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INTEGRAL REPRESENTATIONS OF SOME
(p; 9)-WAVE FUNCTIONS AND THEIR APPLICATION

HOANG DINH ZUNG

Some classes of (p, q)-wave functions have been studied in (1], [2). In this
paper we establish the integral representations for these functions with the

characteristics p = ehx.’]ik’ g = 0 and present an application fo boundary va-

lue problems.

1. INTEGRAL REPRESENTATIONS.

Let G be a simply connected region in the plane of complex variable
z = =+ iy, f(2) a wave function in G, J, (2) the Bessel function of the first kind

and v-th order, k a positive constant, A 2 non-zero real constant, ¢, and 62

real constants, We now prove the following theorem.
THEOREM 1. The function F(z) = U(x, y)-+ iV(=, y) defined by the following
formula
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is an e?‘xj —wave function in G if G coniains.an éntire liné segmen! joining lwo
arbitrary points in it with the same abscissa and if one of the following condi-
tions is satisfied: @) G lies in the upper half-plane and the boundary of G contains
a segment L of the real axis such that f(z, y)/; = 0:b) The region G is symme-

Iric with respect to the real axis and f(z, y)l“..’ == 0.
Giityg=0
Proof. First, it is easy to verify that F(z) = U(z, y) + iV(x, y) is an
e ?‘"‘"y"‘"——wave function in & if and only if the function E(z, y) defined by
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Hence, to prove the theorem it is enough to find {wo real functions A(y,y)
and B(y,v) such that the function
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where f(@, — 1) = f(x.y), satisfies (3).

It is evident! from (4) that the function E(r,y) satisfies (3) if
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From these equalities, by using the relations [3}
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we find that
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Finally, combining (5), (4) and (2) we get (1). This completes the Jproof
of Theorem 1, _

Let G be defined as in Theorem 1 and suppose that a wave fanction g(2)
satisfies the following conditions 1%g(z) IL =0; 2% ¢(z) is: continued from G
to G*, where G* is the region symmetric to G with respect io the real axis, and
for z eG* *

9(2) = —g(2).
Then, we have
THEOREM 2. The function F(z) = U(z, y) iV(x, y) given by the formula
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is an e*Ty=k _wave function in G
The proof is analogous to that of Theorem 1

2. INVERSION FORMULA

Let G be defined as in the previoussection. Suppose that G is an unbounded
region and k is an even number.

. 'THEOREM 3. The wave function in (1) flz) = u(=z, y) + ivfx, y) can be
expressed in i{erms of the e?‘xyk—-waue function F (z) as follows +
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Proof. It follows from (1) that
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To obtain the inverse formula for the integral representations (9) and (10)

we shall apply the Laplace—Carson transform:
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where f is a complex number,
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Finally, combining (12) and (11) we get (7). In the same manner, from (10) we

derive (8).

Note that when k is an arbitrary positive constant the theorem is proved

similarly.

In the same way as we did for Theorem 3 we can oblain the inverse formula

for the integral representation (6).



©. .7 .3 APPLICATION

Using theresults obtained in the preceding sections we can fmd exphcltly

solutions of some boundary value problems for M yk y* — wave functions,
Problem 1. Let G be the first ortbant: {(x, y): o> 0,y > 0}.

Find an e?“"gk — wave function F¥ (z) = U (z, ) + iV(x, y) in G such that
U0, y) = D(y) for0 K y <o , - (19)

where D{y) e CAT (g > 0, I = %: 1, 2, 3,...

We shall find the solution F(z) in the form (9) and (10) such that the real
and imaginary parts u(x ,y) and vz, y) of f(z) are real wave functionsin G, i, e.
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Taking into account the. boundary condmon (13) and using the inverse
tormula (7) we obtain
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where II (z) is the modxfied Bessel function of the first kind and ! - th order.

Now, it foliows from (16) that

on (-’Bs y) l 0, (20)
. We have from (13) (17) and (18)
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We can verify directly that under the condition (22) the unique solution
of the problem (14), (16), (18) and (20) is given by
(0 for 0 <y << os,
H@.y) = ?d(y—x) for oo > y>z > 0. (23)
Similarly, the problem (15), (16), (19) and (21) has the solation
v(xy)=0 for 0Ly a< oo
! —d(y—a) for 0 <<y oo (24)

Finally, combining (23), (24) and (9), (10) we get the desired solution of
Problem 1.
_Probiem 2, Let G be the halbstrip:{ (@) :0 <z <<h 0<y<eoef
Find an e’® y ¥ — wave function F(z) = U (z.y)+ {V(x,y) in G such that
U(0.y) = D(y), |
UChy) = Qly), for 0 <y < <, (25)

where D(0) = Q(0) ; D(y), Q) € 2+ (5 >0, = éi —1,2, 3.

we find the solution F(z) in the form (9), (10) and (14) — (17) (for O<xz<< h
0 << y < ). In view of (7), (16) and (25) we have
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Using the relations (26) we have from (25)
diy) , o) € C* (3 >0,
d(0) = g (0) = 0. (30)

It is known that under the condition (30) the_solution of the problem (14)
{(26) and (28) is unique and is given in the form [3]
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where ) ‘
G for y <0, (0 for y < 0,
d(y) = - (y)= <
d(y) for y > 0, ¢ aly) for y > 0.

Similarly, the problem (15), (27) and (29) has_l;he solution

o
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+ Z0q(y+z— (241) B)+q(y +«— (23 1) b)),

n=y_

0 Ch U g < oo, (32)

Finally, putting (31), (32) into (9), (10) we obiain the explicit solution of
Problem 2. :
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