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ON THE FOLIATIONS FORMED BY THE GENERIC
K-ORBITS OF THE MD4-GROUPS

LE ANH VU
INTRODUCTION

In general, the leaf space of a foliation with the quotient topology is a
fairly untractable topological space. To improve upon this shortcoming, A,
Connes [2] associates to each foliation a C*-algebra. And, in the case of Reeb
foliations (see [11]), the method of K-functors first used by D.N. Diep [3], has
been is proved very effective in describing the Connes’ C*-algebras

On the other hand, the Kirillov’s Orbit Methodallows us to obtain foliations
by the generic K-orbifs of solvable Lie groups. Gombining these methods of
Kirillov and Connes, we consider the foliations formed by the maximal-
dimensional K-orbits of all indecomposable MD4-groups.

In [12] and [13] we have considered a special interesiing case, of the real
diamond foliation associated to the real diamond group R. H,.The present
paper is concerned with a similar problem for the remaining indecomposable
MDi4 - groups and is a detailed exposition of the results submitted for publication
in Comptes Rendus Acad. Sci, Paris. '

An MDé—group in terms of D.N. Diep is a four-dimensional solvable Lie
group whose orbits in the coadjoint representation (i.e. the K-representation)
are the orbits of zero or maximal dimension. The corresponding Lie algebra is.
also called an MD4-algebra. Let us recall that a Lie algebra § is decomposable
if @is the direct product §, X &, of its nontrivial ideals.

We begin our discussion in Section §1 by giving a complete classification
of all MD4-algebras, This result is a complement of an unpublished paper of
D.WV. Tra. : ' :

In Section §2 we describe geometrically the K-orbits of all indecomposable
MD4-groups.

Section §3 is devoted to the discussion of the foliations formed by the
maximal-dimensional K-orbits of all indecomposable MD4-groups. These folia-
tions are also called MDé-foliations. We shall also fa topological classification
of all MD4foliations.
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Finally in Section §4 we give a characterization of the Connes’ C*-algebras
associated to all MD4-foliations. .

" The author expresses his deep gratitude to Dr. D.N. Diep and Dr. Ho Huu

Viet for suggesting this study and for many helpful discussions. It is a particular
pleasure for the author to acknowledge many valuable comments of Prof, p,
Cartier. The author would also like to thank Dr. D.V. Tra for helpful
suggesiions.

§1. THE CLASSIFICATION OF THE MD4-ALGEBRAS.

The MD-algebras have been first considered by V.M. Son and H.H. Viet [9].
Who have given a necessary condition for a solvable Lie algebra to be an
MD-algebra and have considered an interesting example of the real diamond
algebra (see [9, Sect. 4]).

tn 1984, D.V. Tra made a preliminary classification of the MD4-algebras,
which was been carefully discussed at the Seminar on Harmonic Analysis and
announced in the Annual Scientific Conference at \he Hanoi Institute of Mathe~
matics in November, 1984, ' _

In this section we complete Tra's result by a final classification of all
MD4-algebras. : '

First let us recall Tra’s result. Let G be an MD4-algebra with basis {X, ¥,

Z, T} and g1= [8, Gl, R® be the com_mu{a‘tivc Lie algebra of dimension n,
Tra has proved the following: ' :

pROPOSITION 1. . Assume (hat @ is decom posable. Then Q:R”xé, where éis
an indecomposable ideal of G, 1 < 1 << 4.

II. Assume that & is jndecomyposable, Then G is isomorphic to one of the
following Lie algebra :

1. @' = gen (Z) = B, [X, Y]=aZ, [¥, T] = bZ, [T, X| =c%, [X, Z] = zZ,

v, Z] = yZ, {T, 7| = 1%, where abeayicR, 4+ 4+ 24+ g2 + 220
and at + bxr + cy = 0. " : :

9. Gle=gen (¥, Z)= R, (T, X] =0

2.1 ady, € Auty G'= GL, (B), ad  ==ad o €R

2.2, G = Lie (Aff €): the comples affine Lie algebra.

3. g = gen (X, Y, Z) == 33‘ 2dp cAutg Gl =~ GL3 (1)

4. @8 =gentX, Y, Z = Lie (II;): the 3-dimensional Heisenberg algebra,
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I agy a 071
, -
adT = | 0y, —0y, 0 eEndEg = '\Iat3 (B)
dg; @5 O
WS '
where au—l— am ay, = 0,

The main result of this section is the following complete classification

THEOREM 1. Under the above notation,

I. Assume lhat G is decomposable, then G = R" X g';‘, where g is an indecom-
posable ideal of G, 1 < R< 4. - :

I1. Assume that G is {ndecomposable, ihen G is zsornorphtc to_one of the
following Lie algebras:

1. G = gen(Z) =
1.1 Gaorsn 2 [T, }1]‘“2 (Y ]=[TZ]=[{5Y]=[X,Z]=[Y, Z]=0.
1.9 oyt [Ty T,K}:‘[T Y]=[X,V]=[X Z]=L[Y, Z]=0.
2.6t = gen (Y, Z) = &% [T, X]=0, ady < Endy ¢ == Mt (R), and,
adp & Auty Gt == GL, (R). ‘

. (?‘. 0\ . .
2.1. @4,2,1@0 rade =0, adqp = o 177 h e RT

L1 1
2.9, Gupo : ad, = 0, ad =-( )
43212 X T. 0 y

3 cad. — 0. ad cosg  sing
> g4’2’3m R (—si.rl(p cosp ),cpe(ﬂ, ™)

, 0 1 10
24, G, 5, = Li(AffC) : ady = (4' __0),_ ad, %_(0 i)

3.6 = gen (X, Y, Z) = R?, adT € Auty G = GLS(R)G

A, 000 B
3.1, §4.,3.1(h1,12)=“dT=[” hg 0 b Ay, kg €R
0 0 1
10
?2@ ady =10 A oh AER"
4,8,2(A
2(n) 100 1
o ff 10
3.3. g‘{(_,s‘g:ad]ﬁzo 1 :t{ -
o 0 1
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cosp  sinp O
3.4. gé’&é(}_,@ :ady -—sigch (‘CO)SCP g L AE RS e (0,)

4

k. G\ = gen(X,Y,Z) =~ Lie(H, ), ady € End Gl= Mal,(R).
R

010
&1, Gip P Wp=|—1 00

0 ¢ 0

4.2, G,y o= Lie(RHy)

-1 0 0
(the real diamond algebra): ad,. =[ o 1 O]
G 00

Remark 1. For convenience, from now on each indecomposable simply connec-
ted MD4-groups is also denoted by the same indices as the corresponding
M Dék-algebra. ‘

For example, G b is the simply connected MD4-group corresponding to

Fra1 ¢

Proof of Theorem 1. Clearly it suffices lo prove Part II of the theorem.

1. Assume that ¢ is the algebra given in Proposition 1, IL]1, . e. § =
=gen(X, Y, Z, T) with (X, Y] =aZ, [¥, T = bZ, [T, X] =cZ, [X, Z]= zZ,

Y, Z) = yZ, [T, 2} =1Z, a® 4 b* + *+ 2% + y? 4 2 £ 0and at + bz + cy—0.
Let t3# 0. By changing T by 7T’ = %T, XbyX =X — —;:- T — ,.%_ cZ,

¥ =Y ‘.-‘Lt T + lt bz, we get |I°, Z] = Z, [T, X*] = [T" '] = [X’, V'] =

(X, Z]=|Y, Z] = 0. Hence G =G, ,
' . 2 2 2

The same arguments show that G==¢, . o if " +y" 417 = 0and g: %1 i
ifm=y=t=0,a2+b2—|-—c2=,'~_-0. &

9. Assume that § is the algebra givem in Proposition 1, II. 2 and & is not
Lie (AffC) = g, o , . Then G = gen (X, ¥, Z, T) with § == gen (¥, X) = R?,
[T, X] =0, ad, € At G == GL, (R, ady = aad,., o € R, By changing X by
X' = X ~— a7 if necessary, we may assume that ad, = 0. By elementary {rans-
formations of malrices, we get the similar classification of ad, as follows:
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‘A O 11 CO8( sing
{ P p % - .
\O 1) , (0 1) ’ ( o cos ), Ae R* o € (0, ©). Thus G is isomorphic to

one of the zlzebras g,{’, 9, 1 () g,h 2,9 and g}h 2, 3(9) AeR*% oe& (0, %)

The remaining assertions of the theorem can be obtained in a similar way,

§2. THE GEOMETBIC PICTURE OF THE K-ORBITS OF THE INDECOMPOSABLE SIMPLY
CONNECTED MD4 —GROUPS.

By Theorem 1, the study of the decomposable MD{-groups can be directly
reduced to the cases of the MD—groups of dimension 3 orless. Hence, from now
on, we are concerned with the indecomposable simply connected M Dé—groups.
In this section we describe geomelrically the K—orbits of all such groups.

Our method is analogous to thatused in the case of the real diamond group
R.H, (see [12]). For each MD4-group G, we denote by Q, the K-orbit inclu-

ding F of the dual space §* of the Lie algebra § corresponding to . It should

be noted that for G = (7 423( Ty G oy 04’340 ;), 4iis €XP1 G — G

is surjective (see [8]), hence Q can be given by:

Qp ={F, G, UeGls (2.1)
where F;; is the linear form on G as follows:
(Fy » X) = (F, exp (ady;) (X)), Xeg, Ueg. (2.2)

For the remaining groups, (2.1) is easily verified by direct computations. The
dual space §* of G = gen (X, Y, Z, T') can be identified to R% by means of the
dual basis {X*, Y*, Z*, T*}. Unless otherwise stated, throughout this section, F
always denotes a point («, B, v, O) in the §* == R*.

As an application of (2,1) and (2.2) to the indecomposabe and simply con-
nected M D4-groups, we oblain the following results ihe proof of whichis ana-
logous to the case of R. H; (see [12]) and is therefore omited,

THEOREM 2. (The picture of the K—orbits)
1‘ G = G’;‘,:l':l N i
(f) y = 0 then Qo ={F}. (the 0-dimensional orbif)

(ilyy 2 0 then = @, By, ), 1 € R} a plane.
{the 2-dimensional orbit)
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2.6=0Gy -
(D = 0 then Q ﬁ{F} (the 0-dimensional orbit)

(ffy v = 0 then Q= {(x, B, 7, 1), v2) 0} : a half-plane.
(fhe 2-dimensional orbit)

3, G is one of fo. 2, T\, Gé,g’ 9? L ¢ B¥,
(i) B=Y =0 then Q = {F}. (the o-dimensional orbit)
(it) B4 4%+ 0 then
— [{(a p.es ves B, s te B} when' G = G4,2,1, (A » € B¥
{(a, e’ , Bse® 4 ye*, 1y 5, L e f{} when G — 64,2 2,

(a vertical cylinder) (the 2-dimensional orbit)

£.G=GC; 5 30y 9 e( 0, ©). Let us identify @*4’ % 3 (@) with R X € X R,
F with (e, B+ iy, ) € B X C X R, 9 (U, 7).
(@) B iy =0then Q, = {F}. (the 0-dimensional orbit)
() B+ iy # 0 then 2 = {{e, B+ iv) r;“““ ) s, t e R} : a vertical cylinder,
(the 2-dtmenszonm orbit)
Ty
5.6=06, , ,= Affe .
({)yp="TY=0ihen ‘O‘F = {F} (the 0-dimensional orbif)
(i) B2 + v 5= 0 then O = {(x, 1. & 0, y°+ 274 O =7 x(ag)* X R.

(the umque 4 dzmmvwnal orbzt)

6. G is one Of G&.,& ](11,.:\_2 ), 4_’3, a(}), 4, 3,', 3, ?t. 7\. A e R%,

. (l) o=pf=yv=10 thc‘nl Qp = {F},‘ (the o-dimensional orbit)
(i) «? + p24 4% £ 0 then

Ay sk,
{tae T, 8¢ 2, ye®, 1), 5, k€ H} when G =G 5,1, (0 Ay A g€ R

Q=
£ {(mcSA \ « sesh - ;zes"", ves, b, s, te R} w?zen G = (z, 3, 2(0) * AeR*®
A "
{(aes, ose® + fe’ ' g as? e +_Bse3 Avyes, B, s, [En} when G = ("4’ 33
(@ verlical cylindery. (the 2-dimensional orbii)
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and

the

G =10, 34(”“ ACER (pE(O'T) Lezusmem:fju? (A(P)wfffl(;;\{ﬁ

3

szth(x——',.,6),ACR,¢:(O,,) . _
(o 4B =7 =0 then Qp, = {E}. (the O-diniensional orbif)
(@fy1o 4 18|24 2 = 0 thenQp = {((= + fﬁ)cse@, veshr by, s, t sB}

(a vertical cylinder) - o (the 2-dimensional orbit)

8. &= G:?,’,l

(Yo =B =y = 0ther QO = {F} (the O dimensional orbzi)

(i) ¥ 4 p° £ 0 = y then 2, = {(@. y. 0, 1), @ Pyt = P4 §?}: a vertical
cylinder of revolulion _ . (the 2-dimensional orbit)

(i) v 5= 0 then Q= {(:L‘,j fy,t) 2?4 g? — o — p? = 2y(t—0)}- a paraboloid

of revolution. , _ (the 2—d:menszonal orbity

9.6 =06,,, =8 .

(o =3=vy=0then, !F} (the O-dimensional orbil)

() o= 0 3 B, v = 0 then Q, = {(0, 4, 0, 1), By > 0}:-a coordinate

half —plane, - ‘ :  (lhe 2-dimensional orbit)
(iiiy o # 0= B = vy then O = {(x, 0, 0, 1), 2z > 0} : a coordinate
half- plane. - - (the 2-dimensihnal orbil)
(iv) of 7 0 = v then Q) = {{x,y, 0. 1), :r:; = «B, ap, ax > 0,y > 0}: a

.vr,rizcal hyperboltc cﬂmdu. . (ihe 2- dunenszonal orbit)

@) v +0 then O..F = {('v,y Y, t), xy —-a{l =yt — d}: a therboltc
paz_abolozd , ' (the 2- dzmenswnal o.rblt)
§3. THE MD4—FOLIATIONS AND THEIR CLASSIFICATION

This section is devoied to the MD#%—foliations,i. e. thefoliations formed by
K —orbits of maximal dimension of the indecomposable simply connected

MD#4—groups. The main results of the section is the following proposition and
theorem.

o
:}‘

PROPOSITION 2. Let & be an mdecomposable simply connected MDéi-—group,
be the family of all its K — orbits of maximal dimension and V

= U{Q, Qe F, )} Then (V. F )isa measared foliation in the Connes’ sense.

We

call this foliation MDi—foljation associated to G.
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Remar¥ and Notation. It should be noted that Ve is an open submanifoid in

the dual space G* = R* of the Lie algebra & corresponding to G, Furthermore,
for all MD4—grovps of the forms G,;, n (1 < n < 4), the manifolds VG

are diffeomorphic o each other, Hence, for convenience, we will write
o
(V a*n’_.')) for (VGL F e

n [}
! F { PPN G4,n,-..

THEOREM 3. {The fopological classification of the MD4-foliations)

1. There exist exactly 9 topological types of the MDk-foliations: {(V, F 1)L,
{(Vp Fr9lb {Ve Faygqy, Vo, Faph PR} Ve F 5 () 060, m)},
Ve Fo )b Vs F5; 00, 000 Vo Faoyh Vo Fy 50
?\-ER*: Ais A-2 € R*}s {(VS %:3,4 (?\g(P) s AERY, S (0,7!)}, {(V4’ ?4,1)} s
{V, F 91 We denole these fypes by ?1,._.’ F, respective.y,

e va

2. (i) The MD4—foliations of the iypesF Fy Fy F Fs5 Fy are (rivial

fibraiions with con;:ected fibers on RXR* R? UR?, B x &7 » ReXR {p[} .
S2 respectively, where {pt} is the one-point space.
(i) The MD4-foliations of types ?’7,_ F.. ‘3:9 can be given by suitable actions

of »? on the foliated manifolds V3 =(CXRIXR, V, = (R°) XR.

Proof of Proposilion 2. The proof is analogous to the case(R.Hs (see[i2, Th.2]).
First we need to define a system of smooth vector fields on the manifold Ve
such that each K-orbit Q from ¥ is a maximal connected integrated submanifold

corresponding to tkat ‘system. As the next siep, we have to show that the ILe-
begues measure is invariant for the polyvector field generating the above system.
The last step is a simple matter and can be verified by simple computations.
Now we introduce the systems (of smooth vector fields) corresponding to each
-of the MD4-groups. For convenience, we denote by d ,... the system (of smoolh

vector fields) corresponding to G4’ n...« By direct computations, we get;
1 é . 9:1 ("L‘S y3 zl i) = (z, Os 0} 0)
i P 5{2 (x,y, 50 =(0,0,0, —Zz)
6{1 (x, y, 1) =(0,0, £ 0
61'2 H 5{2 (m‘ Uy Z, I = (0, 0, 0’ —Z)

N

on the manifold Vig R XR* X R-

9:1 (-T; o, 2, i) = (09 )‘g-v 2, 0)
2, <-52’ TOR 5{2 (x, 4,2, D =(—14y, 0, 0, O
Kg (@9, 2, )=(—50,0,0), A € R*.
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6{1 (I, s & ﬂ = (0, U, et Za 0)
Sosn: %2(3- iz = (-y 0,0, )] .
(%3(% gz, ) =(-y=~21000 o

on the manifold V2 = R X (R** X R.

L @, g+ iz 0 = (0, (3 + ine®, 0)
F5,3(0) F { Xylx, y + iz, 1) = (— ycosp + zsingp, 0, 0)

X, (x, y+iz, 1) = (— ysing — zcosg, 0,0), ¢ < (0, )

on the manifold V, =~ R x ¢* w R,

5{1 (z, y, z, 1) = (0,0,0, 1)
Sy 4 Xy (X, Yy 2, 1) = (1,0,0,0)

(g, 50=(0.9,2.0)

Xy 6 t)=0,-240)

on the manifold V; == R X (R?)* X R.

X (@8 2,1) = (11 T, Ay, z, )
Koz g, 2, 1) = (0, 0, 0, —2y)
Zy@, g, 2, 1) = 0, 0. 0, —2gy)
X, (@ gy 2, 1) = (0, 0,0, —2), &y, Ay € R*

3. ‘53, 1(hgs Aod e

[ Xy g, 2, 1) = (Ax, & 4 Ag, 2, 0)
Ay (=, 4, 7, t) = (0,0, 0_, —AT)
Zg(@ yy 2,0) = (0, 0, 0, —x—hy)
8{4 (Toy, 2, 1) =(0,0,0, —2), X € B*

Iy 9(h):

Sg3t A2, g, )= @ T+ Yy, y+ 2z, 0)
Xy, 4 7, 1=1(0,0,0, — z)
D Xy @y s ) =(0,00 -z —y)
) 5[4(37'9'! 5, H)=(0,0,0, -y —2)
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¢h e manifold V = (R ,) T ""i

Ih )] T w5 D = (@ + el iz, 0

ﬁg(a: - iy, z, 0 = (0, 0, — xcosp - ysing)

X & 4 iy, 7, 1) = (0, 0, — xsing — ycose)
ll 5{4(33 + I.'fs ) = (0, 0, — }\.Z), }“QR*,CPE(O,T‘E)
on the mani{’oldv =(C X R)*X R

dd g ) A, g 5 O = (=1 2 0, 0
5{ (x: s 2 ) = 0, z, 0, )
] 5{43(1: Yy o ir) = ('“"" 0, 0, ——’U)

Fiat | @ n)=Cnu00
\ 6{2(:3' O, <, f= (0= z, 0, x}
l K@ )= (5 0,0, =)

on the manifold V, = (R%* X B.

It can be easﬂy verified that each K — orbit Q& from %p,... is a maximnl
connected integrated submanifeld cortesponding to &, ,... (I<<n< 4. This

completes our proof,

Proof of Theorem 3. 1. Let us recall. that two. foliation (V, ¥) (V, ¥) are
said to be topologically equivalent if there exisis a homeomorphism hA:V -V
which takes leaves of ¥ onto leaves of 77,

Let 112,1 (M) }12"2: V2 - V, (AeR") be the followmv maps :

By 1y @9, = (@ sign@). 191 Y, 2,0
hos (@55 5 8) = { (2,1, 2 ~glolyl, ) - g0
((.’[‘,O,Z,t) y=0
where (z, J, 7 1) € Va = R X (R)* X B, b e R*, and let fiy 50y ¢
Vy -V, (@0, =)) be the following map
Rog(p) @ re"sD = (g, elort®ie %0
where (z, re®, HEV,= R X € X R, 9 €(0, ).
It is easy to prove that hy ) hg’g are homeomorphisms which take
leaves of C‘le(?\)’ :.9:::2 onto leaves of ?2 1 () (A € R*) and 4, 3(p) is homeomor-

phism which takes leaves of ¥, ) ¢ € (0, ®). Thus

,3(0) onto 1eaves of ?2 3 (

2
the foliations (V, ,“372,1(1)), (V2 ,‘J—“é’z) (A € R*) are lopologically equivalent fo
each other. Similarly for the foliations (V, , ?2 3@)), o & (0,7).
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The topological equivalence of the foliations Vs, ?3,1(11, 12)'), V3’€:3.2(?~))

and (V3,F; ), 4;, 4y, h & R* or the foliations (V%3 ;3 o) A €R* 9 &(0m) is
also verified similarly by considering the following maps Vy— Vo :

. Ay 1/hg
By 10 1)@ 0 25 D = (sign@)- [z [ 7, sign@). [yl ",a0

LV VR

1‘3,2(1)(°3s Yo 1) = (T, ¥, 7, ) with
= sign(z) . | | VA
o~ 1 1 1/A
y = sign(y-,—i—:r-lnlx[)y--i—xlnixl z# 0

sign(g) . | y | Y z=0

1

4

e
-

&
~

I

t .
hy (@9, 20 = @, §, 2, D) with

= ';c

q

T=(y—zlnjz| ,z+0

y ,x =0
L~ 1 1
= z_-éuy1n;x]__,?(y-.—-x1nlxl)1,n y—zinjxil, x40,
y#=xlin| x|
z—%ylnlxl C x40, y=zlnjz|
| = - =0
T=t

Whﬁ.['e (CF,H- 2’,!) € V3 = (33)* X R’ Ri’ 3.2, 7\' = R*y and

e Ry i, €p)(reie, z, 1) = (e(lm‘+i9)ie_icp,sign(z) 1z ]Iﬂ, )
where (reie, Ll)e V3 =~ (CXR)* X R, » € R*, ¢ € (0,%).

2. (i): The triviality of the folialions of the types %Fi,?g, ‘3’5 is obvious. It
should be noted that /V , ¥ WiV ,F » and (V , ¥ ) are the
( 2 2,1 2 2,3(—2-> 3 310,1)
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foliations of the types ?3 5574 and ‘?6_1'espectively. It is easily séen thal thé
following submersions:
P, ¥, =RXEY XR=R XS X R, X B> RXS
2,101) ¢ Vo = R X XR=R X +
P?,I(l) (:1‘!,.. 54, v).= (x,8), (:c s,'u,rv) €R X Sl. X Ry XR

P :V =R C.*”R——>R xR
2.3(%) 2 X % *

P nlmre, y=(, o), (= rel’,)eR X C" X R
2,3(—)

2 : . L

and o ' L
N I = : 9 S . -

2
P3’1 4,1 (s, u,v)=3s, (5,4, 0) €S X Ry X R

define the foliations (V,, ?2, 1(1)), (Vz’ ?2'5%)) and (V,, 973’ 1(1'1)) respecti-

vely. Hence Lhe foliations of ¥, ¥,, ¥, are trivial fibrations. Clearly, the
fibers of the foliations of ?Fl s Fas Fy ?6 are simply connected, but the fibers
of the foliations of ‘3’4, ¥ are connected and nonsimply connected, (iii) Let

us consider the following actions of R? on Vg == V,:
iRExV,>V
P34 3 3
P3’4 ((I‘, 3) s (ﬂ: + 'iy9"‘é‘! t)) = ((:L' + ly) e:l'-ﬁ' L] 2,88 o f +I') £3.1)

S ER? (@t iy, 5D e V= (CX Ry XR

)
Pyt R % V4 —a-V@

- e A

. p 4,1 (19, @Y 2 D)= @ 7 2 1)

a == rcosr — ysinr — sz

‘= asinr 4 yeosr — sz ' T (3.
T=1z
T =1 —s(x -+ y)cosr 4 sy ;—m) sz‘nr-{-s?z'

S (PSS ER L, (1Y ) €Vi= (R X R

50



04,2 REXV,—=V,

P .

. P 4-,72 (([', 5}, (o I,l], 72_" l)) = (z, I, % t)

yz \

- s '
r—e (m+1.——»——x2+y2+22/

- -5 xz -
= e L r,—— 3.3
I (J+ x2+yz+zz) ( ),
;‘=’2’
-~ 2.1 2 z
t=t+r.___x;.,y___ o EHE

z2 2tz (x2+ gy 22)®

n)ER , @paheVi={R)XR.

It can be verified that ther above actions pg . » Py 12 P40 generate the
foliations (VS’ ?3,4( L i;—)) s (Vs 174’1) s (Vo %’4,2) respectively. Consequently

the foliations (V5. 3,3 o)) » A € R*, ¢ € (0,7) also have the similar proper-

ties. The proof is complete.

§ 4. THE C* - ALGEBRA ASSOCIATED TO THE MD4 — FOLIATIONS

In this seetion, we determine all C* — algebras associated to the M D4-folia.
tions. [t should be noted that if the foliation (V, %) comes from a Iibration
(with connected fibers) p : V — M, then Cr(V,F) = Co (M) ® K, where X
denotes the C*-algebra of co npact operators on an (infinite dimensional} sepa-
rable Hilbert space (see [ 2, Sect. 5]). Furthermore, topologically equivalent
foliations yield isomorphic C*-algebras (see [11, Seet. 2. g

The next proposition and theorems are fundamental in the section. The
results on the real diamond foliation (V 2 ?4,2) are included here for the sake

of completeness.

PROPOSITION 3.
C(V;, Fy )= CoRXRIR K C" (V,, Fy p) == Co (R2 | BRY) @%;
C" (Vyr Fy g, ) = C (Vy:Fg,0) =2 Co (R X SH®@ Z, heR*;
o (V2 ‘3’2,3(?}) =C (R XR)® K, ¢¢€ (0, =)
C'(Va, %, ,) =CO%: | | |
c* Vs, 55:3’1(11’ Kg)) s G*(VS, %:3’2(?‘)) - C*(Vs s %73’3)_3 C(SZ) ®@ %,
A 12,‘ A e R*,
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THEOREM 4. 1. We have the following canonical extensions
(1) 0~ ColB? U B) ® X~ C* (V4 F5 , (ngy) — ColR2) @ % — 0,
(1) 10 =GR X R) @K —~ C(V,, F, ) —~ (R:) @K —~ 0,
where A € R*, ¢ € (0, 7).

2. We have the following canonical repeaied exfensions:
(Vg):0—~Co R X R @K —~CV,, F, ,) - Co (R)" X B) X, R*> —~0,
(YP:0—Co®R* UR)® K —~ G (B)" X R) X, RZ ~ C*® K — 0, where
P =1, o I8 the action given in (3.3).

THEOREM 5. Tke C*-algebras associaled to the nontrivial MD4-foliations are
characterized by the topological invarianis in KK-theory as follows -

1, (i) Index Cx(V,, ¥ 3’4<ch)) = v, = (L,1) inthe KK-group:
Exi(C, R )X, G, (R* U RY) RK) = 72
where h € R*, ¢ € (0 7).
(if) Index C* (V,,F, ) = v, = (1,1) in the KK-group:
Ext (C, (R YO, C, (R* X R)QFK) = 72
({ify Index CX(V,, F, o) = {V4, 7, } with
vg = (1.1) in Ext (C (R?)* x R) le R%, € (R* X R) @K) == 77,

v, = in Bal(C*®%K, C_(R"URYQX ) = Homy, (24, 24>

—

-1 0 0
1 -1 0
0 1 —1
0 0 1

ey DD A

Proof of Proposition 3. The proof is straightforward by theorem 3.
Proofs of Theorems4 and 5. Theorem 4 is obtained similarly to the case of the
real diamond group R. H, (see [13, Th. 1]). ’

Theorem 5 is an immediate consequence of Theorem 3 and [13, Th. 2], using
the formal properties of the Thom-Uonnes isomorphism of [1] (see [11,
Rem, 3.4.2 and Lem. 3.4.3]). :

Concluding Remark. It should be noted that the results of Sections §2, §3, §4
are true for all indecomposable connected MD4-groups.

‘We emphasized in Section §2 that the similar problem for the decomposable
M Dé-groups can be directly reduced to the case of the MI-groups of dimension
8 or less, In particular, it is clear that:
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Remark 2.Let G be a decomposable M D4-group and @ = R" X & bhe
its Lie algebra (1 <{ n <{ 4). Then the dual spaces §* of & can be given by

g =R" x @* where g* is the dual space of g Let F(a,B) € §* == R" x g
and F(ﬁ) € §'. Denote by Q. and QF the K-orbits including F and F in §*

and G* respectively, we get

Furthermore, é" is an indecomposablec MD —algebra of dimension (4 — n),
Let us consider an example on the group & =R X G3,2(_ )" It iz a
decomposable MD4.-group corresponding to decomposable MD4-algebra
G = R X Gy p_y . Recall that G, 0 1 is simply connected Lie group corres-

ponding to the 3-dimensional Lie algebra G, 2(~1) with basis {X,7, T}
satisfying the relations : [T, X} = —X,[T,Y]=7,{X, Y] = 0 (see) [6]).

PROPOSITION 4. Lef F(u, «, B, 0) € " = R X G, s~ =R ¥ R and

F (z, By O) € g*&g(_l) = R” Denote by 2, ,5;.‘ the K-orbils including F, F
In G, Gy gc—y Tespectively. Then Q = {u} X Q is given as follows
() « =8 =0 then Qp = {F}. . (lhe 0-dimensional orbit) -
(o7 0=p then Q= {(u, 2,0, 1), ex > 0}: a cordinale half-plane
(Ihe 2-dimensional orbit)

({iya=03p then Q= {(u, 0, g, ), By > 0} : a coordinate half-plane
{the 2-dimensional orbit)

()ap=0  then Qp = {(a, 2, y, 1), vy = af, @2 >0, By > 0} : a verlical
hyperbolic cylinder. (the 2-dimensional orbil)

PROPOSITION 5. (i) The family ¥ of all two-dimensional K-orbits of G, (-1

forms a measured foliation on V — { Qfae?'} o (Rg),, X R- Thefoliation (ﬁ,‘%)
can be identified wilh (Vg, ?2) given in{13, Sect,2),

(ii) C*(?, %) can be included into Lhe following canonical exlension :

(¥):0 5> CR'URIOEL — C(V,F) > QX — 0

with its topological invariant in KK-theory given by
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G=R x G,

-1 0 0 @

- . [—1 0 0 i
Index OV, F) =2 Y = 0 1 —1 0
. /] 1) J )

in Bet(C! ® %, C(R' U R @ Ky= Hom_(z*, Z*).

The Proposition 4 is oblained by the same woy as in {12, Th1]. The Proposi-
tion 5 is an immediate consequence of [13, Th.d and 2). It follows from Proposi-

fion 6 that:

COROLLARY 1. (i) The family F=RX F of all lwo-dimensional K-orbils Q of

3,9(— 1) forms a measured foliafion on V = [ J{QeF} =R X Vo=

SERX(R*) XR -

(il CV,F) = C(R) & C"’(T?, ‘:ZE) can be included into the following canoni.

cal extension -

(¥): 0+ Cy(R) DC(R* UR) R K — C{V, F)—» CqR) D C* ® K — 0

with its topological invariant in KK-theory given by

-1 6 0 1

—{ 0 0}, .

Indexr CV, F) ==y = 0 1 —1 0 in the KEK-group
_0 0 1 —1

Ext(Cy(R) @ C*® K, CoR) ® Co(R' U R') @ %K) = Hom_(z%, 7% ).
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