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1. INTRODUCTION

In [6] we have defined the quasimetric spaces and studied their elementary
properties. In this paper we shail prove {wo fixed point theorems of mappings
of coniraction type in these spaces. First, recall that a quasimetric space [6] is
an ordered pair (X,d) comnsisting of a set X and a non-negative real functlon
d: XX X—>R satlsfylnﬂ the following conditions :

QM) d(z, y)=0 iff xz=y,
QM) d (i:, PH=d(y, x) forall zx,yeX,
QM;) For eache= 0 there exists § > 0 such that
d (x, ¥) — d(x’, y’)| <t whenever dz,2) < b and d(y, 1) < &
Note that our definition differs from the ome of quasi-metric spaces
defined in [2].

For every nonnegative number r, the set B (z, r) = {y € X /d (v,)) < r}
is said to be an open ball, A set Ainaquasimetric space (X, d) is said to be opén
if for each = € 4 there exists an open ball B (2, r) C A with r == 0. Open
sels form a Hausdorif fopology on X, A sequence {mn } is said to be convergent

toxeXifd(x, r) — (G as n —+ o and then we write xz — xorlim r o= z,
¢l

Let (X, dj, (Y, d') be quasimeiric spaces, f: X — ¥ be amapping, then f is
continuous at x iff f:z:n -~ fa for every sequence {xn } converging to x. A sequen-

ce {xn} is called a Cauchy sequence if for each ¢ >0 there exists a positive

integer n € N such that d (:cp, Ty L E for all p, ¢ > n (X.d) is said to be

85



complete if every Catichy sequence converges in it, It is shown [6] that every
metric space is quasimetric but the converse is not true and so the class of
quasimetric spaces is larger than the class of metric spaces,

2, MAIN RESULTS

THEOREM 1. Let (X, d) be a complete quasimetric space, f: X — X a conti-
nuous mapping, ¢ (z, y) == max {d (x, y), d (=, fx), d (g, fy)}. If for each ¢ > O
there exists & = ( such that d (fz, fy) <c whenever ¢ (z,y) <e -} S then f

has a unique fixed point z, and f*x, - T as n - o for each ;e X.

Proof. First, we show that
d (fzx, fy) < ¢ (=, B (1)
for all x 52y in X. Indeed, if x;  y, we take g, = q(x; »y;) > 0. For this g
by the assumplion of the theorem there exists 61 > 0 such that d(fx, fy) <e,

whenever qlz, y) <s; + O, Sinceq(a:'1 L) <g + 61 we have d(fxl ’fgl )

=g = gz, ,'91). Se (1) is proved,

Fix x_ & X and denote T f:rn sn=0,12_1f Topg = ®y for some m
then x is a fized point and f# r = for each n. Therefore we may
suppose that XL q7 T, for each n ¢ N, Then we have a‘(:cn s :z:n+1) =

d(fr,_,fx, )< qlz,_ n—12%p > d(x ,x,, )} for each
n e N. From this it follows that d(xn P )< d(o:n_l,o:n ) for each neN.

1,3:1'1 ):max{ d(x

This means that {d(s::n s xnﬂ)} is a deereasing sequence of positive numbers,
hence it converges to some non-negative . Denote
A, , 2, )e>0 : (2)

We show that £ = 0. Indeed, if d(:cﬂ 24 g) {e =90, then by the assumplion
of the theorem there exists & > 0 such that

d(fz, fy) < 3)
whenever q(z, y) < ¢ -+ O. Since d(:cn , a:n_H) { ¢ there exists n & N such that
d(z, LX) <&+ & for earch nzan, . We have q(z_ , x, . ,) = maxg {d(xn’
tnit’ d(a:n_{_1 . a:n+2)} =d(z, , a:H_H) <& & for cach n < n,. Consequen-
ty, by Bywegeld(w . ,# 1) =d(fx, ,fz, ,,)<e for each n>n_ . This
contradicts (2) and in fact

dz, .z, _H) 1 0. - 4
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We now prove that {x_} is a Cavchy sequence. Suppose the contrary that
{:::I1 } is not Cauchy, Then there exists e, > 0 such that for each ne N there
exist p, q &N, q > p > n such that d(a:p s Ty ) > 230. By the assumption of the
theorem for this A there exists 60 ~ 0 such that

dfz, fy) = =, \ (5)
whenever g(x, y) < ¢, - 8, . Denoted, = min {¢o, &} By QM, for %Lthere
exists 8, = 0 such that

ldx, i) — &=’y ¥ < fl_ (6)

.
F

whenever d(z, z") < 8,, d(y, ") < 8,. In view of (4) there exists n, € N such

&
: 1 . .
that d(:cn, .r‘n_l_l) << min )52, - for each n > n,. For this 1 by the assump-

tion there exist p, g€ N, = p > 1y such that d(xp, xq) > 2¢,. Then by (8) for

&
cachi€ {p,p+1 ...q}wehaveldlx z;,) - d, =, )< _41.
Since d(z ), %, 1) <o and d(x , x ) > R > ey + O, it follows that there

existske { p, p+ 1.+ .., q} such that

) 38,

%ﬁ;d(xp’wk)gso +-—4—-

€, -+
We now show that q(xp, x,) < g + 8,. Observe first that
38,
d_(:cp,xk)g <, —'r-T < g4 —]—61 < gy + B,
. 61 61 5
d(xp, po) < mm}ég,.z, ; QT-:so + 85
s O] 9
dlx, ., ) < mm?ﬁz,Tf\{‘ - < %o + &,.

Consequently, q(a:p, a;k) < g, + 8, and then by (5), on one hand, we have

d(xp-l‘l’ xku}..l) :'—"d(fxps ka) < 80 (7)

On the other hand by () we have
S

. 1
I d(xp’ ‘T’Ic) - d(xp-!jl’ m]r-.‘-l) [ ‘Q z .
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s oL , 3, &, &
11.7‘17‘0111 this it fo}iom's that d(:cp+1, Ty 2 d(xps ®,) = 3 >ty t+ 57T =

=, +6_; ~ g,, contradicting (7).  So {z,} is Cauchy. Since X is complete,
i
T — Ty for some x, for some T, € X.

By the continuity of foxy, = limx 4 == lim fa:n == fx, and so x, is a fixed
point of f.

Thé uniqueness of x, is obvious. In fact, suppose the contrary that there is
yy = 2, and g, =Fy; , then by (1) we bave
g Xy, Uu) =d (Fs, fU) < qTs, Yu)» @ contradiction. The theorem is proved.

COROLLARY. Let (X, d) be a complele quasimetric space, f: X —X. If for
each © = 0 there exists & > 0 such that d (fx, fy) <<e whenever d (x, §) <e-T 3,
then f has a unique fixed point x, and 2, — xy for cach e X.

Proof. 1t is clear that f satisfies the condition d (fz, fy) < d(x, y) Tor all
x , yeX. Hence it is continnous and all the conditions of Theorem 1 are
satisfied. The corollary is then evident.

In [3] Meir and Keeler have proved the following theorem which generalizes
the Banach contraction principle {1].

raEoreM. Let (X, d) be a complete metric space, f: X > X. If for each
¢ > 0 there exists & >0 such that

sé_d(:v,y)":<s—1—6-:>d(f:t'-,fy)<é' (8)

then f has @ unigue fized poinl x, and f”azo' —> x, for each x €X .

In [4] the authors have shown that Condition (8) is equivalent to the

following ¢ : :
dz, y)<<cz+8=d(fz, fp<e.

This is true also for the case of _quasimetric spaces. Therefore, our corollary
is a generalization of the above-mentioned theorem.

Note that without the as sumption on the continuity of f Theorem 1 does not
hold even in the case of metric spaces (74}, Remark 1.1).
Also in {4] the authors have proved that the last theorem remains valid. if

in (8) d(x, y) is replaced by r(z, y) =max {d(x, ), dz, f), &y, 'I:'g),—‘l)— (d(z, Ty) +

=

d(y, fz))}. Moreover, by an example they have shown that it does not hold if
d(x, i) is 1;eplaced by max {d(x, y), d, fx), Ay, f1) d(x, fy), 4y, fan i

it is interesting,to know whether Theorem 1 remains valid if g(x, y) is
replaced by r(z, ¥). Here is the answer,
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THEOREM 2. Assuine that (X, d) is-a quasimelric space and f: X — X salisfies
lhe foilowing conditions:

1) There exist q, & [0, + o), g, € [0, 1) such that
d(fz, fy)<q,d (@ y)+ g, max {d(z, [x)+ d(y, fy), d(=, fy) + d(y, fx)}
foralx, yeX,

2) T here exists x, € X such that the sequence {f"x,} has iwo successive subse-
quences converging lo some T, € X

o ni+i1
[ xg—>x.and f Lo —> Ty 05 L —> oo,

Then zy is a fixed poini of f.

Proof 1t q,, 4y qatlsfy Condition 1) and q1 >y q2 = ¢, then 91’ q2 also
satisty 1). Thercfore we may assume that ¢ € (0, +=), ¢, € (0, 1). Suppose the
comtrary that , s fz,. Then by QM, we have d(wy, fxy) == r > 0. By QM,;

. (1— q?)’"
for e == 7 there exists & > 0 such that
{ 1— gg)_ )I‘ .
| d(z. y) — d(=, ') | < — G

whernever ¢ (x,2) < 8, d (y, ") < 0 . Denote

(1—gq)r ({—gyr
§;=min} 5, 2 (% f (10)
4 4qq '
and T oq= fxn s =0, {, 2....
By the same reason for this &, there exists 8, > @ such that

whenever d (z, ') < 8,, d (y, ¥') < 8,. Sinece T, n, — x, and :z:ni 41 = Tx
ford,=min{d,, 2}thereex1stz € N such thatmax {d(z +1,.‘L‘_,,_),d(:t.‘ " y Ty) )=
<3 forallixi . Then fori» i ,by (11), taking 2’ =y _x,.‘,:c x +I y=x i

we have d(z, 1 % ) : 8,. S0 we obtain the inequality
max {d (a:ni,a:;), d(z:ni+1, Ty) d'('xnf,,xni;{_l)} <8, 1512)
foralli > i, . By (9) we have

(I‘—Q;g)r

|d(xﬂ{.f$¥)'—d(x:ssfxac)i \<\—4——-— .
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and | [(1(:1: o, Txe) —d (g ', 'fxat)lgmfm all i > ig .
n;+1 - 4
Consequently,
d (2, + F22) < (—1—;5—2)1 o )
and
(1—q,)r

d(x.\zs fx-‘s) = "]"d(xni_}.i’fx%)‘ (14

4

forall i >1 . Using Condition 1), Inequalities (14), (13), (12) and (10) for i > ;

we gef

(1 - qg )I‘ : f !
0 <r = dlzx, ft*) Q_T_-"i" d(xni+1s .’L‘*) =
(1= gy)r (1 —gq)r

\ g, max {d(xni. :nniﬂ) + d(z+, fxs), d(x”;’ fae) + d(arniﬂ, )}

(d—gy)r (I —qy)r 1—-gqr (1—a,r (1—gy)r
S h G g max R U

(1 —q,)r (1 — gq)r . .
g.__g__—_{- gy (r+ 3 ). From the fact that ¢,- € (0,1) itfollows 0 <r<C

A—q)r (I —gy)r -
<—-—T— + g, —|——2—q——) =r, a coniradiction. The theorem is proved.
2

Note that if (X, d) is a metric space this theorem can be derived, from
Theorem 1 of [5],

Remark 1. In Theorem 2, in general the point x, need not be a unique
fixed point of f, For example, the identity I : X — X salisfies all the conditions ’
of the theorem with ¢ = 1,9, =0 and each ¢ ¢ X is a fixed point of J.

Remark 2, Erom our proof it follows that Theorem 2 remains valid if
Condition 2) is replacéd by a'weaker condition:

29 For each ¢ > 0 there exists x, € X such that

max {d(z,, z.), d(z,, fz )} <.



Indeed, for each n & N fake ¢ = l . Then there exists y, € X such that

n
]

max {d(y_, =), d(fy, . =)} <-;:~. Denote @, =y _andzy ,,= fy, . Then
limx, =lm 2, ,,==2,and the proof of Theorem 2 goes through.

Finally, note that Theorem 2 does not hold even in the case of metlric
spaces if g, is replaced by 1 (see Example 1 of [5D.
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