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SUFFICIENT OPTIMALITY CONDITIONS FOR
DISCRETE MINIMAX PROBLEMS IN THE PRESENCE
OF CONSTRAINTS IN BANACH SPACES

DO VAN LUU

I. INTRODUCTION

Let us consider the following discreie minimax problem:

Minimize max fi(.:r) ’

) ief0:N]
Sabject to F{x) ¢ K and z € C,

where f, is a functional defined on 2 real Banach space X ({ = 0,1 ,..., N), C is

a non-empty closed convex subset of X, F is a map from X info "a real Banach
space Y and K is a closed convex cone in Y with vertex at the origin,

The discrete minimax problem (I) is 2 nonsmooth problem which is closely
connected with the smooth one studied in[2)],[3] In the finite-dimensional
case, necessary and sufficient optimality conditions for Problem (I) involving
only the second constraint are given in[1]. In the case of irfinite-dimensional
spaces neeessary conditions for Problem (I) with ¥ = 0 are established in [2],
and sufficient conditions are studied in [3 L

This paper presents some rasults concerning sufficient optimality condi-
tions for Problem (1). The paper consists of 4 sections. After the introduction,
in Sections 2 and 3, using an approximation properiy of the feasible set, we
obtain first and second-order sufficient optimality conditions for Problem (I),
Section 4 is devoted to the discussion of first-order sufficient optimality
conditions for the problem with inequality — type constraint involving a finite
number of functionals. From results of the paper, give us in particular some
known results including those in [3] for N = 0 and those of Dem’yanov,
Malozemov in {1] for the case when X and ¥ are finite dimensional,
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2. FIRST-ORDER SUFFICIENT OPTIMALITY CONDITIONS,

Throughout this paper we assnme that the map F is eonliﬁuously Fréchet
differentiable at a feasible point x.

Recall that a feasible point & is regular for Problem (I) (in the sens of
Zowe and Kurcyusz [2]) if:

F()C (x) — K(F (2)) = Y, ‘ @1)
where
Cr)y={A (x —7) {z€C A > 0},

K(F@@) = {k - AF@) ke K, A > 0},

The set of feasible points for Problem (I) is denoted by A.

It should be noted that the feasible sei of Problem (I) coincides with the
feasible set of the problem comsidered in [2], [3]. I Zis a regular point of
Problem (I), then by virtue of a resuit in [3], the feasible set i{ is approximated

“atz by the linearizing cone L of M at %, i e., there exisis a map §; M ~ [
such that

1@ — (=) =0l —Z)) for xe i, (2.2)
where

Ol =)/ iz =7(->0 (Whenle —= |- ),
L={zxe C(E) | F(z)z € K(F(z))

Throughout the forthcowming, ¢ will denote:
. ¢(x) = max fi (z).
ie|0:N]

DEFINITION. The feasible point = is said.to he a strict local minimum of
Problem (I), if there exists a number & > 0 such that (2} > ¢ (x) for every
rxeMsatisfying [z —2 | < 8,2  z. :

We are now in a position to formulate a first—order sufficient optimality
condition for the discrete minimax Problem (I). i

THEOREM 2. 1. Let x be a regular pointof Problem(I). Suppose that the maps

foreeos ¥ o 77 are Fréchet differentiable at 7. Assume, in addilion, that there is
a number B > 0 such that

maz < ;@) ,z=> > gilaj forall z¢l . _ '(2_3}
i€R(x)
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wheré _
R@)={ie[0:N] | f ()= max ffL)}
F€io: A]J

Then, xis a strict local minimum of Problem (I).

Proof. Takex € M ,x 7 x.Foreach /e[0: N],by virtue of the dlfferenuablhty
of f,, we have

f@=f @ + (f;@,z—x) + 0,(lz =), 2.4)
w‘ﬁere Oi(ljx-—EH)/|'mM;”->0(as[]m~—E|}—>0)_

We shall use the following inequality :

max { a,+ b, } > max a, 4 max b, (2.5)
icfo:n] " i€fo:n] ' ier

where a;, b are real numbers ({=0,.+0,N),

[

R={ie[0:N]a,= max a;},
jE[O:.N]

‘It follows from (2.4}, (2.5) that

o(x) = max f; (z) > ¢(x) + max 1< fr(x), x — >0 ([z—z)))

iglo:N] i€nr(x)
P <P(-1)-I—max(fiw)w“aﬁ-i—mmo(!x—xi') (2.6)
i € R(x) :e[o N

From (2.6), we see that for ¢ > ¢ there exists 8;> 0 such ihat
@ (X) > LPCE) + max < f;(g), £ —x> —cllz—x I, (2.7)
i€R(x)
for all z ¢ B (z, 8), where B(z, 8,) stands for the closed ball 2round z - with
radius O,. - .

Since the feasible set M is approzimated at E:"by Loiorxe M, x _ x

may be expressed as @ — = = =z, -+ ¢, with v, & Lflz, 1=0 (fx -z ||).
Consequently,
9(@) > ¢ @ + max (< f;@), 7, > — 1@ | ed)—e o= 7 |
i€ R(x)

> ¢@) 4 max = f (@), > —max | f; @ |z, | - sfz—T| ©2.8)
I€ER(x) T HEN,

It follows from Assumption (2.3) that

¢ ) > @) +Bla, I — maxif @I oyl —clax—2j. ©.9)
i€RG)
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Sipee [|a | =0 (o —x ||), there is 2 number & > o such that, for every

reB(x, 8) N M, \
lzal <cliz—zl, ' 2.10;
which implies
l]sr:l[]m[lx—E—«xg[I}(l-——e)[]x—-';f:i[. 2.1

Taking & = min {3,, 8,} and substituting from (2.10), (2.11) in (2.9) we
have '
e@) > o) BA —e)—cd el .z f, (2.12)
for every x € B(x, 8) (3 M; here

A =max| fi(z)].
i€ R(z)

For ¢ >0 small enough, g§(1—¢) — '3111 —¢ > 0. Therefore, ¢ () > q;,(_;f-)
forallze Bz, N M,z +rx.

The proof is complete.

We would like to point out two consequences of Theorem 2,1 for the class
of smooth problems studied in [3] and for the class of finite-dimensional dis-

crete minimaz problems studied by Dem’yanov, Malozemov in [1}, First, let us
consider the following problem: '

minimize f,(x)
(II) { subject to F (x) e K,
and e,

where f, , F, K, C are as in Problem (I). Problem (II) is discussed in [3] by the
anthor, and in [2] by Zowe and Kurcyusz,

COROLLARY 2. 1. Let x be a regular point of Problem (II).
Suppose that the maps fo, F are Eréchet differentiable at © € M. Assume, in

addition, that there is a number B >0 such that

<f (Zhe=>pllz) foralzel

Then, x is a strict local minimum of Problem (I1).
Consider the following discrete minimax problem:

minimize max f.(x),
(1) i€ [0: N]
subject to r € C,

where fi are functionals defined on a n-dimensional space R? Cisa non-empty

closed convex subset of R”. This problem is discussed by Dem'yanov and
Malozemov in {1}
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COROLLARY 2.2, Sappose that fo yaies fN are differentiable ai = & (.

Furthermore, assume {hat

, of ; () ' '
min  max < g > > 0, _ (2.13)
g&aC (x) 1ER(x) - S : : o :
Holf =1
af (a« of. (% of . (7 .
where ) ~=( a’( ) oo i { ))(usua! derivalivé). Then, T is a siric
o an

local solution of Problem (II1).
Proof. Since the set {g € R™ [/ g // = 1} is compact, Condition (2. 13) is
equivalent to '
3f Ty

a ~

max <
i€ R(z)
Thus, all the hypotheses of Theorem 2.1 hold and therefore the corollary
follows. '
Corollarises 2.1 and 2.2 may be found in {3] and [1} resp.

,q>>[3//g//torsomeB>Oandallqu(m)

3. SECOND-ORDER SUfFIC_IENT OPTIMA.LITYACQNDITIONS

We now formulate a second-order sufficient optimality condition for
Problem (I)

THEOREM 3.1. Let = be a regular point of Problem (I). .Suppose thaa‘ the maps
for f,\, , F are twice confinuously Fréchet dszerenfzab!e at x und

a) Lhere is a Lagrange multiplier A & K* such that for everyx e M,

maz (F(T), x = 5 — (As F* () (@ =) 0, 3.1)
t € (Rx) . o .
(A Fz)y=0; | \ (3.2)
b) there exisls a number ¢ > () such that for every g € L, x € M,
maz £1(2)(g, 9) — (/o B (sr)(g, g)>>oﬂgu , (3.3)
leRg(:c x- a:) ‘
where
R(:L,:c—-x)—{reR(x)l(f(x) a:—-:z,)wmax (f(a:) zr—x )

o je R(:E)
Then, z is a strict local solation of Problem (D,
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Proof. Take # € M, & 5 x. As fi is twice differentiable one has
ey PN Pyt “3 1 I P i —" —_— .
f, @="f;®) +{fix) T3+ ff@fe -z, z—2)+ 0, (lz - 2 12y, (3.4

where 0 (lx—Tx )/ g — 2 - 0 (whenl|jxz —2x] — 0).

z

Since (A, I (x)) > 0, it follows from (3.4) and Assumption (3.2) that, for
eachie[0: V], ‘ :

fi@ > fi@) — (A, F@) = f; @ + F@hz -7 +
+ '%r P @)z — 2, 2 — D)~ (A, P@)Z — X)) —~
—5 (A P —F o =)+ G(le — 71, (3.5)

where 5.( B .2)/ — , =~ O0(whenz —zx| - 0).

i z~z
Using (2.5) and (3.5), we have
¢(@) = max f, (x) > g(x) + max {{f (z). = — x) —E——f @ —z, x— 1) +
i€[0: N] iRty ¢

+ [; (ua,-- Ty )}—(/\ " () -:c\)-—-( A Frx)x - x, 2 - ),

which yields

?@) > 9@ + max < fi{z), z — z) = max_ @)@ -T2 —3) +

<+ min 0, (I — x| )——-(/\ @) —x)) — ._..(/\ F"(x)(.’r — T,z — x). (3.6)
i€f0: N) -2

It follows from (3.6) and Assumption (3.1) that for 3 > 0 there exists 6, >0
such that, foreveryr e B (z, 61) n M, ‘

0@ 9B + o { max f,@)@—Fe—d) — (AF@E -5 —5) —
2 —
lenz (.’.l:'.'l':—:[:)

ee—=af?). - B
Arguing as in the proof of Theorem 2.1, for x ¢ ¥, we have @ — x =
=z +2, withzyje Lillw, 1 = 0(f|z — @ || ). Hence, there is a number &, 0

such that, for very T & Bz, 8,) n M, the following relations hold
ley I<elz—Zl, Iz 1> A —e)liz—2]. 3.8)
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This implies
£
Hop <y Ixg le : (3.9)
Moreover,

max f*; () (z—x, x—T) =-max {f” (x). (.7:1, x1)+2f (@) (o T ”(a:) (:rg, 9) }
:ER(o:,:c a:) o :ER(sr.:c*'c)

> max { [} @z, ) —2 7 @ |z Izl =L F@ [ %y
1 € R, (x, x — %) N
;,rmxﬁ@ﬂamp—zmuuﬁamn%um@u—wmﬂu@nmg1.
i € Ry (% 2-) i € R(T) i & R(T) (3.10)
! Hence, in view of Assumption b) and (3.10), one-has

olx) >0 (x)+~ Iz, ® — max [ F7@ lelux p—
IER(CC)

__.—;—max 1@zl — E (z—z 1% | (3.11)
i € R(:L‘) o
Setting & = min {6 6 } and subsu{utmg (3 8), (3 9) in (3,11), we have

o) > ¢ @ +% &1 —9)2—~2:(1 — ‘.)AQ'_-E?AQ —éliz-z % 3.12)
for ail = e Bz, & n M, here A, = max || f;’ @ |

i € R{x)

Consequenll:,, for ¢ > 0small enough, ¢{x) > cp(a:) for all z e B(z, é\) N M,
¥ X This completes the proof.

Applylnﬂ Theorem 3.1 1o Problem (II), we obtain a second-order sufflclent
optimality ¢ondition for this problem (which may be found in [3])..

COROLLARY 3.1. Let © be aregular point of Problem (I1I).
Suppose that f , I are twice continuously Fréchel dif ferentiable at T and

. 8) there e:msis a Lagrange mulli ph er A € K* such that
(m A )G(C(x))* where ﬁ(x, n= @) = (A Fay,
b F@) = 0; '
2—-208 _ | Y]



)

by there is a number ¢ > 0 such that
226 N) G 8> oltl® forallge L

Then, = is a sirict local solution of Problem (I1I).
We close this section with an application {0 Problem (I11),

COROLLARY 3.2. Suppose that fo, ca ,fN are twice continuously differen-

tiable at = € C. Furthermore, assume that

'aﬂﬁf
g min  max{ ——,9220 o (3.13)
) g€clzx) i€ kix)
e dgl=1 -
_ o°f (@)
by ~min maz{———¢.9) > O  B.19)
g €clz) 1€ Rylzg) ox
igh=1

!_ o°f (x) 8°f () 1
62 fi(;) EJ::;I 63:1 o '-axi axn

© where
- ax

....... " e s 3@

2. 2 =
3/ {x) o°f (x)
5x _ox,  ox ox

n 1 ) non

Then, = is a strict local solution of Problem (III).
Proof. In R, Condition (3.14) is equivalent to
o°f (@)

Y

" max g, 9y > c/[g"/,f2 for some ¢ > 0 and every g € C(z).
i€ Rs(xs g) B o —

Thus, all the assumptions of Theorem 3.1 hold and the corollary follows,

. . 4. cASE C= X AND K = {0} x R

Let us consider the case K = {0} X R®, C= X,"“}here' {0} C Y, (Banach

spage), R™is the non-positive orthaat of R The problem we are ‘concerned
with can be formulated as follows: - :
"~
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inax f'. () — min,

i€[o :Nj
{av) F(ry =0,
h(£)<0 (=1,...,m),

where [ is a map from X into Y. fi,fzj U=0,..., N; j=1,. ,m) are
functionals defined on X,

Denote by M, the feasible set of Problem (IV). Consider a point = € M and
the set
I={ic[t:m]/h@)y=0},

and the linearizing cone Ll of M , at T: s
L ={veX/<m@ =<0 (el), F@z=0}
In this section we assume that the maps F, f,, h; ({e{O:N], jel) are
Fréchet differentiable at x .
It followsfom Theorem4, 1in [3}that it B (x)=Y 4 » the feasible set lf may
be approximated at T by L,

By an argument analogous to that used in the proof of Theorem.-2. 1 we
obtain the following fxrst-—order sufficient optimality condition of Problem {IV)

THEORE\{ 4.1 Assume that F'(x)X = Y andthereis a nnmber g ~. 0 such ‘that
maz ( f (@), =) > Bl forallze L, (4.1)
i€R (J:)

Then, =z is a strict local minimum of Problem (Iv).
Consider the following smooth Problem :

g fo (x) — min , k
B (z) <0 (i=,..., m)
where f , F, A (1 €[l : m])are as in Problem (IV).

From Theorem 4.1, taking N = 0, we oblain as an immediate consequencé—':

COROLLARY 4. 1. Assume that F'(x)X = Y1 and there is a number g =~ 0
such that

(fix), z ) > Bllz i for all x € Ly,

Then, x is a strict local minimum of Problem (V),
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A modified first-order snfficieat ‘condition {or Problem ({V) can be formts
lated as follows :

THEOREM 4.2. Assume Uzat F(x)X = Yi. Suppose, furttermore, Hzaf there
exist Lagrange multipliers y* & Y%, A,2> 0, l =0 (iel,;jel\I, is a

non-empty subset of 1), and a number p> 0 such that

a}maa:(f @),z — ) + {y*, F’(a:) (3’—33»-1'

.. . iE(Rz), , ]
+ Z A (h (a:),a, ——-:1:) (4.9
ier Lo ’
for all x-e M
b) max (f(x),g)>[;:lg”forallgel;2, where - R )
{€ RX) - Lo -

{$€X1<h’(ﬂ=)x> <9, (h (w),$>=0 (el
JEI\I}F()&:—G}
Then, z is a sirict local minimum of Problem (IT/)

Remark. It is interesiing lo note that L, C L. Thts, Conditicn (4 3) is Weaker

than (4.1), and hence, in Theorem 4.2, Condllmn (4.2) must be- added Theorem
4.2 contains Theorem 4.4 in [3] as a2 special case,

Proof of .Theorem 4. 2. Let x be a feasible point -of Problem (IV), x & z. In
virtue of fhe approximation property of M, and Hoffman s Iemma (see, [4]), x

may be expressed as the sum x = x -+ :c —[— sc; + Ty, thh :ci_, xl_]_ 3:1 €Ly,

Ty € Ly sl ﬂ—-O(EI:I:—J:II) and :r satisfying

I ::,-1 <G 2](11 (), =1) |_L v(h’(a:),:.r:1 } (C, :>-0) . “ 4
€IN 11 lel |

where

B, @2 )y = g(h; @)z (@), 2)> 00

0 , otherwise.
Since @, € L;, it follows readily from (4.4) that

eI G{~ 2 (R(@), T} (&5

€IN\I ' SR

Observe that, for ¢ > 0, there- exisis &, > 0.such that for every
x € BT, &) N My, ' '

Iy | <ellaZ [ @ | (=5} a=z:~ " (46)



For each i ¢ [O: N], we have

T @ =F @ +(f@r—z)+ 0.(I z==I)

One can choose a number 62 = ( such that

Clcy min d; — | Iy max ;| 22 @) [Y=1>0, 47)
1 '1€I\I_1 ier L F PN

where | I | is the number of clements of L
Consider {wo cases
a)flry i > Cejfjz—al.
From (4.5), we sce that
C: lle- Tl <=2l <G {—EI <1h;@’ z7) o : (4.8)

S NS

In siew of Assumption a) it follows frem Inequality (2.5) that, for ¢ > 0,
there is a mamber &, > 0.(8; < §,) such that for every x € 5 (z, 5,)NM,,
¢{x) = max [, (%) > plx) + max (fi (@) * —z) +min0, (|jx-z{)
=1/ N] i€r (x) _ [0 N]

> ¢ (v) + max ( (@ e—z )+ (¥% F (=) +
iER(a:) )

4+ Z AR GEhs—2) -21 (h(:c)m ry-¢ellea—zl
iel -
> olz) — E 7‘- R (x)sx-— :n)—- | m—a: .. o AA9)

Sabstituting (4.6), (4.7), (4.8) in (4.9) yields that, for every z € B ('x',. 8.) &-'I_{.‘T
e ={= SB »

- i . T - .-

¢ (x)>q>(m)—-2?~ ( h' (a:),:ci) -zx (h’(x), xz)._gh__x ” e

€Ny &1 e i
>0 @ —Zr (R @, =) =111 max (| h(x)li)il:r Ii—-ll a:—«ssfi
IEI\I_[ €T -
>0 +C 1 C, e min A)[lz— x Il —=|I] max U\ fh {z) u)|[x_x“__e”x_.mﬁ
i€ I\h i i€l
> (a:)
b lapl < Celia —;H R -: o o



For cach / € [O:N], one has

f@=FfGE+ (f; @ 2 +( @) + (@ 2) 40 (k—al)
Using Inequality (2.5) we see ihat

¢ (x)= max f (@) > fP(SC)"L ma'*' ((f(m) x;) — !?f(:c) el —
i€[o: N] CR(x)

—1F, (@)1 2 0) + min 0, (-2 )
! iefo: N]

> ¢@) + max (f (@), = )~ max | F@I] Iz ) —maxif @1 Iz
i€R(x" {€R(x) ' R

+ min 0, (fz—2]). , (4.10)
icfo: N

Observe that, by (4.6)
izl —lz, I>1—c—Co)lz—7 | (.11)

From (4.6), (4.10) and (4.11) there isa number &, >> 0 (&4 < 8;) such that

®(@) > ¢l + Bl — = — C) Jla—= || — G4 || x - z |j— Agele—z|-e || —~:L e
for all x e B(:L (\ y N M,
where
Ay= max 0f@ Il.
i€R{x)

Therefore, o(z) > ¢(z) for sufficiently small ¢ > 0 and for all
ze B d) N M,z =z,
The proof is complete.

COROLLARY 3.2. Suppose that F’(x)X =Y and there exist Lagrange multi pliers
ye Y, >0 ;,_ > 0(iel,, jeI\I,, I,—a non-empty subsel of I, and a..

number B _> 0 such that

a) ﬁ; (z, }\.1, e s J*) = 0, where
S B(E hps s g = folx) + _21 A b (@) 4 (g F)),
B 1

b) (f;(?;), x> pllal for all x & Lu.
Then, x is a strict {ocal minimum of Problem ( V)..
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