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THE APPROXIMATE SOLUTION OF THE FIRST
KIND OPERATOR EQUATION IN LOCALLY CONVEX
.SPACES BY DISCREPANCY METHOD

NGUYEN VAN KINH
1. Introduction.

We consider the first kind operator equation
Q) © Ae=y,zeX,pweRA)CY,

where X is a locaily convex space, Y is a separated locally convex space, and
A is a linear operator from X into Y which is weakly continuous and such

that there exists the -"inv'ersve operator A™! defined on the range R(A) of A.

Given a filter base of Yo cdnsisting of closed convex subsets {V5}, we

~want to establish approximate solutions z5 of equation (1) such that
Xy — To ,

where z¢ is an exact solution of (1), i.e. zg = A yp.

For given X,Y, A,yo, we associate each filter base {Vs} with the se-
quence of the a,ﬁproxima,te solutions {z5} and denote the above problem by
alX,Y, 4,20, {Vs(yo)}]. If the approximate solutions z4 are established by a
discrepancy method and x5 — o, then we say that this discrepancy method

stabilizes the problem.

In this paper we give conditions under which a discrepancy method
stabilizes any problem a[X, Y, 4, 2o, {Vs(y0)}).
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REMARK: : The casé where the space X satisfles condition (4),Y is
a- ‘metrizable locally convex space, and the operatox A is linear contmuous

has been exammed in [2]

2. Preliminaries

Assume that the topology of X is given by a family of senlinorms
{P+}.er- We shall write X = (X,p,,T). |

Let us first recall some definitions and theorems which will be needed

in the next section.

DEFINITION 1. A filter F in X is called a Cauchy filter if for any
neighbourhood U of the origin of X there exists an element A € F such that

—y €U forall ':i:,y_EA.

If each Cauchy filter in X is convergent, then X is called complete.
LEMMA 1 (SEE [4]). Each Iocaﬂy convex space X = (X,p.,T) has
the following properhes
a) X is isomorphic to a subspace of the product H X., , where each .
. . : . ~€ET '
X, is'a normed space defined by X, = X/p;*(0).
A b) The isomorphism can be defined by mapping
Vi) = (Vfe), v € X ,
where each V., is a canomcai mappmg from X onto X,.

C)p‘n’ oV =V, for all ¥ ET,

where pr.,, is a. canomcal projection from [] X on to X
133

o]




- LEMMA 2 (SEE [4D. Th_é quotient space X/M is separated if and
only if M is a closed subspace in X, A
_ LeMMA 3 (SEE [4,5]). The prod.u-ét of weak topologies is a weak
~ topology. ' ' ' )

LEMMA 4 (SEE [4,5]). Suppose that X is a product of locally convex
spaces X. Then X is comp]ete if and only if each X, is complete.

DEFINITION 2. 1We say that the Iocaﬂy convex space X (X ,p.{,,I‘)
satisfies the condition (A’) if :

a) The mapping V in Lemma 1 is an Jsomorphwm from X onto [} .X
~er

. b) X is weak complete.

¢) For each net {2,} C X withz, 2 o and p.,(a:w) et p,],(n,) Vy €

I, we have z, — .

d) If py(z1 + z9) = py{T1) -}—p.,(:rg) for v € I‘ then there exists a
number Ay such that p{z — A7$2) =
REMARK-

1. It is cleaf that if X = H X Where each X is a Hilber‘t space,
: ' - y€r : ;
then the space X satlsﬁes condition (4").

2. Any space sa,txsfymg condltion (A’) is separated.

COROLLARY 5§ (CF [1]). I X is a IocaHy convex space sat:sfymg
condition (A’), then each Xy = X/ p,‘,1 (O)JS an E-space.

Proor: It follows from Lemmas 1, 3, 4.



3. Discrepancy method

DEFINITION 3. Supposg that & C H7EP X, where each X, is a
normed space. An element x € § is said to realize a minimum of Q if it

satisfies the following condition :

(2) pro()ll = infllpry()I] forall yeT .
- vER

Let us consider the problem «[X,Y, A, o, {Vs(yo)}]. Set Q=

Vi[A™ (V)] and Q5 = [] Q7. The approximate solution of the equation
ver
(1) depending on Vs (established by a discrepancy method) is an element

zs € X such that x5 = V=1(ys), where ys realizes a minimum of Qs. If

&g — g, we say that the discrepancy method stabilizes the problem.

Now we discuss the existence of approxinia,te solutions of the equation

(1) by a discrepancy method.

THEOREM 6. If X is a locally convex space satxsfymfr condition {. A )
then there exists a unique approximate solution of the equation (1) for each

Vs corresponding to the problem o[X,Y, A, o, {Vs( (yo)}]-

PROOF: For each v € T, put

pY = inf |lpro(y)l| .
) ¥ER,

Then there exists a sequence {y;} C €5 such that

(3) Il — 1" as k— oo,

where y! = pro(y).




Since _X., is an E- space and by (3), we ma,y assume mthout loss of

_ genera,hty that-
@ L WY eX,.

'_We consider the element ys = (ys) We shall prove that ys realizes a mini-
: 'mumof Qs. Il_1deecl-,. if Y ¢ Qs, then there exists ~e € I" such that

(%) : o Y ¢ QP .

Since the mapping V.,,o = pr, oV is hnear contmuous open from X onto Xy
the set Q° = Voo [A71(V5)] has at least one ‘interior point, i.e. ing (27°) # 0.
By the Hahn— Banach theorem there exists a hnear contlnuous functional
f e Xz such that

(6) | f@)>1 and f(y'l‘“) < 1 forall y”* e Q).
Thls is a corltradlcmon to (4) Thus |
(1) | | Ny y5€95.~

From (7) 1t follows that

@ sl eea yer,

| From (4) and by the Banach—Steznhaus theorem, it follows that
(9) IS il =

Frorii (8) and (9), it folloWs that

sm) . lwdll=w" forall yeT.

From (7) and (10) it follows that yg is a-minimum of Q.s

e



The uniqueneés of the minimum of Q5 follows from the fact that Q,

is convex in’ [] X, and each X, is an E-space.
el

It follows that the approximate solution ¢ of (1) unzquely exxsts and
is defined by .
3=V (ys) -

DEFINITION 4. We say that the weak contmuous Iinear operator A
X - Y, having A~', belongs to the set ofX,Y] if and only if a discrepancy
‘method stabilizes every problem a[X,Y, A, z¢, {Vs(yo)}].

Our purpose is to find conditions for 4 to be in a[X,Y].
Consider the problem a[X,Y, A4, zo, {Vs{(10)}]. Put

Us.= {x € X : Az € Vs(y0) — Az} .

By [4] there exists a topblogy (T) in X such thét_ X together with (T) is
a'*loca:lly convex space. Moreover, the family {Us} becomes a filter base of

;féighbourhbods of the origin in X. We denote the space by X(7).

Al -

THEOREM 7. The quotient space X /p=1(0) is separated if and only
if every set A(p;(0)) is weakly closed in R(A).

PROOF: Necesgi-ty : Suppose th'gmt' X(1) /p=1(0) is separated. By Theo-
rem 2, p51(0) is a closed subset in X(1). On the other hand, p71(0) is convex
in X(ry. Hence p>1(0) is a weakly closed subset in X(7y. It is not difficult’
to show that the operator A ~1: R(A) — X(r) is continuous. Hence it is

weakly continuous (see [4}) It follows that A{p.1(0)) is weakly closed in
R(A).

Sufficiency : Since the operator A is one to one, we have

W AT O =50




It is evident that A is continuous in the topology (T). Hence it is weakly

continuois.

From-(ll) and by the weak continuity of ‘the operator A, it follows
that p>*(0)is weakly closed in X (7. Hence it is closed in X ¢r)- By Theorem
2 it follows that X (T) /97 (0) 1s separated.

The following lemmas will be used in the proof of Theorem 8.

LEMMA 1 (SEE [3]). Suppose that X is a compact space and {Es} is
a filter in X (or a filter base). If {Eg} has a-unique limit point ¢, then {EE}

converges to x.

LEMMA 2. Suppose tha.t. the mapping A : X — Y has a closed graph
and for a fixed point yy € Y there exists a unique element o € X such that
' Aa:g = Yo, where X is a compact space and Y is a topological space. If {Vs}
is a filter of nnghbouzhoods of yg, then {E5} is a convergent filter base of
- %o, where Es = A™1(V;). '

PROOF: It is clear that {E;} is a filter base in X. Siﬁce X isa
compact space, {Fs} has a limit point Z (see [3]). We shall show that z
coincides with 2o, hence by Lemina 1, Es — xq. In fact, by definition there
exists a filter {@Q,} in X sﬁch that it exceeds {E&} and converges to Z. (see
[6]). Therefore { A(Q-)} exceeds {V;}. It follows that {A(Q,)} also converges -

.to yo. We obtain

(1) @y-F and AQ) .
" Since the graph of A is closed, (12) implies

Thus xg = Z, and E; —)_-:t:g;



Now we are able to formulate and prove the main result.

THEOREM 8. A weak continuous linear ope_fator A from a locally con-

" vex space X = (X, p,,T') satisfying the condition (A’ ) into a locally convex

separated space Y and havmg Al belongs to a[X Y] if and on]y if each
A(p51(0)) is Weakly closed in R(A) :

PROOF: 'Necess1ty : Let A be a weak continuous linear operator from
X into Y . Suppose that A1 exists and A € a[X,Y]. We show that each
| A(pZY’I(O)) is weakly closed in R(A). In fact, if not, there exists v € I' such
that A(p3*(0)) is not weak closed in R{A). Wé_‘want to construct a problem
atX., Y, A, 26,{Vs(y0)}] so that a discrepancy method does not stabilize it.
This, of course, contradicts 4 € afX,Y].

Let {V5(0)} be a filter base of neighbourhoods of therorigin in Y such
that each V3(0) is convex closed in Y. Since Y is separated, Xy is also
separated. Since A(ps 1(0)) is not weakly closed in R(A), by Theorem 7
X7y/p51(0) is not separated. It follows that ' '

(13) r1n4m)¢w},

where Us = (V,g(())) and Viz) = (W, (a:)) is thc 1somorph15m in.
Theorem 1.

_ On the other hand, we have V,, = pry, o V.. Therefore there exists an
element y™ # 0, y™ € X, such that '

y™ € ﬂp% o V(Us)

We choose an element (y7) € [] X such that
+&€r _

(19 Prooly™)] = —y™



Lotz =¥ ;1((y'7)), and consider the problem ofX, ¥, 4, 7o, {V5(0) + Azg}].
- Since 4 € afX, Y], a discrepancy method stabilizes the problem. There- :
fore the sequence of the approximate solutions s of ( (1) established by a

dlscrepa.ncy method converges to zg
(15) : _ T — T -
On the other hand, we have

16)  prsooVizall =, it lonll < ™ ~ g7l =0,

(1) lorsn o Vo)l = lly™I[ > 0.

From (16) and (17) it follows that z5 4 . Thxs contradlcts (15). Thus
A(p51(0)) is weakly closed in R(A).

Sufficiency : Suppose that 4 : X — ¥ is weakly continuous linear
such that A™' exists and every A(p;*(0)) is weakly closed in R(A). We
- show that A € o[X,Y]. We assume that A ¢ a[X, Y], There exists a problem
a[X,Y, A, zo, {Vs(yo)}] such that it is not stabilized by a discrepancy method.
Since X is an (4')-space, we have 7 € T and a subsequence {zs,} of the

approximate solutions {z5} (established by a diséfep‘an'(:y method) such that
(18) - llprag © V(25,) = 135 0 V@)l 2 £ > 0,
where 8 ié a fixed real number.
Let us consider an operator M., :'X.m — Y defined by
M,, ——-AoV"loj.m ,

where j., is an inclusion mapping from X.m into J] X,, and V is the iso-
wi=t}
morphism of Theorem 1.



It is clear that the operator M, isa \&eakIyA g:,ont_inuous. linesr one to

one mapping from X, into. Y. )
In R(M,,) we consider the following fa.mil& of subsets
CFP = My o Vi (Us,) » |
where Us, = {z € X : Az € Vs, — Axg}.

By [4] _there exists a topology (7,) in R(M.,,) such that R(M.,)
together with (T,,) becomes a locally convex space and {F, 5.} becomes a
filter base of neighbourhoods of the origin in R(Iv o). We denote it by

'R(M‘!o )(Tw

As a mapping from X, onto R(ﬂf“ro)('r, y» Moy, is linear continuous.

Hence it is also weakly continuous.

Put ho = My, 0 Vig(wo) and Fj(ho) = ho + Fj°. It follows that
ko € R(My, ), .- It is not difficult to show that {F7°(h0)} is a filter base of
‘nexghbourhoods of hg in the space R(M v )z, " Therefore it is also a filter
base of weak neighbourhoods of kg in R(M.,, )(T"fo

We consider the ball BY(2¢) in X.,, defined by
Br(wo) = {z € X t ||zl < [[Vao(zo)]l} -

Since X, is reflexive, BY(z) is weakly conipact im X,. Put Eg: =
B (zg) N M [F(ho)]. Tt is clear that Vi, (ze) € EJ°. Since M,, is weakly
* continuous and {F5 (ho)} is a filter base of weak nelghbourhoods of ho, by '
Lemma 2 it follows that {E‘“’} 1s a weakly convergent filter base of V., (10)

It is hot'difﬁcult to show that.
Qgﬁ NB™(z4) C E;": ,

where Q7 =V, [A™1(V;,)].
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Since pra, 0 V(mqn) € Q§° N B™(xq), we have pry, o V{#s,) € E;’:

By the Banach—Steinhaus theorem, it follows that
(19) — lprae o Vo)l < bimlipry, o Vize, Il -
01_1 the other-hand, we have

730 0 Vs, I S llpre 0 Vizo)l| for all k.
Hence o
(20) - Bllprse o Vies, )l < lpray o V(zo)ll
From (19) and (20) it follows that
tim|lprao o V(zs, Il = llpry o V(o)l] .
Since X, is an E-space, we have
lim pra, o V(zs;, ) = prag 0 V(o) -

This equality contradicts (18). Thus x5 — zo.

We end the paper by giving an example to show the existence of an
‘operator A € alX,Y).

EXAMPLE: Let X =Y be the product of Hilbert spaces X, -y € T,
and A, : X, — X, weak continuous linear one to one operators.. The
operator A : X — X is defined by

Al(zy)] = (Ay(24)) , (zy) € HX'r .

~ve€l
It is not difficult to show that A € afX,Y].
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