THE APPROXIMATE SOLUTION OF THE FIRST KIND OPERATOR EQUATION IN LOCALLY CONVEX SPACES BY DISCREPANCY METHOD

NGUYEN VAN KINH

1. Introduction.

We consider the first kind operator equation

$$(1) Ax = y_0 , x \in X , y_0 \in R(A) \subset Y ,$$

where X is a locally convex space, Y is a separated locally convex space, and A is a linear operator from X into Y which is weakly continuous and such that there exists the inverse operator A^{-1} defined on the range R(A) of A.

Given a filter base of y_0 consisting of closed convex subsets $\{V_{\delta}\}$, we want to establish approximate solutions x_{δ} of equation (1) such that

$$x_{\delta} \longrightarrow x_{0}$$
,

where x_0 is an exact solution of (1), i.e. $x_0 = A^{-1}y_0$.

For given X, Y, A, y_0 , we associate each filter base $\{V_{\delta}\}$ with the sequence of the approximate solutions $\{x_{\delta}\}$ and denote the above problem by $\alpha[X, Y, A, x_0, \{V_{\delta}(y_0)\}]$. If the approximate solutions x_{δ} are established by a discrepancy method and $x_{\delta} \to x_0$, then we say that this discrepancy method stabilizes the problem.

In this paper we give conditions under which a discrepancy method stabilizes any problem $\alpha[X,Y,A,x_0,\{V_\delta(y_0)\}]$.

Received by the Editors August 29, 1987

REMARK: The case where the space X satisfies condition (A), Y is a metrizable locally convex space, and the operator A is linear continuous has been examined in [2].

2. Preliminaries

Assume that the topology of X is given by a family of seminorms $\{p_{\gamma}\}_{\gamma\in\Gamma}$. We shall write $X\equiv(X,p_{\gamma},\Gamma)$.

Let us first recall some definitions and theorems which will be needed in the next section.

DEFINITION 1. A filter \mathcal{F} in X is called a Cauchy filter if for any neighbourhood U of the origin of X there exists an element $A \in \mathcal{F}$ such that

$$x - y \in U$$
 for all $x, y \in A$.

If each Cauchy filter in X is convergent, then X is called complete.

LEMMA 1 (SEE [4]). Each locally convex space $X \equiv (X, p_{\gamma}, \Gamma)$ has the following properties :

- a) X is isomorphic to a subspace of the product $\prod_{\gamma \in \Gamma} X_{\gamma}$, where each X_{γ} is a normed space defined by $X_{\gamma} = X/p_{\gamma}^{-1}(0)$.
 - b) The isomorphism can be defined by mapping

$$V(x) = (V_{\gamma}(x)) , x \in X ,$$

where each V_{γ} is a canonical mapping from X onto X_{γ} .

c)
$$pr_{\gamma} \circ V = V_{\gamma}$$
 for all $\gamma \in \Gamma$,

where pr_{γ} is a canonical projection from $\prod_{\gamma \in \Gamma} X_{\gamma}$ on to X_{γ} .

LEMMA 2 (SEE [4]). The quotient space X/M is separated if and only if M is a closed subspace in X.

LEMMA 3 (SEE [4,5]). The product of weak topologies is a weak topology.

LEMMA 4 (SEE [4,5]). Suppose that X is a product of locally convex spaces X_{γ} . Then X is complete if and only if each X_{γ} is complete.

DEFINITION 2. We say that the locally convex space $X \equiv (X, p_{\gamma}, \Gamma)$ satisfies the condition (A') if:

- a) The mapping V in Lemma 1 is an isomorphism from X onto $\prod_{\gamma \in \Gamma} X_{\gamma}$.
- b) X is weak complete.
- c) For each net $\{x_{\omega}\}\subset X$ with $x_{\omega}\xrightarrow{w}x$ and $p_{\gamma}(x_{\omega})\longrightarrow p_{\gamma}(x), \ \forall \gamma\in \Gamma$, we have $x_{\omega}\longrightarrow x$.
- d) If $p_{\gamma}(x_1 + x_2) = p_{\gamma}(x_1) + p_{\gamma}(x_2)$ for $\gamma \in \Gamma$, then there exists a number λ_{γ} such that $p_{\gamma}(x_1 \lambda_{\gamma}x_2) = 0$.

REMARK:

- 1. It is clear that if $X = \prod_{\gamma \in \Gamma} X_{\gamma}$, where each X_{γ} is a Hilbert space, then the space X satisfies condition (A').
 - 2. Any space satisfying condition (A') is separated.

COROLLARY 5 (cf. [1]). If X is a locally convex space satisfying condition (A'), then each $X_{\gamma} = X/p_{\gamma}^{-1}(0)$ is an E-space.

PROOF: It follows from Lemmas 1, 3, 4.

3. Discrepancy method

DEFINITION 3. Suppose that $\Omega \subset \prod_{\gamma \in \Gamma} X_{\gamma}$, where each X_{γ} is a normed space. An element $x \in \Omega$ is said to realize a minimum of Ω if it satisfies the following condition:

(2)
$$||pr_{\gamma}(x)|| = \inf_{y \in \Omega} ||pr_{\gamma}(y)|| \text{ for all } \gamma \in \Gamma.$$

Let us consider the problem $\alpha[X,Y,A,x_0,\{V_{\delta}(y_0)\}]$. Set $\Omega_{\delta}^{\gamma} = V_{\gamma}[A^{-1}(V_{\delta})]$ and $\Omega_{\delta} = \prod_{\gamma \in \Gamma} \Omega_{\delta}^{\gamma}$. The approximate solution of the equation (1) depending on V_{δ} (established by a discrepancy method) is an element $x_{\delta} \in X$ such that $x_{\delta} = V^{-1}(y_{\delta})$, where y_{δ} realizes a minimum of Ω_{δ} . If $x_{\delta} \longrightarrow x_0$, we say that the discrepancy method stabilizes the problem.

Now we discuss the existence of approximate solutions of the equation (1) by a discrepancy method.

THEOREM 6. If X is a locally convex space satisfying condition (A'), then there exists a unique approximate solution of the equation (I) for each V_{δ} corresponding to the problem $\alpha[X,Y,A,x_0,\{V_{\delta}(y_0)\}]$.

PROOF: For each $\gamma \in \Gamma$, put

$$\mu^{\gamma} = \inf_{y \in \Omega_{\delta}} ||pr_{\gamma}(y)|| \ .$$

Then there exists a sequence $\{y_k\} \subset \Omega_{\delta}$ such that

(3)
$$||y_k^{\gamma}|| \longrightarrow \mu^{\gamma} \text{ as } k \longrightarrow \infty$$
,

where $y_k^{\gamma} = pr_{\gamma}(y_k)$.

Since X_{γ} is an E-space and by (3), we may assume without loss of generality that

$$(4) y_k^{\gamma} \xrightarrow{w} y_{\delta}^{\gamma} \in X_{\gamma} .$$

We consider the element $y_{\delta} = (y_{\delta}^{\gamma})$. We shall prove that y_{δ} realizes a minimum of Ω_{δ} . Indeed, if $y_{\delta} \notin \Omega_{\delta}$, then there exists $\gamma_{0} \in \Gamma$ such that

$$y_{\delta}^{\gamma_0} \notin \Omega_{\delta}^{\gamma_0} .$$

Since the mapping $V_{\gamma_0} = pr_{\gamma_0} \circ V$ is linear continuous open from X onto X_{γ_0} , the set $\Omega_{\delta}^{\gamma_0} = V_{\gamma_0}[A^{-1}(V_{\delta})]$ has at least one interior point, i.e. $int_{\delta}(\Omega_{\delta}^{\gamma_0}) \neq \emptyset$. By the Hahn-Banach theorem, there exists a linear continuous functional $f \in X_{\gamma_0}^*$ such that

(6)
$$f(y_{\delta}^{\gamma_0}) > 1$$
 and $f(y_{\delta}^{\gamma_0}) \le 1$ for all $y_{\delta}^{\gamma_0} \in \Omega_{\delta}^{\gamma_0}$.

This is a contradiction to (4). Thus

$$(7) y_{\delta} \in \Omega_{\delta} .$$

From (7) it follows that

(8)
$$\mu^{\gamma} \leq ||y_{\delta}^{\gamma}|| \text{ for all } \gamma \in \Gamma.$$

From (4) and by the Banach-Steinhaus theorem, it follows that

$$||y_{\delta}^{\gamma}|| \leq \underline{\lim}_{k \to \infty} ||y_{k}^{\gamma}|| = \mu^{\gamma}.$$

From (8) and (9), it follows that

$$||y_{\delta}^{\gamma}|| = \mu^{\gamma} \quad \text{for all} \quad \gamma \in \Gamma \ .$$

From (7) and (10), it follows that y_{δ} is a minimum of Ω_{δ} .

The uniqueness of the minimum of Ω_{δ} follows from the fact that Ω_{δ} is convex in $\prod_{\gamma \in \Gamma} X_{\gamma}$ and each X_{γ} is an E-space.

It follows that the approximate solution x_{δ} of (1) uniquely exists and is defined by

$$x_{\delta} = V^{-1}(y_{\delta}) .$$

DEFINITION 4. We say that the weak continuous linear operator $A: X \to Y$, having A^{-1} , belongs to the set $\alpha[X,Y]$ if and only if a discrepancy method stabilizes every problem $\alpha[X,Y,A,x_0,\{V_{\delta}(y_0)\}]$.

Our purpose is to find conditions for A to be in $\alpha[X, Y]$.

Consider the problem $\alpha[X, Y, A, x_0, \{V_{\delta}(y_0)\}]$. Put

$$U_{\delta} = \{x \in X : Ax \in V_{\delta}(y_0) - Ax_0\}.$$

By [4] there exists a topology (T) in X such that X together with (T) is a locally convex space. Moreover, the family $\{U_{\delta}\}$ becomes a filter base of neighbourhoods of the origin in X. We denote the space by $X_{(T)}$.

THEOREM 7. The quotient space $X_{(T)/p_{\gamma}^{-1}(0)}$ is separated if and only if every set $A(p_{\gamma}^{-1}(0))$ is weakly closed in R(A).

PROOF: Necessity: Suppose that $X_{(T)/p_{\gamma}^{-1}(0)}$ is separated. By Theorem 2, $p_{\gamma}^{-1}(0)$ is a closed subset in $X_{(T)}$. On the other hand, $p_{\gamma}^{-1}(0)$ is convex in $X_{(T)}$. Hence $p_{\gamma}^{-1}(0)$ is a weakly closed subset in $X_{(T)}$. It is not difficult to show that the operator $A^{-1}: R(A) \longrightarrow X_{(T)}$ is continuous. Hence it is weakly continuous (see [4]). It follows that $A(p_{\gamma}^{-1}(0))$ is weakly closed in R(A).

Sufficiency: Since the operator A is one to one, we have

(11)
$$A^{-1}[A(p_{\gamma}^{-1}(0))] = p_{\gamma}^{-1}(0) .$$

It is evident that A is continuous in the topology (T). Hence it is weakly continuous.

From (11) and by the weak continuity of the operator A, it follows that $p_{\gamma}^{-1}(0)$ is weakly closed in $X_{(T)}$. Hence it is closed in $X_{(T)}$. By Theorem 2 it follows that $X_{(T)/p_{\gamma}^{-1}(0)}$ is separated.

The following lemmas will be used in the proof of Theorem 8.

LEMMA 1 (SEE [3]). Suppose that X is a compact space and $\{E_{\delta}\}$ is a filter in X (or a filter base). If $\{E_{\delta}\}$ has a unique limit point x, then $\{E_{\delta}\}$ converges to x.

LEMMA 2. Suppose that the mapping $A: X \to Y$ has a closed graph and for a fixed point $y_0 \in Y$ there exists a unique element $x_0 \in X$ such that $Ax_0 = y_0$, where X is a compact space and Y is a topological space. If $\{V_{\delta}\}$ is a filter of neighbourhoods of y_0 , then $\{E_{\delta}\}$ is a convergent filter base of x_0 , where $E_{\delta} = A^{-1}(V_{\delta})$.

PROOF: It is clear that $\{E_{\delta}\}$ is a filter base in X. Since X is a compact space, $\{E_{\delta}\}$ has a limit point \bar{x} (see [3]). We shall show that \bar{x} coincides with x_0 , hence by Lemma 1, $E_{\delta} \to x_0$. In fact, by definition there exists a filter $\{Q_{\gamma}\}$ in X such that it exceeds $\{E_{\delta}\}$ and converges to \bar{x} (see [6]). Therefore $\{A(Q_{\gamma})\}$ exceeds $\{V_{\delta}\}$. It follows that $\{A(Q_{\gamma})\}$ also converges to y_0 . We obtain

(12)
$$Q_{\gamma} \to \bar{x} \quad \text{and} \quad A(Q_{\gamma}) \to y_0$$
.

Since the graph of A is closed, (12) implies

$$A\bar{x}=y_0$$
.

Thus $x_0 = \bar{x}$, and $E_{\delta} \to x_0$.

Now we are able to formulate and prove the main result.

THEOREM 8. A weak continuous linear operator A from a locally convex space $X \equiv (X, p_{\gamma}, \Gamma)$ satisfying the condition (A') into a locally convex separated space Y and having A^{-1} belongs to $\alpha[X, Y]$, if and only if each $A(p_{\gamma}^{-1}(0))$ is weakly closed in R(A).

PROOF: Necessity: Let A be a weak continuous linear operator from X into Y. Suppose that A^{-1} exists and $A \in \alpha[X,Y]$. We show that each $A(p_{\gamma}^{-1}(0))$ is weakly closed in R(A). In fact, if not, there exists $\gamma_0 \in \Gamma$ such that $A(p_{\gamma}^{-1}(0))$ is not weak closed in R(A). We want to construct a problem $\alpha[X,Y,A,x_0,\{V_{\delta}(y_0)\}]$ so that a discrepancy method does not stabilize it. This, of course, contradicts $A \in \alpha[X,Y]$.

Let $\{V_{\delta}(0)\}$ be a filter base of neighbourhoods of the origin in Y such that each $V_{\delta}(0)$ is convex closed in Y. Since Y is separated, $X_{(T)}$ is also separated. Since $A(p_{\gamma}^{-1}(0))$ is not weakly closed in R(A), by Theorem 7 $X_{(T)}/p_{\gamma_0}^{-1}(0)$ is not separated. It follows that

(13)
$$\bigcap_{\delta} V_{\gamma_0}(U_{\delta}) \neq \{0\} ,$$

where $U_{\delta} = A^{-1}(V_{\delta}(0))$, and $V(x) = (V_{\gamma}(x))$ is the isomorphism in Theorem 1.

On the other hand, we have $V_{\gamma_0} = pr_{\gamma_0} \circ V$. Therefore there exists an element $y^{\gamma_0} \neq 0$, $y^{\gamma_0} \in X_{\gamma_0}$ such that

$$y^{\gamma_0} \in \bigcap_{\delta} pr_{\gamma_0} \circ V(U_{\delta})$$

We choose an element $(y^{\gamma}) \in \prod_{\gamma \in \Gamma} X_{\gamma}$ such that

$$(14) pr_{\gamma_0}[(y^{\gamma})] = -y^{\gamma_0}.$$

Let $x_0 = V^{-1}((y^{\gamma}))$, and consider the problem $\alpha[X, Y, A, x_0, \{V_{\delta}(0) + Ax_0\}]$. Since $A \in \alpha[X, Y]$, a discrepancy method stabilizes the problem. Therefore the sequence of the approximate solutions x_{δ} of (1) established by a discrepancy method converges to x_0

$$(15) x_{\delta} \longrightarrow x_{0} .$$

On the other hand, we have

(16)
$$||pr_{\gamma_0} \circ V(x_\delta)|| = \inf_{x_{\gamma_0} \in V_{\gamma_0}(U_\delta) - y^{\gamma_0}} ||x_{\gamma_0}|| \le ||y^{\gamma_0} - y^{\gamma_0}|| = 0 ,$$

(17)
$$||pr_{\gamma_0} \circ V(x_0)|| = ||y^{\gamma_0}|| > 0.$$

From (16) and (17) it follows that $x_{\delta} \not\to x_0$. This contradicts (15). Thus $A(p_{\gamma}^{-1}(0))$ is weakly closed in R(A).

Sufficiency: Suppose that $A: X \to Y$ is weakly continuous linear such that A^{-1} exists and every $A(p_{\gamma}^{-1}(0))$ is weakly closed in R(A). We show that $A \in \alpha[X, Y]$. We assume that $A \notin \alpha[X, Y]$. There exists a problem $\alpha[X, Y, A, x_0, \{V_{\delta}(y_0)\}]$ such that it is not stabilized by a discrepancy method. Since X is an (A')-space, we have $\gamma_0 \in \Gamma$ and a subsequence $\{x_{\delta_n}\}$ of the approximate solutions $\{x_{\delta}\}$ (established by a discrepancy method) such that

$$||pr_{\gamma_0} \circ V(x_{\delta_n}) - pr_{\gamma_0} \circ V(x_0)|| \ge \varepsilon > 0,$$

where ε is a fixed real number.

Let us consider an operator $M_{\gamma_0}: X_{\gamma_0} \to Y$ defined by

$$M_{\gamma_0} = A \circ V^{-1} \circ j_{\gamma_0} ,$$

where j_{γ_0} is an inclusion mapping from X_{γ_0} into $\prod_{\gamma \in \Gamma} X_{\gamma}$, and V is the isomorphism of Theorem 1.

It is clear that the operator M_{γ_0} is a weakly continuous linear one to one mapping from X_{γ_0} into Y.

In $R(M_{\gamma_0})$ we consider the following family of subsets

$$F_{\delta_n}^{\gamma_0} = M_{\gamma_0} \circ V_{\gamma_0}(U_{\delta_n}) ,$$

where $U_{\delta_n} = \{x \in X : Ax \in V_{\delta_n} - Ax_0\}.$

By [4] there exists a topology (T_{γ_0}) in $R(M_{\gamma_0})$ such that $R(M_{\gamma_0})$ together with (T_{γ_0}) becomes a locally convex space and $\{F_{\delta_n}^{\gamma_0}\}$ becomes a filter base of neighbourhoods of the origin in $R(M_{\gamma_0})$. We denote it by $R(M_{\gamma_0})_{(T_{\gamma_0})}$.

As a mapping from X_{γ_0} onto $R(M_{\gamma_0})_{(T_{\gamma_0})}$, M_{γ_0} is linear continuous. Hence it is also weakly continuous.

Put $h_0 = M_{\gamma_0} \circ V_{\gamma_0}(x_0)$ and $F_{\delta_n}^{\gamma_0}(h_0) = h_0 + F_{\delta_n}^{\gamma_0}$. It follows that $h_0 \in R(M_{\gamma_0})_{(T_{\gamma_0})}$. It is not difficult to show that $\{F_{\delta_n}^{\gamma_0}(h_0)\}$ is a filter base of neighbourhoods of h_0 in the space $R(M_{\gamma_0})_{(T_{\gamma_0})}$. Therefore it is also a filter base of weak neighbourhoods of h_0 in $R(M_{\gamma_0})_{(T_{\gamma_0})}$.

We consider the ball $B^{\gamma}(x_0)$ in X_{γ_0} defined by

$$B^{\gamma_0}(x_0) = \{ x \in X_{\gamma_0} : ||x|| \le ||V_{\gamma_0}(x_0)|| \} .$$

Since X_{γ_0} is reflexive, $B^{\gamma_0}(x_0)$ is weakly compact in X_{γ_0} . Put $E_{\delta_n}^{\gamma_0} = B^{\gamma_0}(x_0) \cap M_{\gamma_0}^{-1}[F_{\delta_n}^{\gamma_0}(h_0)]$. It is clear that $V_{\gamma_0}(x_0) \in E_{\delta_n}^{\gamma_0}$. Since M_{γ_0} is weakly continuous and $\{F_{\delta_n}^{\gamma_0}(h_0)\}$ is a filter base of weak neighbourhoods of h_0 , by Lemma 2 it follows that $\{E_{\delta_n}^{\gamma_0}\}$ is a weakly convergent filter base of $V_{\gamma_0}(x_0)$.

It is not difficult to show that

$$\Omega_{\delta_n}^{\gamma_0} \cap B^{\gamma_0}(x_0) \subset E_{\delta_n}^{\gamma_0}$$
,

where $\Omega_{\delta_n}^{\gamma_0} = V_{\gamma_0}[A^{-1}(V_{\delta_n})].$

Since $pr_{\gamma_0} \circ V(x_{\delta_n}) \in \Omega_{\delta_n}^{\gamma_0} \cap B^{\gamma_0}(x_0)$, we have $pr_{\gamma_0} \circ V(x_{\delta_n}) \in E_{\delta_n}^{\gamma_0}$.

By the Banach-Steinhaus theorem, it follows that

(19)
$$||pr_{\gamma_0} \circ V(x_0)|| \leq \underline{\lim}_k ||pr_{\gamma_0} \circ V(x_{\delta_{n_k}})||.$$

On the other hand, we have

$$||pr_{\gamma_0} \circ V(x_{\delta_{n_k}})|| \le ||pr_{\gamma_0} \circ V(x_0)||$$
 for all k .

Hence

(20)
$$\overline{\lim_{k}}||pr_{\gamma_0}\circ V(x_{\delta_{n_k}})||\leq ||pr_{\gamma_0}\circ V(x_0)||.$$

From (19) and (20) it follows that

$$\lim_k ||pr_{\gamma_0} \circ V(x_{\delta_{n_k}})|| = ||pr_{\gamma_0} \circ V(x_0)||.$$

Since X_{γ_0} is an *E*-space, we have

$$\lim_{k} pr_{\gamma_0} \circ V(x_{\delta_{n_k}}) = pr_{\gamma_0} \circ V(x_0) .$$

This equality contradicts (18). Thus $x_{\delta} \to x_0$.

We end the paper by giving an example to show the existence of an operator $A \in \alpha[X, Y]$.

EXAMPLE: Let $X \equiv Y$ be the product of Hilbert spaces $X_{\gamma}, \ \gamma \in \Gamma$, and $A_{\gamma}: X_{\gamma} \to X_{\gamma}$ weak continuous linear one to one operators. The operator $A: X \to X$ is defined by

$$A[(x_{\gamma})] = (A_{\gamma}(x_{\gamma})) , (x_{\gamma}) \in \prod_{\gamma \in \Gamma} X_{\gamma} .$$

It is not difficult to show that $A \in \alpha[X, Y]$.

ACKNOWLEDGEMENT: The author thanks Professor Nguyen Minh Chuong very much for suggesting the problems treated in this paper.

REFERENCES

- [1] V.P. Tanana, The approximate solution of the first kind operator equation and geometric properties of Banach spaces, Izv. Vuzov. Mathematics, 7, 1971, 81-93 (in Russian).
- [2] V.P. Tanana, The approximate solution of the first kind operator equation in locally convex spaces, Izv. Vuzov. Mathematics, 9, 1973, 70-77 (in Russian).
- [3] V.K. Ivanov, Ill-posed problem in topological spaces, Sibir. Math. J. 10 (1969), 1065-1074 (in Russian).
- [4] A.P. Robertson and W. Robertson, Topological vector spaces, Cambridge, 1964.
- [5] N. Bourbaki, Eléments de mathématiques. Livre V. Esapces vectoriels topologiques, Hermann-Paris, 1959 (in Russian).
- [6] N. Bourbaki, Eléments de mathématiques. Livre III. Topologie générale, Hermann-Paris, 1968 (in Russian).

INSTITUTE OF MATHEMATICS, P.O. BOX 631, BO HO, HANOI, VIETNAM