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LOCAL BIFURCATION FROM CHARACTERISTIC VALUES WITH
- FINITE MULTIPLICITY AND APPLICATIONS TO PARTIAL
DIFFERENTIAL EQUATIONS®

N.X. TAN

1. INT40DUCTION

Throughout this paper by X*, ¥* we denote the duals of Banach spaces X and
Y, respectively. We use the same symbols j}. ] and {, ) to denote the norms and
the pairings between elements of X, X* and Y, Y*, respectively. We consider
equations of the form - '

Fd, ) =0, ,v)er XD, (D)
where Dis the closure of a neighbourhood D of the originin X, and FF: A X DV
is a mapping with F(A, 0) = Ofor all A € A. A point (4, 0) is called a trivial
solution of (1). A point (%, 0) si called a bifurcation point of (1) if for any real
number 8, & = 0 therc cxists a solution (A, ») € A x D with | A — X | A =5 and
D<lo} <z, where}.| y denoles the restricted norm to A of a normed space

containning A . The purpose of this paper is to study the existence of bifurca-
tion points of equations of the form (1) with-

F(x, v) = T{(v) — L(}, v) — M(l, v), which can be rewritten as
T(w) = L(x,v) + M}, v), (A, v} € A X D, (2)

where T is a linear continuous mapping from X into Y, L is a continuous
mapging from A X X'into -Y such that for any fixed X € A, L(A,.) is'a linear
mapping, and M is a nonlinear mapping from A X D into Y, M(k, )= 0 for all

A € A. In what follows, R" stands for the real n- dimensional Euclidean space.

‘ * This research was supported by the Alexander von Humbeldt Foundation of the
Federal Republic of Germany at the Mathematical Insfitute of the University of Cologme.
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It is customary to simplify the notation for Rl by dfopping the superseript,
R1 R. Weuse also the same symbol | . | to denole the norms inR” forn =1, 2,..

Next, let % be a characteristic value of the pair (T, L), (i. €., Tw) = L(}, v) for
some » ¢ X, v 50) such that T — ZL(1,.) is a Fredholm mapping with nullity p
and index s, p > s > 0, and | M (A, v)|=O(Jjv|)as o} — 0. Further, let

{v1,.., vP} and {y7,..., 19 } 9= p — s, be bases of the null spaces

Ker (T — L(3,.)) and Ker (T—L(\,)*, respectively, with (T — L(},.))* den'oti{:g
the adjoint mapping of T — L (A,.). Using the Hahn-Banach Theorem, we can
find p functionals 1,.., P on X and gelements z!,.., 2 ir Y such that
(o, 4) 3 = 8o hj =1, p, 20d MRy = & . m, n = L., q. Here

mn
61 i 5mn denote the Kronecker delta. Setting

== [01 EALEY Up ]! YO = [21 3ty zq ]5

X, ={x € X /(x4 )=0,i=1..,p}

L= ey (m Y y=0j =10} |
one caneasﬂ} verify thatY-__X EBX andY_Y @Y where [w ey ]

denotes the space snanned by {w o ,wm}

Further, we assume M = H - K with H, K ¢ CI(A x D, Y) and make the
following hypothesxs on H

HYPOTHESIS 1. There is a natural number a > 2 such that -
P H ()\ w)__t“PYH (l u) holds f01 allte R, (A, v)E A X D

here P, is the plOJectOI‘ from Y into Y

Next we defme thc n-a\ppmtT 04 RP. Hq a4 (541',.--,"544) by

“ (R

- L _opes : o
x. vy — H(A, = z; vl), pi ) i =1,..,q, (3) -

J J=1

J 1

:E:'(xlg ey T ‘)E RP,

In the case when L is. dlfferentlable we defme the mapping B: A > RP - RY .

iy @y — BT £ w00) 913, i L, ()
j=1

-
I I
Lasd -

B, @) = <DA L(h,
A& 4 2= (T v, ) € RP:
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here [, demotes the partial Fréchet derivative’ with respect to A e A. Under

suitable conditions on L and K, we have proved that (X, 0) is a bifurcation
point of Equetion (2) provided that either

Y/ . :
A(x)=0 &)

and’

o, —_—
Hank (5-’— (Z) ) = q, (6)
T i, k= 1yeng
for somez € R, T 0, or ij/

B(F,x)=0 @

and
-Rank( i (E,T,c)) ={, ()

axk i, B = lyeng

for some (B , x )€ A x RP? , T#0. Moreover, we can describe the parameter
families of nontrivial solutions in a neighbourhood of (%, 0) ina an alytical form
(see [5, Theorem 6 and Theorem 17, respectively]).

In Section 2 we shall apply these results to consider bifurcation poimts of
Equation (2) assuming that M =H 4+ K and the mapping A: RT — RY,
A= (Am A.q), defined by '

‘ . -— _ .o
A@y=(H(A » T x;00), pi), i=1..,4

i=1 :
T = (:‘c] -....,:r:q) e RT,

is a potential operator with potential h. Let 7l be a local relative extremum of
h on the unit aphere S%7in R?. Then under additional conditions on 7T, L, H
and K we shall prove that (A ,0) is a bifurcation point of Equation (2).
Moieover, we can describe the parametér families of nontrivial soluiions in a

neighbourhood of (%, 0) in an analytical form through = , h (zi) and o' T

(see Remark 14 below).

In Section 3 we shall apply the vesults obtained in Section 2 to consider
bifurcation points of the problem of small ammplitude free vibrations of a thin
vectangular plate and the boundary problem of nonlinear eiliptic differential
equations (see in [3]). For the first problem we s all show that if A is a characte-
ristic value of the linearized problem with multiplicity p, then there exist at
least 2p distinct parameter famil es of nontrivial solutions in a neighbourhood of
(* , 0). For the second problem under additional conditions we shall show that
there exist at least two distinct parameter families of nontrivial soluiions. In
addition, we can aloso describe these families in an analytical form.
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2. THE MAIN BESULTS

We begin this section with making the following hypotheses on the mappmgs
T, L, H and K. :

 HYPOTHESIS 2. (T (0 ), ¥)=1,1 = L,m, ¢ 20d (T (v7),9/)=0, j=2,.. ¢.
HYPOTBESIS 3. There isa real number b suchthata L (A, 1) = L(ab *. v)holds
for ail ae 0,1}, v €D,
HYPOTHESIS 4. (H (A, v1), w1} 32 0and { H (&, o), /) = ;0, ji=2,.q.
HYPOTHESIS 5-

[ == det ((H (X, 07), v )8, —(D, H(X ,v )01"11"))“ 3. q;éo

where Db denotes the partial Fréchet derivative with 1espec.l tov e D,

HYPOTHESIS 6-'s =% Py K (M/(1+4a% "), a) and o~ Py D K (i/(14a2"1)P wr)

tend to zero as « — 0 uniforaly in ve D, where ¢, b are taken from Hypotheses
1, 3, respectively.
THEOREM 7. Under Hy potheses 1 —6.(), 0) is a bifurcation pomi of Equation (2)

provzded that either 1) a is even or, 2) a is odd and (H (% , v?), v!) ) 0. Furiher-
more, in Case 2) there exist at feast iwo distinct parameler families of nontrivial

solutions in a neighbourhood of (A, 0). More precisely, in Case 1/ (in Case 24, for
¢ = + ) there are neighbourhoods I of zero in R, U (U®) of the point (33'1, 0..., 0)

- i e A 1 - - '
(@20, v ) in Remith 1 = 1) ((H (& ,0") v") ) 1D 4na @ = o 15
(’{? UI), 1p1 ) )1/(“_1)) V of Lhe origin in RP™ qg, and q {2q, respeclively) continuous
funstions x,: I X V.~ R with x 0, 0)_:::1 .z (0,00e.0) =0, j=2,..., ¢ (@, (@)
xq(g)) € U(x‘;: I xV— Ruwilh :cl_ O,..., 0y = 3;1, xj O, ) =0, j=2,.., q’ .
ixf"(y),---, mz @) € U%),i = 1,..., q, and a contintous mapping w (W) : I xV -X,
such that (& (), o)) ((A (=), 0% ())) with

A(a) = A/ (1 + aa—i)b

and

v{y) =3 o | v’ + E - ooy kyw @),
=1
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R q N
> ezl (e T axp” 0¥,
1 7 k=q+1 .

A

@) =

)

It

Y=, Ty g d ) € I X V, satisfies Equation (2), M«) — &, oY) (09(¥)) - 0

as e« - Ofor any Y =‘(m, Cppg oo a:p} el xXV; oYY (¥Y) # 0 for
Y = (e, xq+1""" a:p)‘e I XV with « 0, the family (A(«), (Y)) is called a
parameter family of nontrivial solutions of Equation (2)in a neighbourhood
of (&, 1)) ,

Proof. Since A T, L, H and K satisfy Hypotheses'l — 4,6 , it then follows
that they fulfil Hypotheses 1 and 2 of Theorem 6 in [5]. Further, we take

T = (51, 0,...,0) .in the case where a is even and T = (Eif vees 0) in the

case where a is odd and (H(X, v1), $*) > 0 wilh 7, and x°asabove.Byasimple

1
calculation we can ecasily verify that AF) = A@°%) = 0, E 2° = 0 and

a dA, @ dot 0cA,; (5 -
et ( x ) = de ( . T ))
axj i’.j-_-:la-.-, q ali by j=lyueey @

= (1 — @) ((H(T, v1), w1 )14 T 50,

"{vhér(_a I' is from Hypothesis 5. Thus, ¥ and x° satisfy Conditions (3) and (5) of
Theorem 6 in [5]. Therefore, to complete the proof of the theorem, it remains

to apply this theorem'to T (&° , respectively).

Remark 8. If in Theorem. 7 Hypotheses 2, 4 and 5 are replaced by
<mf> Wy=1 i = Lo ¢ (T K )9 = 0, k = L §, !

= q,

= Lo @ k # j, and CH (R 05, %) 5 0, (HEL0F), vk),w ) = 0,
J__l g, k=L, L1=q,kj and

det ( H(h, oF), pFy 8, —( (K, v")v" ) 40,

EJ"“I", 0 Is.]—r'lx
k=10 €, then there exist at least I (2[) distinct palameter families of nonirivial

solutions in a neighbourhood of (2, 0).

Moreover, we can also -describe these families in an analytical form as in
Theorem 7, remarking that the points (7, O,..., 0), Z;5..., 0) are replaced by
_.‘:Ek = {Op--u 0, _33—}{’ 0 senry 0) and _E_'kc = (0;---, 'Tk, 0,-.-, U), respectively, where

z, = 1/ (HE, vF), vy 7@
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and
7 = ol SQHG, oF), p*) 17D, k= 1, I (see the prrof in [5,
Remark 7)).

Next, we prove some results on the existence of bifurcation points of Equatlion
(2) involving potential operators. Let us first re¢all that an operator 4: X — X*is
taid to be a potential operator iff there exists 4 Gateauz différentiable functional
h: X — R such that fir(e) = A(w), i. e.,

lim 7 (h(z + tv) — h(u)) = (v, A(w))

f—o

for all #, v € Xi The functional h is said to be 2 poiential of A and is uniquely
determined by the requirernent 7(0) = 0. If A4 is a continuous potential operator
with potential h, then we have

B(n)=f(u, A(tn)) dt,

for all u € X, and A is continuous, Therefore, if in addition, 4 is an g-homo-
geneous operator, a = 0, then it follows

i
h(u) = =
(w) g

Further, let Q be a subset of RY and f: R? — R a function, A point 7 € &
is said to be a local relalive rhatimuin (minimum) of f on & i there is a neigh-
bourhood U of 'f,r"in R? such that f(z) = f(y) ( fl®) = fly), respectively) for all
zel N,

Now, let A be an a-homogeneous, a 2 2; ¢ontinuous potential operator with
potential f. In what follows, by [.] we denote the scalar prodict in RY and by

(u, A(n)),ueX,

S$9 the unit sphere in RY. Further, we put
E={ze 8%z is alocal relative extremum of h on 89, h(z) = 0} and
Ei={z e E] h(z) > 0}.
By | E],| Es |, we denote the number of elements in E, E., respectively. One
can easily verify that if a is even, then h is odd function and then | E | is even;
LEMMA 9. If A is ana-homogeneous, a > &, continuous poteniial operalor from
R inlo ilself with polential h and hix) £ 0 for some x € R?, then E =+ .
Proof. It follows {rom the continuity of h and the compactness of S that there
exist two points z1, 2% € §9 with h(z!) = math(m)’ and h(z?) = minqh (xy
: L= " T &S
Consequently, we obtain )
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| ‘_ [ = |
h"j-‘-—"—',"h—gi"_i.,f{"_‘__'_ . 1 —_
© (“r“) 4 [H [ (fllr-ll)}d.t (a+1y]xT[et? H(z) = 0
if h{z) > 0, and

h(zg)gh(%);g[i,ﬁ(f_zf)]dtz k<o,

|z] (2] - (atD)|ret

f'h(£) < 0, Thus, we deduccie ther z! € E or, 2% ¢ E. This completes the proof
of the lemma. : .

Assume now that.A is an a-homogeneous, a = 2, continuously differentiable
potential operator from RY into itsclf with potential i and 21 is a local relative
extremum of h onS? with A(z!) = 0, i. ¢, 27 € E. Setting

Rq~1=_{ zeRY (2, 21]"—— 0},
one can easily verify that T{‘I‘l is a (g — 1) ~dimensional subspace of R? and
RYI= { # } g1, Further, we put
B ()= ()
R Y e : !
and define the function g : R — RY by
g (x) ————[B(’f1)a',:r] ze RY.
Let be zli"loclal rélati've extremum of gon the ljnit sphere ST 1of RITL Se;ting'
R {reRT Yy [,z ~2}'=0},
we conclude “that qu_lA is a (7— 2) - dimensional subspace of R
and ,Rq = { } & Eq""? . Let‘zs be a local relative (e.xtremum of .g oﬁ the
aunit sphere S92 ot RIT? ., We put

A a={n,eRq 2/[:1: ]__0}

It then follows that RY % is a (q —3) - dlmensxonal subspace of ﬁqnz.
In this manner we define inductively ihe sequence of the Qpaces
RIH R 1D RI7?22,.D R and the points P
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LEMMA 16. {,zl, w29} is an orthonormal basis for RY with the followinyg -
properlies | '

1y ATy 0,
2/ [, AzH]=0, j=2..4q
3/ [Bizl)z, 23] =0,0,j =1,uug, j= i

Furthermore, if z1 is a local relative mazimum of h on $9 and 2 is a local rela-
tive maximum of ¢ on §4-J+1 J= 2,..., g, Lhen

4/ {_q(zf )};i_!=2 is & descending sequence wilh

@+ 1 hsz )

9zt =
Analogously, for minima we conclude that

&/ {gezd )} 3’_:2 is an increasing sequence with

g2 ) >

1
h(zf ).

Proof. It is obvious that {:1,..., z%} is an orthonormal basis for R Y, Since

0= h(zl)= fzt, A(zi)]lz, 1/ follows. Therefore, we need only .to prove 2/—4;.
and 4'/. The proof proceeds similarly as the ones cf Lemma 2 and Lemma 3 in

[4]. Let o(®) = ~g/(L (X ~ 602 )) 1/2, 0<]8] = 1. One can casily verity that

o(8) is a root of the equation 824 26 + 8 =10 and a(a) tends to zero as § appro-
aches zero, We put '

A=zt g (e L 20), j: Tyeres @y £ < J.
One can easily see that i g se—iTt g, j=1.., ¢, i < j. Now, we prove 2/ and
3/. For the sake of simplicity of notations we assume that z!is a local relative
maximum of k on §¢ and z/, § ="2..., q, arc local relative maxima of g on”’
$9-J*1, (the proof for the other case is similar). it then follows that there are-
neighbourhoods Ulof zlin’ I{q and U/ of z/ in R™77J7? such that h (2) = h(z! )
for all x e U1 $Yand g(1)< gz ) for all & ¢ U/ ﬂ S9~ it s J ==2,..., q. Hence,
0 = h(z¥) — h(zY) = ozt + 27, AN + 11 (L, oozt + 2Y),
and o L |
0= g(zlf) — g(z}) = 8fozl + 2/, Byt 4l 2, ooz’ + 20)), &y j = Lo
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f"< J Since. hm I‘k :‘f(’ I g:k .(‘_,’j —_ Ao oo . L
1v0, { (62" + 2/ D)o = 0 for all & = 1,..., ¢, by considering
the case g > 0 and g < 0 separately, dividing by 6, and letting & — 0 we obtain 2

and 3/ for i < J. Since'{B(z_l) s, 2l | =[B(z4) 24, 21 ], we conclude that 3/ holds
forall i, j = 1,.., ¢; { # j. To complete the proof of the lemma it remains to
show 4/ and 47/, '

By the mean value Theorem we have.

1
0= g(2V) — g(zt )= of [B(') (214 10 (o2t + 2/)), 8(az! + 2/))] dt

— 82 R . , . .
T (14— P [BED) (& + 10 (o2t 4 27)), 2/] dt

1 L. ,
+ J[BEN) (8 (a2 + ) H]dt+0(] 8 1),
g ,

f,j=1:----q, l"‘-‘-j- Vl
and

1
0 > h(z1) — h(z1) = { [§(ez! 4 %), A(z! & to(ozl 4 22)]at
. ¢ '

_92 1 1 .
= . s 4@ 1 pgez! + 22y 14
a+u—§nW§['( (o2l 4+ =2)|dt
1 =
: 48 § [B(z1) to(ozl 4 2), 221t 4 0(lg?|).
1 . o . .

Hence, dividing by 6% and letting ¢ — 0 we oblain
[Be1)2/, /) = [B(z')2l, 2] forall 4, j=2..,q i<},
and
(BN, A = [, AEh) on, &) = —‘1—’2-’@ h(ZY).

Thus, we obtain 4/. The proof of 47 is si_m‘ilar. This completes the proof of

the lemma. .

Let %, {u1 vor 0P} and {r_p1,.,_.,~tp‘1} be as above and the mapping H satisfy Hy-

pothesis 1, We define the mapping 4: R? —» R% A= (A1’"" 4), by '
q

— 9 L '
A=) = (HQ, jila:j V5 o'h i=1Ly @ T = (&0, xq) & R%
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and assunde that A Is 4 poteniial operator. Then the polertial h of A is givenby

1 ~ 1 T % AN R
hw) = =y lw Al = g3 (H(3, jf::lxjﬂ ).k:1 T 65 D

T = (a:}‘,..., wq) e RY.

Let z! be a local relative extremum of A on S? with h(z!) - 0. we put

1 a2h 1
e )
’ aa{l ax.k i,k =1 prevs

Farther, we assume that z%is a local relative extremum of the function g(x) =
=[B(z! )z, ]/2 on theunit sphere $9~1! in the space R "1 ={z e RI/[=, z! =0}

THEOREM 11. Let X, L, H and K satisfy Hypotheses 1,3 and 6. Let Ker(T— L(},.))=
=[01 aren, pp] and Kef' (T_L (—1"))* =[lp1 s"-:'lpq] w”b <T(vl)’ 1}"’) = 61}’ E,J: 1!'--’q’

1

and z1 . 22 as above. If z1 22 are local relative maxima {(minima) and q(ﬁz )<
(a+1) hizly2 (g)(zé) > (a4 1) 1(z1)2, respecitvely), then (X, 0) is a bif urcation
point of Equation (2) provided thai either if a iseven or, 2/ a s odd and h(zz Y>> 0
Moreover, the parameter families of nonirivial solutions. in a neighbour
hood of (X, 0) can be desoribed in an analytical form as in Theorem 7 with

-’B A6, s @) 5= 21,((51 < 1)11(21 )1’/((1"'1) and = {0,"_’ 0) = oz /( (a4 1)}1(2-1 ))1/(((-* D,
j=1..,q, respocz'welg

Proof For the sake of simplicity we prove only the case when z! is a local
relalive maximum of A on $¢ and z2 is & local relalive maximum of g on the
unit sphere S9! in RY71, Let z o, j o= 3,.. ¢, be local 1elat1ve maxima of 9g
on $9-JF1, conslructed as in Lemima 10. A use of this lemma 31elds - '

[B(Z )Z[ Z"]——-G I,J—' 1.--,9.

and
7 . ] o
I ((a+ Dhzt) —29%) > 0,
k=2
N I IR SRR - -
Putting v = 2 zlw/and vy = 2 Z ¢, i=1,..¢, andv = v, i=q41,..,p;
J '

j=1 7 i=1 '
Vvs..fe cbnclﬁ;lejthat Kér (TL;_ L3L) = [_1, T;p} and.I;’er(T-—L(;A )}*. - Ioh ,‘ " ;;q];_
(T(v ).qa )= z. j = 1,., g. By Lemma 10 we have (H(3, rk ), w Yy > U and
CH®., DY), 'qa 'y = [zf ;i(z )] =0 for =200 Fulthgl, since
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det ¢ H(N, v ) w)é —(H (3, 51)?&1))[ J= By

— P~ 1 r'-7.1 ‘
= det ((a + Di(z)5,; — [Blz)z, 2]y, F=2q .
- ! gk
= TI (a4 Dh(z") — 29(z")) >0,
k=2
it then follows that &, T, L, [ and K Satlsf‘ Ivaothesos 1 — b, Therefore to

complete the proof of the theorem, it remains to apply Theorem 7.

COROLLARY 12. Let A T, L, H, K, {0',...; vP} and {v!,..., 99} be as in Theo-
rem 11. Lei z1, 2% be local relative maxzima (minimay of h on SYwith hzly 524
and of gon §9-1, respeciively. Further, assume that one of the fallawing'condi-
tions is salisfied : '

1. There is a local relative maximum (mmzmum) .z of gon ST 1 ith
G 7 i),

2, (a 4 DHA(z!) is not an eigenvalue of the restriction of B(z1) to K171,

Then the conclusions of Theoremr 11 continue to hold.

Proof. If 1. holds, then the proof fnlio{vs .immediately from Theorem 11,
with the remark that either (a + 1A(z1)/2 = g(z*) or, (@ + DALY = g(z%).
Now, we assume that 2, helds. Let 2% ..., z9 be constructed by Lemma 10. For

arbitrary y € R we can write gy = g‘_.l o, 2, Using Lemma 10, we conclude
=
[B(z}) 2%, y) = u, [B (z1) 2%, 22 =[B(z" )22, 2° ][, ]
=[[B(z1)z2,z?]z2,y].\ |
It then follows that
[B(z)22, g} =[[B(Y 22, 22122, y] forall y e R9™! or, B(:1) 2% =
= [B (z4)z%,2%]2% in RT™L, Consec-[ﬁentl.y, [B(z')z%,2°]is an eigenvalue of the

restriction of B(z}) to R 9~ 1. Therefore, we deduce that (a+1) k (21 )#[B(z1)2%, 2]

or, @+ DAEYH 25 g(z%). Hence. to compl te the pmoi of the coroilary, it
remains to apply Theorem 11, _
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In the following oiollary wé consider 4 special case!

Ker (T — L(%,.) = [v1, v?], Ker (I' — Loy = [yt 1p2] and there is an a-mul-
tilinear mapping £: X X X X ,.., X X (a-times) — Y such that PYH(?C vy =
= PyF(v,..., 1). For the sake of simplicity of notations we investigate only the

case a = 2. Assume that the mapping A: R® - R?, A= (A Ag) with

(a:)—(H(?&:cv—r-mzv i hi=1,22= (.7, ye R? is a conti-

nuosly differentiable polential operator. It then follows that the polenual hof A
is given by

1 —
h{x) == —3—{1{(?\, x vl +3;21)2 ), (;clvq,! - xzwz .

Setling
| aljit‘ = <F(vt ¥ Uj )' quIC), f’ k; j = 1, 2,
we can see that

Ay (@) = oy @ o (aggy ) @y By + gy 22,
Ag (x) = 0511237? -+ (05122-}- 05212) &, Ty T %99 g,g ,

and

1 3 9.
hiz) = '3"‘% aigp ¥ F logyy ey ooy BT, F

v, 22 .
(@99 F Cgpp T m9) ¥y T, gy 4.

Letz! = (¢, 7, ) be a local relalive estremum of » on 8 . It implies (hat

ﬁi = {x € RQ / T = B(—zz > zl )l BGI{ } and Sj — {(—32,3’31)} LJ {(22’_51)}‘-
Let B(:‘l) and g be defined as above. It is a simple matler to show that the

function g is constant on §! and
("2)—"—1:—— {a ) )23—{—(2& Y — -9 )72’
g M 2 192 1 212 1 292 121 219 1197 1 <9 ~+—

6. . 3
(2091 — Lgy97 Fy99 ™ Fgor) 7y 7 ”*”( 11T e ) 5

Lastly, we put

and
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COROLLARY 13. LetT,L, H, D, Cr’j o4y j=1,2, i 5 j, be as aboveand X satisfy
Hypothesis 6 and 2! = (21, 2,) € R? be a local relative exiremum of b on 8,.In
addition, assume thatz; 50 (i=1or 2) and £ =%; /%; ;17 j, Is nol a solution
of the equalion 7

Dijt3-{-CU. 2 +Ct +D; =0
Then (4, 0) is a bifarcation point of Equation (2)

The parameter families of nontrivial solutions of (2) in a neighbourhood of
(%, 0) can be written in an analytical form as in Theorem 11 with P=q= 2.

Proof. By a simple caleulation we obtain

. 1
Sho (2 — 9% = S ADF v C, @y p g+ DY

= 217;{% (%)3+Cij (:: )2+Cﬁ (—:j“) + Dyp o+ 0

Therefore, o complete the proof, it remains to apply Theorem 11,

Remark 14. 1/ Let (M«), v (), ((A(), 07 (), 0= %),y € IX V. be a param-
eter family of nontrivial solulions in a neighbourhood of (A,0) which exists by
Theorem 11. We can easily verily that

p@) = Tu (el j((ak) h(e Iyl/ta—1) v+ (.
j=1

WO(g) = S ou(z /((a+1) h )Y @D)ypi+ T gy,
i=1

where y = («, T g ') and O ([g)je — 0 as o — @, '(xq_l_l,...,x.)—» 0.
2/ Let the same assumplions of Theorem 11 be satisfied for 21, 22 and 71,722,
respectively, where z1,7z1 are local Lelatlve exirema of % on 87 and z2, are
local relative extrema of g on S97 -1 and e -1, Iespectlvelv, with S‘Z 1denot--
ing the unite spheve in the space Re~1 = {ze R‘?/ (@, 7] = 0}

In addition, assume that one of the followmd conditlons is fulfilled: i/ z1 5= 21'

llllh(z1)]#lh(21)l,m/‘./h(”i)—" z /fz(zl)forsome.: Li..., q. Let (Ma),0()

0

and (A(@), D(y)) exist by Theorem 11 corresponding to zl, z° and 21,72
respectively, Then there exist meighbourhoods I of zero in R and Vv, of the
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origia in RP™Y such that ply) = v (y) for all ye I XV ,y= {s&,.fq_i_i,:,',,{cp) with
& 5 0, Indced, by contradiction, we.take sequences {I }, {V _} of neigtibourhoods
‘of zero in K and the origin in RPTY, respectively, with Py Gl NI = {0},
andV ., C V., NV, = {0}, and assume that for any n = 1., there exists

yel, XV, g, =@,z Z_H,..., x; ) with« <= 0 such that (y, )= v(y, ). It then

follows that

¢ e, (z [ (tat1) k(= 1yyH(ta =

=1

)1’)'! 1] O(Iyn

q
2 e Gy h @ YT 4o Gy,
J:

Dividing both sides by o and letting n — o0, we obtain
q - — —1 - :
22 iatny h @ B @Yol <o,
=t |

“Since v',..., v7 are lincar independent, it follows

zﬁ [ (@ + 1) k() Ha=1) = E‘j/ @+1) & @V, (‘9)

. . ‘ q
for all § = 1,..., g. We observe that 1 = 2 (z1y? = ¥ z %
| =1 7 j=1

and deduce from (9) that' [k &Y=k G|, It h(E) =2 E)h (h=
= —h ('—2—1))’ then (9) Yields 21' == _zhl‘ (zi =— El-) for all y = 1,..., ¢, and hence

.,.‘ == i . Thus, in any case we have a confradiction

‘Analogously, one can show that there exist neighbourhoods I, or zero in R aﬁd :
V, of the origin in RP™4 such that 2% (V) = ve (y) for all y = (e, Tpq oo xp)

£l X Vo “.rith‘u; = 0, where v° (y) and »° (y) are from Theorem 11 correspond-
ing to 21, }:2 and ":"zl, 32, respectively., This remark shows that the number .of
parameter families. of nontrivial solutions of Equation (2) in 2 neighbourhood
of (*, 0) depends on the number of local relative extrema zlof h on 87 with
h{ ~1) =0, whlch satisfy thecondition (a-l—-1) h (21) # (22) with 22 being aloca]

felative extremum of g om S771,
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Nest, we make additional hypotheses on the niappings L and K. '
HYPOTHESIS 15. There is g e A such that ¢ Dy LK, v!YE), 91 ) 5 0 = Ly 7
and (D, L0k, 01) B), ¥y =0, j=2,... q.

HYPOTHESIS 16. « “P o K(h — §a®~1/(1 4 a1}, ap) and

al—a DUPYK(I — Bat 1yt 4 a1y, av) tend to zero as
« — O uniformly in v € D, where a is from

Hypothesis 1 and § is from Hypothesis 15.

THEOREM 17. Under Hypotheses, 1, &, 5 and 15, 16, the conclusions of Theorem
7 condinue to hold with (T(w'), 1) replaced by (DKL{—?Z 21y @), 1) and A(e) by

Aoy = A — Ba?T (1 4 a7y,
Proof. Setting A 0= *—PB+ A and B=A — A L B, we define the mappings

T:X Y, L,H E: Ay X' -~ Yhy
T(v) = T(0) — L{}%, v) 4 Dy L%, 0) B,
LB, v) = Dy L{A, v) (B),

@, v) = HE + 7 — B, o),
and : _ _
K@ v)y=K @+ A —§ o)+ LE+ X —p, v) — LA, v) — Dy LR, v) g—B),

B, v)e AOIX'D_.

1t then follows that Equalion (2) is equivalent to the equation

Twy=ZL@E o)+H @ o)+ K@ 0), B, 0)es,xD  (10)
It is clear that } is a characteristic value of the pair (F, L) and

Ker (T — E(-l?;s)) = Ker (T - L (ix'» = [015-": vP ]s

. Ker (T — L. = Ker (T — L&) = [9h., w1,
Further, we can casily verify that Hypotheses 1 — 6 are satisfied with b'=1 and’
7, L, H and K replaced by T, I, H and X, respectively. Therefore, to complete
the proof of the theorem, it remains to apply Theorem 7 (o Equation (10).
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THEOREM 18.- Lel the assumpiions of Theorem 11 satisfy with Hypotheses 3, 6
J_replaced by Hypothesis 16 and ( 'I‘(o1 ) i) = 6ij replaced by ( D)_L{-?\',vi) (8),
wj Y= 6:’;" Then the conclusions of Theorem 11 continue lo hold with A (x)
replaced by :

Me) = K — Bty

Proof. The proof is similar fo the one of Theorem 11, with the use of
Theorem 11 instead of Theorem 7.

Next, let F: A X D ~Y l;eaCj"—J mapping, k = 3, with
F(A, 0) = 0 for all A € ‘A, We consider the equation
F(h, v) = 0, (A, v) e A X D. , ' (11)

Let A€ A be a point such that ) F(}, 0) is a Fredholm mapping with nullity
p and index s, p > s = 0. Farther, let

X, =Ker DUF()_._, 0) = [ot, .., 07]
and ' :
Ker (D F(F, 0)° = [t e¥?), ¢ = p —s.
In what follows, X, Yo, Yi’ Ryetc. are supposed to be defined as in Introduction.
Denote by D{;F (DJ}LF), j=223,.s, the j-th partial Fréchet derivative of F

with respect to v € DD (A € A, respectively). We make the following hypotheses
on the mapping F: ‘

HYPOTHESIS 19. There exists f € A such that
(Dy(D, F(E, 0) (o)) @, 1) = 8,5, &7 =1, q.
HYPOTHESIS‘; 20. There is a natural number ¢, 2 == a < k such that

Y(DJF(F\ 0) (Vyeery 0y =0, j=1,.., a — 1, for all we X, and
(D F(%, 0) (Xo)) # 0 with X _Xo x X X X0 (a tlmes)

BYPOTHESIS a1. The mapping A: R? — R‘I, A= (4, ,., Aq) with

4(«;)_._(1)1"(1 0)(2::;10 zlx o, =1,
j=1 =

x = (% ,...,xq)e RY,is a potential operator with potential & and there are

Jocal relative mazima (minima) 2%, 2% of A on S? and of g on §77!

- ¥
respectively, with
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{a-+1Y A (21) /2 54 g (£9), where §7, S9-1 . g are defined as in Lemma 10,

THEOREM 22. Under Hypotheses 19 —21, the conclusions of Theorem 18
continue fo hold for Equation (11).

Proof. By Taylor’s Theorem we can write

FQh,v)=D,F(,0@®) ..+ DR, 5 (v,..., 0) 0o}

=D F(h,0) (0) + Dy (D, FF (A, 00 @) A—=R)+ ...+
1 ar _l_D LU AN R . =
S F (L0 (v, ) S D(DUFCR, Oy (0,0 0) (= T)

; +1
e 0T,
Further, we define the mappings 7: X - Y, L, H, K: A x D =Y by
T(v)=— D,F (,0) o)+ Dy (D, F (A, 650} (),

L{h, vy== Dy (D F(¥,0) ()%,

ks

i -
HOo,0) =5 DFE, 0@, 0+ +

P
=3 DUF(?\,O)(U,...,Q)

and
KA, n=FQ 0)+T @ ~-LO,vy—~H@, v),(L)eraxD,
It then follows that Equation (i1) is equivalent to the following

T(U)ZL(A,v)H;-_H(.'t,u)+K(A,v),(h,u)e;\xﬁ. | (12)

Since T (é) — LA, 0)=— D F ., 0) (v), we conclude that 7 — £ (% ,.) is
also a Fredholm mapping with the same nullity and index as DDF(:E ,0). It

can be verified that all assumptions of Theorem 18 for Equation (12) are satisfied.
Therefore, to complete the proof of the theorem, it remains to apply
Theorem 18. '

3. APPLICATIONS

Application 23. We begin ihe applicafions of the resulis inthe previous section
by considering bif urcation poiats, Consider the problem of the small amplitude
frec vibrations of a thin rectangular plate which is formulated as follows :

32 61) dun 2 aw‘g‘;' .
DA? St V(=3 dady ) A 0, 7) X Q a
w4 p 3 Am(“ax) T(a)’)} x y) win 0, I X (13}
€}

821 | ., o —
w(t,x, ) =_a§ {t, x, y)= a_ﬁ o, )= U la {0, Ij X o0
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and

w(l, z, y) = w(T, ;r,y),%’f(O, T, y)=a—§ T, z ) (x, y) € Q, in which Q =

={x e R? V<zx<al< y < b}, with _ihe boundary 8Q. D is the [lexural

rigidity of the plate given by EA? ~ 12(1 —v?) where E is the modulus of elasti-
city, b is the thickness of the plate, v is Poisson’s ration (0 <v <1,/2), p is the
mass density, 4 is the plate area, and w(f, &, y) is the deflection nmormal to the
middle surface, - © = - - ' '

. g % u 3?u - . .
Putting V=3 u € C*(Q)/ 0t = ——=—" = 01in a2, we define the inner pro-
ax? ay?

duct (u, v), = [ Au AvdQ, and the norm | u || o = (4, u)})"z. Let H be the com-
Q : ,

pletion of V in the |, o “topology. It then follows that H  is a linear and clo-

sed subspace of the Sobolev space H?(Q), (see, for example, [1]), hence it is a
Hilbert space. Furthermore, the system of functions.

W 2VZ
Vad (@, + b7)

sin a_x sin bny, mn=1,2,.:.

with a = m—% b, = %n— » forms a complefe system in H (sec [1, Lemma 1D.

X Filrther, we set

X = {f € L2 (0, T, Hy) | flom) = F (T, %’% (0y0s0) = %’; (T...)
‘agf “ ﬁ 2y 2 Tel
T2 hmy S L@ O) =y

and define the inner product =, > and the norm JJ.|| on X by
T T |
(F, g9) = [(f, @odt = /(] AfAgdD) d
- -0 o {2} _
and _ )
= ()R
One caneasily verify that X is a Hilberl:spase,

Now put A = p/D and consider it as a paramelfer. A point (3, ) e R X X
is called a2 week solution of Equation (13) if
' (14)
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T T U du g T ap \

J(AupvdQ) ¢t =4 f (f - — dQ) di ( LS LR R

2 % TR ol (J + oy e,
[ Av uder dt

holds for alt u e X. Q

Further, we define the mappings L; I/; X — X by

T
;[ op  au
L WAL
(L(v), u) S(Sﬁf ata‘ﬁ)a’z‘
S D

T
() u) = Aﬁhz S (

Q

[(e_”)g + & )2} 4o ) S Av wdQ dl.
da ay

9

s

It then follows that (14) is equivalent to the equation ,
v = AL(v) + H®), (\v) € R x X. (15)
Let 7 be an eigenvalue of Lae problem
—u = yu
u(o) = u(T), w(o) = u(T)

with a corresponding eigenvector ¢, We can easily see that for any m,n =1,2..;
2 2.2—
KIRH = (am+ bn) /'Y
is a characteristic value of the pair (id,L) and
Y2
Yab (a? - b%)
m n

Up = o sina, X sinb 7

is a corresponding eigenvecior,

Now, assume that A is a characleristic value of the pair (id, L) with multi-
plicity p. It then follows thal there exist p pairs (. n; Y, i=1,.. p with

(@@ +a®) Z=%vy. Putting vl = U . We deduce
HII- Hl- mlnl

T, _
i, = oW, 4j = 1w py
’ Q

and

o L
— a?b?iy § k) dz).a!.j, f,§=1m, P

HY, vy = (
< ( 8.‘11’1‘2 U

Gonsequently, &, T = id, L, H and X = 0 satisfy Hypotheses 2 — &,
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Setting 1% = (x‘lo,..., 2% with

p
T 1/2
SARY (1) dt
- 0 .
xila = _._.T s L = 1,.2,::--, P
3B Ay § ot () dt
0
and
—'l‘o' — 0 - 2 .
oF . L],
we have

THEOREM 24. If X is as above, then (A, 0y is a bifurcation point of Equation
(15) and there exist at least 2p dislinel parameler families of nontrivial solutions

of (20} in a neighbourhood of (A 0). More precisely, for any o =+, i=1,., p

there exist neighbourhoods U'® of the point x°, I'® of zero in R, p continuous

f unctions xi,"; I° R, x.",f’(()) = %1% j=1,m, p(xi"(cx),..., x1%(x} € UI° and a con-
J P

linuous mapping wi®; 1% [vl,..., 0P }1 Al wf“(v.) [f= 0« us &« —> 0 such that
(Aig (o.), pl (cz.)) wilh
ic A
M=o

and

. F . . .
0% () = I ax® ()0’ - 0 (a),
Jj=1

= %% fofe), e ell, asa > 0
i

salisfies Equalion (15), ALC (o) — I, Dic(oc) —0ase— 0, pi9 (@) 32 0 for w = Q,
Proof. The result follows immediately from Theorem 7 ard Remark 8.
Application 25, Let us study bifurcation points of boundary value problem of
nonlinear elliptic differential equation: '

Ap = ABD - ¢(v, 0)Cv + D(v) in L, (16)
B r.=0,0=fk=m-1,1ndQ, '

where Q denotes a bounded domain in R” with the infinitely differentiable
boundary 82 which is a linear (n—1) manifold and Q lies locally on one side
of 80, 32 € €, A is a uniform elliptic differential operator in Q of order 2m:

AV = b (.1)?“I D (a :::)DB ) with @, € C~(0) ,
| Bl m — 1 ag (B DF (@) with dqg & C7(Q)

B and C are nniform elliplic operators in £ but ai most of the order 2m~—~2 and
given by '
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By = b (— 1) D* B,5(x) D? (0)) with b,ge C~( T
] Bl =m~—1

Cv = b (—1)* D*(c q () DB o), with ¢ qe C(Q),
) Bl = m—1 “ “

v, )= 3 § ¢ o(x)D%D D8y aq,
ol Bl=m 2 °F

and D is an operator with ¢higher order» that we shall describe later in
Hypothesis 29. B, , for k, 0<—:]\— m-—1, are linear homogeneous differential

operators, which are defined in a nelghbomhood of 3. Tor m_mphmty we
assume that the ovder of B, is less than m and the boundary operalors are

the elliptic operalors A, B, C with the property that one may associate with
A, B, C symmelric b11mea1 fmms

awu) =§adodd= X fa, D* v D* u dQ,
0 la |8 = 2
b(puy=§uBv dQ= b2 §b o D¥*p D*u dQ,
o ol =t & P »
and _
c(v:z)__Squd.Q—- X ) aBDm v* D u dQ,

|od 1Bl=m—1 €2
forallm,veV ={feC (0§ ka = 0 onaQ, 0= = m-—1}.
We provide V with the standard | . [Im — l;opology of the Sobolev space HI (Qj,
and the complelion of (V, || . Hm ) becomes a linear and closed subspace of H™(Q)

and is denoted by X. The restricted norm and the inner product of A" (Q) to X
are denoted by |} . || and { , ), respectively. Hence, X is a Hilbert space.

HYPOTHESIS 26. There is a constant k >0, awp)=k, v I for all » ¢ X.
HYPOTHESIS 27. b{v,v}) = 0 for all v € X and b(v,0) =0 implies v =0,
HYPOTHESIS 28. ¢(v,v) = O impliesv =0, v € X.

HYPOTHESIS 29. D is 4 continuously differentiable mapping from X into L2 (£2)

and «~3 B (« 0}, a2 D, (¢« v) tend to zero uniformly Iin v in a bounded
neighbourhcod of zeroin X as = -~ 0., '

We say that (A,v) € A X x is a weak solution of the boundary value
problem (16) if |

a(v,u):?\b(u,u} Fewvyc(v,u)§u Dy dQ (17)
Q
helds for all ue X,
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It iz easy to verify that the linear boundary value problem

Au=f inQ,fel? (@,
Bu=u,0<k<m—1,ind%
always posesses a weak solution denoted by & (f) (see, for example [2]). The

operator G : L2 () — X is called a Green operator. Consequently, (17) is
equivalent to - :

v=AL@+HO+E@®,Av)eRXx s

with L () = G (Bv) , H(») =G (c (#,) C (v)) and K (v) — G (D v} .
Therefore, to study the bifurcation points of Equation (17) we need only to
consider the ones of Equation (18).

By Lemma 2.1 in [3]'the pair (id, L) has only positive enumerable characteristic
values. Kach characteristic value has a finite multiplicily, ie., they can be
ordered as 0 <Tk; = A,.. <{--oo. Moreover, the eigenfunclions 4™ and u” cor-
responding to the characteristic values A =~ A, are orthogonal w.r.t the bilinear

form b(.,.) i.e. HE™, u™) = 0 for m # n.

Let A be a characleristic value of the pair (id, Ly with multiplicity p. One can
easily verify that (id — ALy = d — L)~ Suppose that vl ..., vP are eigenfunc-
tions corresponding to A, Without loss of generality we may assume ( ol o -

= ‘S’ij’ i, j = 1,.., p. Define the mapping A: RP -~ RP, 4 — (Al',"’ Ap) by

p . . 2 Y ,
A (@y=(H (E z ;) vt ) = ( G(e( R xjuJ,_E z v’y € (

b
Z
=1 _ =1 j=1 j=

. fj Uj))s ’-"j)

P . P . . P .
=c & x.v) Zav)) [0S (E 2 0))aq
. 7 -_ J 0 C
. j=1 J=1 . Jj=1

2 ., P . . B,
=c{ 2 z;0/, 2 xjuf).c(v‘, 2 :z:jvf)_

v .
J=1 j= Jj=1

By a simple calculation we conclude that A is a potential operator with potential
1 8 j Y1/ 2 ke 2
h(_p):-(c(z x.vh, £ x.v )) —_—_—( 2z, ol ,v[ )
4 j=1 / j=1 4 ' /! 1\':[21 A k )

Let E.. be defined as in Seclion 2 associated with ' A, Hypothesis (

28) implies
hiz )=0forr == (1, 0,...,0). By Lemma 9 we conclude £, = .

Now, let 2t E,. We can write

R = {gl} @ Re1
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and set _ 7
B(:J y = (_Mﬁﬂj__ (Zl})

NI
_ P T L k=100
with :
ol i k I 1 7 . P , D
—_— — = J ¢ ol 2
gz, bx,, (z8) = 2¢ @ ’.’?’_ o )e (vt .}‘ Zjuf)+c( %zl Z”1 :f)c(u’v)
1 & J=1 _)‘:1 Jj=1 J j=1

‘Let 22 be a local exlreﬁmm of g(x) =% (B(z') = 7)) on the umnit sphere spis
of RP~1,
‘We make the fdllowing hypothesis :

1 2? arelocal relative maxima (minima) of iand g, respecti-

1

vely with A(z!)= % g (£%) (;;(zl) <3

HYPOTHESIS 3U. =

g (2% )» respectively).

THEGREM 31, Under Hypolheses26 — 30, (%, 0) is a bifurcation poini of Equation
(23). Moreover, there exist at least fwo dislinel parameler families of non-

irivial solulions in a neighbourhood of (%, 0) and we can describe these families in
an analytical form as in Theorem 11,

Proof This follows immediately from Theorem 11.
As an illusiration of the above Theorem, we consider Egnation (18) in the
special case: e ,vl)y =0 for i, i, j=1 . p; 0<TclpLoh <. ... <
< ¢(v?,vP). For the sake of simplicity of notations we put ¢, = cok, v%) .
k=1,.., p. One can see

1/ P 212
h(x):w—(licr),
4 k 1"“!l

By a simple calculation we conclulde that /i possesses local relative minima

zi__.-: (c1,0,.,0),0==o0n SP

We have R(2'} = il cf and

i, [ ©oh A
Bio) _(ax.ar G ) (@i, k=1 s
£k iylk=1 300 p
with
30 , == k
0 2 —
a, = .'jcl s 1

falass
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It then fotlows g(@) = — (3 % + 2 cie,a®). We can see that
2 L T R
RP~1 = & = (x,, 2p ey z) RPjz, =0)

and ¢ rossesses -loval relative minima zz = (0, 1,0 ,...,0) on SP™1_

1 1 1
cr"-Igf:z:) -—-‘?Cict) # —2—c§= (E%.l}z(zi) .

Applying Theorem 11 and Remark 14, we conclude that in this special case
(%, 0) is a bifurcation point of Equation (18) and there exist at least four distinct

parameter families of nonlrivial solutions in a neighbourhood of (A, 0). More-
over, it is possible to desecribe these families in an analytical form as in
Theorem 11.
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