an isornorphism
(4) b QX/T, E,)=SCP(G, K5 C®(G/T, E))

which commutes with the differential operators of the ‘complexes. Hence h

induces the isomorphism' on the cohomology groups
R* s HP(XJT,E,)—H?(G, K; C>(G/T, E)).

9. The Hodge decomposition

In this section we assume that G is a feductive Lie group, K is a
maximal compact subgroup of G, is the Cartan involution corresponding
to K. Then . :
| P={teg|8¢=-¢h
and we have the Cartan decompositio_ﬁ e

G=K®P.

Put o :

By(€,7) = ~B(£, 6(n)),

where B is the Killing form on G
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DEFINITION 2.1. A differentiable G-module (p,E-) is said to be K-
admissible if there exists a scalar product (.,-) on the Hilbert space E which

satisfies the following conditions
(1) (p(k)v, p(k)w) = (v,w) for all k € K, |
(i) (p(€)0, ) = (v, p(E)w) for all € € P.
The pifoof of the following lemma is similar to the proof of Proposition’ ‘
3.11in [12]. "
LEMMA 2.2. There exists an adm:sszble scalar product on the Hilbert

space E.

REMARK 2.3: It follows from Definition 2.1 that any G-invariant sub-
space of E has an G-invariant orthogonal complement,. Hence the represen-

tation p'is either irreducible or completely reducible.

]

" From now on, we fix a K-admissible scalar product on E. As in §1 [7]

we can deﬁne the operators :
X : X/T, E,) — QX/T,E}),
% QP(X/I‘ E ) — QN“"(X/I‘ E,),
Wk =g NLw,
where N ='dim X / T. The eva.lutlon map
i BREt —C
induces the map .

tr: Q¥ (X/T, B,@E}) — QN(X/T,C).
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For: each w,w' € Q(X/T, E,) we put i L
| _ | ftr(w'_/\‘m- if  degw -—- degw’,
W we)={xm R
| _ 0 -- _ _ﬁ' o if degw # degw’,
whenever the integral of the right hand side is defined. The formula (1)

defined a scalar product on the subspace Q3 (X/T, E,) of the differential
. forms W1th compact support in Q*(X /T, E,).

'We consider now the space C°°(G’ /T, E) of the smooth functlons with-
compact support. The’ group G acts naturally on CX(G/T, B) by

@ (vr(g)f)(a:) p(é”‘)f(gw)

where z € G/ I‘ gEG and f € C°°(G/I‘ E) This actxon mduces an action
of G on C°°(G/I‘ E) as follows

(3, R €3 (o) = (Lef )(w) P(E)f(x)
where L is the Lie derivation on, G/P As usua,l we con31der the followmg

" scalar product on C°°(G/F E)

@ (f,g)~ j () o=V

- The completlon of CZ(G/T, .E) with the scalar product (4) is the
space LZ(G /T, E) of the square- -integrable functions of G/l" with va,lues in
E. We can consider the complex {C”(g K; L*(G/T, E)), d,} where the

differential operator dy is deﬁned as follows

. (5) | S dﬂ‘P(El: ?g}"ﬂn)_‘ Z ( 1)21‘.5.97(61! ,51-, !£p+1)

. t<|<p+1 -

for all £4,. 2€pr1 € P

The followmg lemma, is obvxous '
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LEMMA 2.4. The scalar product on C?(G/F, E) and the restriction
By;, of the for Bg on P define a scalar product on C?(G, K; C°(G/T, E})
whose completion is C?(G, K; L*(G/T, E)). :

3

At last, we define the operator &, on C?(G, K; L*(G/T, E)) by

6 (depr @) = (0,620,
and put
(1" | Ag = dpby + brdy.

Now we return to ‘consider (Q.(X/I',E,)). It is clear. that
do(Q(X/T, E,)) C S (X/T,E,). Therefore {Q}(X/T,E,),dy} becomes
a subcomplex of the complex {Q*(X/T E), v} On Q*(X /T, E,) we define
~ the operator 8 by

(bguwyw') = (w,dgw') for all w,w € QX(X/T,E,),

We denote by ©4.(X/T, E,) the completion of Q(X/T, E,,) with re-
spect to the scalar pﬁiduct (3), so Q5.(X/T', E,) is the space of the square-
integrable sections of the bundle A*T*X/TQE,. W¢ also use the same nota-
" tions dy, 6y and Ay for their extensions on Q7.(X/ T, E,). The cohomology
 group of the complex {¥}.(X/T, E,),dy} is denoted by H?,(X/T, E,) and
the kernel of the operator Ay by Hy» (X /T, E,).

THEOREM 2.5. (THE HODGE DECOMPOSITION).

(8) - QiAX/T,E,) = Ker-Av @ Im dy @ Im 6.

Coqéider the isomorphism h in Lemma 1.1.
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LEMMA 9.6. The restriction of the isomorphism h on Q}.{X/T, E,)
is a bijective map. preserving the scalar products. Therefore, it deduces the

following isomorphism
(9) h: Q2 (X[T,E,) = C*G, K, LY X/T, E))
The proof of this lemma is straightforward.

COROLLARY 2.7. The isomorphism h commutes with the codifferen-
_ tial operators &y, and 6x. Therefore h commutes the Laplacians Ay and
Ax.

Denote by H*(G, K; L*(G/T', E)) the kernel- of the operator A,. For
any ¢ € Cp(g K;L*G/T, E)) we put- | :
dep(Ea,sbprr) = 3 (~1)* Lo p(Er, - &y 1)

i<i<p+1

dpp(Ers o) = . D (—1) 1 p(Eip(Es -2 €4y - Epr1) ‘

i<i<p+1

(10)

for all é1,.,&p41 € P.

It is clear that dy = dr — d,. k We ’use 6,-’a~rid. 6, to denote the
conjugate operators of d, and d, with respect to the scala.r ‘product on
C*(G, K: : L2(G/T, E)) and put
Ay = dfé'r + 61.'d‘ra ’

- (11) - |
A, = d 6o +6,d,

LEMMA 2.8. Let o be the Casmnr operator Gg.. Then

: (1) Ar=A0Ar—A,=—C+p(C) (the Kuga, s lemma)
' : (12)
(ii) Ker Ay = Ker Ar N Ker B,

The proof is obvious.
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- (18)

We remark that the form By and the scalar product defined in (4) on
L*(G/T, E) define a scalar product on the space D* = APG*QL*(G/T, E)) =~
‘Hom (APG, LYG/T, E)), and the space C* = C*(G, K; L*(G/T, E)) becomes
the Hilbert subspace of the K-invariant elements of D* annihilated on K.
Moreover d, - dic-, hence 6, = Sics, A = A|g-. On the other hand, the
space D* can be identified with the space Q*L%(G/T') ® E where Q%,(G/T)
is the space of the square - integrable forms on G /T with values in C. So we

have the decompositions

d= dg@ 15',
(13) 5:60®1E:1
. A:AB Q@lg, -

where dy, 8y, Ap are the operators on QE;(G/P) | For the operators dy, 6y, Ao,
there is the Hodge-Kodaira’s decomposition (see de Rham [15] Theorem 2.4).

(14) 52(G/T) = Ker Ao @ Im do @ I 6.

Hence we get
o ","Df=I{eTAGB-Imd®Im6
-(9) = (Ker 8o ® E) @ (Im do  E) @ Irn 6 & B),
and this de‘ducés tile degt_').mpositio‘n_‘ o .
C*=C*N D" = (C* N Ker A)®(C*N Im d) & (C* N Im §)
| . =Ket A, ® Im d; & Im §,. |
Now we return to con‘sfdér éheoperatpr_s A, By Kuga's lemma (see Lemﬁa
2.8.(1)), the action of A, on C* is the action of the Casimir operator p(C) of
the representation p. Since (p, E) is completely reducible and E is assummed
to be of finite spectrum we can restrict to the case when (p, E) is irreducible.

Then by Schur’s lemma we get

(17) - | p(C) = MIdon.

21



If A =0, we have Ax = Ar. The decomposition (16) becomes
(18) C*-—KerA EBImd @ I Oy

If A # 0 we have A, = {0} = Ker A,,, therefore Im A = C*. So Theorem
2.51s deduced from Corollary 2.5.

COROLLARY 2.9.
Hy:(X/T,E) = Ker Ag = Ker Ay~ H*C*

3. The cohomology of the arithmetical parabolic subgroup

In this section we consider a reductive algebraic Q. Let T be an
arithmetical subgroup without torsion of G, p:G— Aut (V) a rational
representation of G. From this we get a representation p of the Lie group G

of the real points of G on the vector space E,=V®R

Let us fix a maximal compact subgroup K'.of G, and choose an K-
admissible scalar product on Eg. Put E = Ey @ C. Let 9 be the Cartan

involution corresponding to K.

Let P be a parabolic subgroup of G and P the Lie group of its real
points. Consider the Langlands decompos1t10n P = MAU of P (see [10]
Chapter 1 §1). Put P(1) = MU, Ku = 7TP|M(K N P(1)) where M
P(1) — M is the progectmn Then K is a maximal compact subgroup in

M and the restriction of 6 on M is again a Cartan involution (correspondmg
to Kar).

It is well-known that TN E =1T'N P(1), and we write I'p for ' P.
We define X(1) = zoP(1) = Ky \ P(1), Xu = Xp \ M, where zp =
(K] € K\ G = X. Let Ty be the image of Tp in M. Then I'ys is
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again an arithmetical subgroup.' The prc;jection TPIM induces the ,prdjec-
tion X(1)/I'p — Xy /T'm which is easily seen to be a fibration with the
-fiber U/I'y, where T'y = I'p N U. Let us’ denote the Lie algebras of the
Lie group Kuy, P(1), U,M by Ky, P, U, M, respectively. We have the

Cartan decomp051t10n corresponding to the involution O :
(1) M=Ky & Pu.
" This dt_acompositibn deduces a decomposition of P; :
(2) | Pi=MoU=Ky®PyoOU
On the complex C* = C* (P1, Ky, L*(P(1)/Tp,E))} we define the
filter '
FPC™ = {p € C™| p(&1,.,€x) = 0 whenever there are more
. than n — ﬁ'vectors LieU}

The spectral sequence associated with this filter concentrates in the first

quadrant. Therefore, it converges to
(3) H*C* = H*(Py, Kag; LA(P(1)/Tp, E)) -
Furfhermore we have

LEMMA 3.1. The E3*-terms of this spectral sequence are isomorphic
to HPQ(XM/FM,’H’J(?J E),,), where HY(U,E) 15 the Space of the harmonic
q-forms in the cohomology classes of the Lie algebra U with respects to
Laplacian L which is defined by B. Kostant (see [10] and [ 7] §2).

Consider the 1ncluS1on HYU,E) — H om (A‘?Zz{ E) It :mphes the

following conclusmns .
. Hom (NP, ’H"(L{ E)) — Hom- (N”PM, Hom (AU, E))

(37)
' — Hom: (AP+9('PM (BZA') E)
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The argument in §1 shows that we can identify each forms w € 07, {X m/Tm ,-
“H*(U, E)) with & square-integrable K p-equivalent function

(4) hw = 9w -: M/I"M — Hom (NPPy, HI(U, E)).
Composmg (B) with the mclusxons (4), we get the functlon

(5) @u: M/I‘M — Hom (APTI( Py GBL{) EY=Hom (Ap+q’}31 E)

For each [mu] € P(1)/T'p, we put

©) (hige)(frma) = ([
Then iqw € Qﬁfq(}( (1)/ I'p, E,). The corresponding map w -— iqw defines
a homomorphism -
(T ig: Q.(Xa/Tar, HIU, B)p) — QFUX()/Tp, B,)
-- '. r‘I‘h(:.a‘following lemma is obvious.

LEI\;/'I"MA'S.Z. Denote by dpr and dp tﬁe differentials of the cdmple;fes
Qo (Xm/Tai; MU, E),) and Q5.(X(1)/Tp,Ep) ‘respectively.  Then

igdy = dp'ié; 'Therefore i, induces a-homomorphism

©) "= @ iy @ H(Xn/Cut, WU, E)y) — HB(X(/Tr, Bo),

pHg=n ptg=n
CORQL‘I}@RYl 3.3. z"‘ is an epimorphism.
This ‘(-IOr"ojllary follows from Lemma 3.1, Lemma 3.2 and the assertion
on the conv'er'ge'rice of the abbve- spectral sequence.
Now Lemma 2 4 in, [7] show that the form Bgy, is an K a-admissible

scalar product on M This sCalar ‘product and the K adrmssnbie scalar product
on E deﬁne an K- a,dmlsmble scala,r ‘product on H"(Z( E) Therefore, as in
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section §2, we can construct the Laplacian Aps on Q% .(Xar/Tar, 'H*(H, E)p)
and the Laplacian A, on Q}.(X/(1)/Tp, E,). Put

. H3AX(1)/Tp, Ey) = Ker Ay,
* (Xne/Tag, HHU, E)) = Ker A,
Then by Corollary .2.9, we have

12(X(1)/Tp, Ep) ~ Hi2(X(1)/Tp, E,),

10 . ,
(19) HE Xyt /T, HI U, Ep)) = H{Xpt /T, HYU/Tp, E),).

The proof of the following lemma, is analogous to the one of Lemma

2.7 of [8].

LEMMA 3.4. i,.Ap = Apty and i, induces a monomorphism

D 2 (Xt [Tat, MU, B)y) — H(X ()T, )

prg=n
Now combining the result of Corollary 3.3, Lemma 3.4 with the iso-

motphism (IOj we gét our main result.

THEOREM 3.5. The homomorph:sm i* defined in the Lemma 3.2 is

an zaomorphzsm
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