or

A REMARK ON LIMITS FOR GAMES WHICH BECOME FAIRER WITH TIME

DINH QUANG LUU

1. INTRODUCTION

Let (Ω, \mathcal{A}, P) be a probability space and (\mathcal{A}_n) be an increasing sequence of subo-fields of \mathcal{A} . A sequence (X_n) in L_R^1 , always assumed to be adapted to (\mathcal{A}_n) , is said to be a mil [3] or a game which becomes fairer with time [1], respectively if for every $\varepsilon > 0$ there exists p such that for all $n \ge m \ge p$, we have

$$\begin{split} P\left(\sup \parallel X_q(n) - X_q \parallel \geq \varepsilon\right) &\leq \varepsilon, \\ p &\leq q \leq n \\ P\left(\parallel X_m(n) - X_m \parallel \leq \varepsilon\right) \geqslant \varepsilon, \text{ respectively,} \end{split}$$

Here X_m (n) denotes the \mathcal{A}_m — conditional expectation of X_n . Using the structure results of Talagrand [3], we have recently proved in ([2], Theorem 2.3) the following statement:

THEOREM 1. Let (X_n) be an L^1 — bounded real-valued game which becomes fairer with time. Then (X_n) converges in probability to some $X \in L^1_R$.

To prove the theorem we showed in [2] that for every subsequence (m_k) of N there exists a subsequence (n_k) of (m_k) such that the subsequence (X_{n_k}) is an L^1 — bounded mil which must converge a. s., by virtue of Theorem 4 [3]. However, there we did not mention that all these chosen mils (X_{n_k}) really converge a.s. to the same limit. Thus, the aim of this note is to fill this gap and to give a complete proof of the theorem.

2. PROOF OF THEOREM 1.

First, let (X_n) be a game which becomes fairer with time. Then by definition there exists an increasing subsequence (l_k) of N such that for all $h \ge m \ge l_k$ we have

$$P(\|X_m(h) - X_m\| \ge 2-k) \le 2-k.$$

Now suppose that (X_n) is L^1 -bounded. To prove Theorem 1 it is sufficient to show that if (m_k) is a subsequence of N then there exists a subsequence (n_k) of (m_k) such that both subsequences (X_{l_k}) and (X_{n_k}) are mils which converge a.s. and to the same limit. To see this let us consider an arbitrary subsequence (m_k) of N. Then one can construct a subsequence (n_k) of (m_k) such that, for every k, $n_k \geq l_k$. Now let (s_k) be the superimposed sequence of (l_k) with (n_k) . Then for any h, $k \in N$ with $h \geqslant l_k$, the above inequality yields

$$\begin{split} &P(\sup_{l_k \leq s_q \leq h} \|X_s(h) - X_s\| \geq 2^{-k+2}) \leq P(\sup_{l_k \leq s_q \leq h} \|X_s(h) - X_s\| \geq 2^{-k}) \\ &\leq P(\sup_{l_k \leq l_q \leq h} \|X_l(h) - X_l\| \geq 2^{-k}) + P(\sup_{l_k \geq n_q \leq h} \|X_n(h) - X_n\| \geq 2^{-k}) \\ &\leq P(\|X_l(h) - X_l\| \geq 2^{-k}) + P(\sup_{l_k \geq n_q \leq h} \|X_n(h) - X_n\| \geq 2^{-k}) \\ &\leq \sum_{l_k \leq l_q \leq h} P(\|X_l(h) - X_l\| \geq 2^{-q}) + \sum_{l_k \leq n_q \leq h} P(\|X_n(h) - X_n\| \geq 2^{-q}) \\ &\leq \sum_{l_k \leq l_q \leq h} P(\|X_l(h) - X_l\| \geq 2^{-q}) + \sum_{l_k \leq n_q \leq h} P(\|X_n(h) - X_n\| \geq 2^{-q}) \\ &\leq \sum_{l_k \leq l_q \leq h} P(\|X_l(h) - X_l\| \geq 2^{-q}) + \sum_{l_k \leq n_q \leq h} P(\|X_n(h) - X_n\| \geq 2^{-q}) \\ &\leq \sum_{l_k \leq l_q \leq h} P(\|X_l(h) - X_l\| \geq 2^{-q}) + \sum_{l_k \leq n_q \leq h} P(\|X_n(h) - X_n\| \geq 2^{-q}) \\ &\leq \sum_{l_k \leq l_q \leq h} P(\|X_l(h) - X_l\| \geq 2^{-q}) + \sum_{l_k \leq n_q \leq h} P(\|X_n(h) - X_n\| \geq 2^{-q}) \\ &\leq \sum_{l_k \leq l_q \leq h} P(\|X_l(h) - X_l\| \geq 2^{-q}) + \sum_{l_k \leq n_q \leq h} P(\|X_n(h) - X_n\| \geq 2^{-q}) \\ &\leq \sum_{l_k \leq l_q \leq h} P(\|X_l(h) - X_l\| \geq 2^{-q}) + \sum_{l_k \leq n_q \leq h} P(\|X_l(h) - X_l\| \geq 2^{-q}) \\ &\leq \sum_{l_k \leq l_q \leq h} P(\|X_l(h) - X_l\| \geq 2^{-q}) + \sum_{l_k \leq n_q \leq h} P(\|X_l(h) - X_l\| \geq 2^{-q}) \\ &\leq \sum_{l_k \leq l_q \leq h} P(\|X_l(h) - X_l\| \geq 2^{-q}) + \sum_{l_k \leq n_q \leq h} P(\|X_l(h) - X_l\| \geq 2^{-q}) \\ &\leq \sum_{l_k \leq l_q \leq h} P(\|X_l(h) - X_l\| \geq 2^{-q}) + \sum_{l_k \leq n_q \leq h} P(\|X_l(h) - X_l\| \geq 2^{-q}) \\ &\leq \sum_{l_k \leq l_q \leq h} P(\|X_l(h) - X_l\| \geq 2^{-q}) + \sum_{l_k \leq n_q \leq h} P(\|X_l(h) - X_l\| \geq 2^{-q}) \\ &\leq \sum_{l_k \leq l_q \leq h} P(\|X_l(h) - X_l\| \geq 2^{-q}) + \sum_{l_k \leq n_q \leq h} P(\|X_l(h) - X_l\| \geq 2^{-q}) \\ &\leq \sum_{l_k \leq l_q \leq h} P(\|X_l(h) - X_l\| \geq 2^{-q}) + \sum_{l_k \leq n_q \leq h} P(\|X_l(h) - X_l\| \geq 2^{-q}) \\ &\leq \sum_{l_k \leq l_q \leq h} P(\|X_l(h) - X_l\| \geq 2^{-q}) + \sum_{l_k \leq n_q \leq h} P(\|X_l(h) - X_l\| \geq 2^{-q}) \\ &\leq \sum_{l_k \leq l_q \leq h} P(\|X_l(h) - X_l\| \geq 2^{-q}) + \sum_{l_k \leq h} P(\|X_l(h) - X_l\| \geq 2^{-q}) \\ &\leq \sum_{l_k \leq h} P(\|X_l(h) - X_l\| \geq 2^{-q}) + \sum_{l_k \leq h} P(\|X_l(h) - X_l\| \geq 2^{-q}) \\ &\leq \sum_{l_k \leq h} P(\|X_l(h) - X_l\| \geq 2^{-q}) + \sum_{l_k \leq h} P(\|X_l(h) - X_l\| \geq 2^{-q}) \\ &\leq \sum_{l_k \leq h} P(\|X_l(h) - X_l\| \geq 2^{-q}) + \sum_{l_k \leq h} P(\|X_l(h) - X_l\| \geq 2^{-q}) \\ &\leq \sum_{l_k \leq h} P(\|X_l(h) - X_l\| \geq 2^{-q}) + \sum_{l_k \leq h} P(\|X_l(h)$$

Thus in particular, by taking the only h from each of the sequences (l_k) , (n_k) and (s_k) , we see that each of the sequences (X_{l_k}) , (X_{n_k}) and (X_{s_k}) is itself an L^1 —bounded mil in the sense of Talagrand [3]. Therefore by Theorem 4 of Talagrand [3], the subsequences (X_{l_k}) , (X_{n_k}) and (X_{s_k}) converge a.s. and obviously to the same limit $X \in L^1_R$. This completes the proof of the theorem.

For further related results, see [2].

REFERÈNCES

- [1] L.H. Blake, A generalization of martingales and consequent convergence theorems, Pacific J. Math. 35 (1970), 279 283.
- [2] Dinh Quang Luu, Decompositions and limits for martingale-like sequences in Banach spaces, Acta Math. Victnam 1 (1988), 75 80.
- [3] M. Talagrand, Some structure results for martingales in the limit and pramarts. Ann. Probability 13(1985), 1192-1203.

Received April 20, 1989

INSTITUTE OF MATHEMATICS P.O. BOX 631, BO HO HANOI, VIETNAM