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ON THE MIXED EOUNDARY VALUE PROELEM FOR NON-LINEAR
HYPERBOLIC EQUATION IN DOMAINS WITH CORNER POINTS

TRAN XUAN TIEP

§1. INTRODUCTION

The mixed boundary value problem for non-linear hyperbolic equation in
domains with « enough smooth » boundary was studied by J.L.Lions [4]. In this
paper, we consider the same problem but in domairs with corner points,

m
Let Q@ C R” be a bounded domein in R? with a boundary 3= I, where
i=1
r,i=1, 2.0, m, are (n — 1)- dimensional smooth manifolds, such that each

Fal

r; intersects 7', __, and 7, , along (n — 2)-dimensional smoothk manifolds Yioq
and v, ; -
We shall consider only the case m = 2 since the results can be easily
generalized 1o the case m > 2 due to their local character.
Suppose that at a point P € vy = Ly Fpa T interesects Ty with the
r angle T(P) '
We denote by QT the cylinder Qp = QX o, TLOCT < 4 o, and by
= 90 x 10, T'[its lateral surface,

1

Sy

We consider the problem:

Lu=u, —Lu+|u|lPu=f , - (1.1
u(x, O = @(x) 1.2
u, (z, Oy = ¥{z) (L.3)
uls, —0 (1.4)

where: p > 0,
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where p=¢ n A n
Lu= Y (aij u) x; -+ Z a uﬂ..-}— au,

i, j=1 i=1
aijzaji’aij’ a, ,and a 6 C (QT}
n
s Y ook g =gy T 2 Ay
v[al "“-i..’.}.:,:zaij‘pigj-—v igl » qi]‘)

VEeR”, [E] 520,

This problem is differeat from the problem in (4] in that ox has corner
points and we do not require £ = L* (see {4], Section 1. 9)

The main results of this paper are presented in §3 under the assumpiion
that n = 2. The smoothness of solution with respect to the time-variable ¢ is
‘ given in Theorem 3. 1, and the behaviour of solution in a neighbourhood of
| the edge is given in Theorem 3. 2.

i We shall introduce some spaces of functions :

I|| WX (G); the space of functions U defined in a domain G — R™ such that

e =§2 2 Pz <t
WK(G) s=o0 | 8x% '
G

9 K : S : K .
W7(G) : the closure of Co (G) in W™ (G,

o :
Wf (=): the space of functions U such that

”U ”2 — g I.OC—?K‘E'?.:
°K
W ©8=p
T

d’y
ozt

Fdﬂ: << ooy

where r = dist (z, 'yj.

W;, 0(QT): the closure in W? (QT) of the set of the infinitely smooth

functions U(z, {) such that U = 0 in a neighbourhood of Sp .

W3, , (Qp) = JU(:.:, fye Wy, Q). Ulz, T) =0 % : a subspaceof Wy ().

W@ = {U@ e L7, T; Wiy Loy, p > 1, U & L= 0, T

L2 (m) }»
where

10 g,y = 101 +1)

o )
L™, T3 WHQ) A LP(Q)) t ”L""(o, T: 12 Q)




We easily see that, if ue W (Q.)then u ¢ W;O(QT) and

fFull W;,O(QT) g Cjuay W(QT)

DEFINITION 1.1 A function u(z,1) € W(Qp), (P =p+ 2), is called a weak

solution of Problem (1. 1) — (1.4), if u(x, 0) JS(x) and u (x, ) satisfies the
following integral idenmtity on Qr

It .
oy — T —_ _ - —
(Bu —1,m) = gr( u, 1, +h53_1a1u ; Mz, I_=21 @ u q — aun +

+ 1wl — f) dadt — J p@m@0de=0, ¥1 € Wy Qp) N L° @) (15)

§2, EXISTENCE AND UNIQUENESS OF SOLUTION

1aEOREN 24 If f & L2 (@), S@) & WHQ) (1 LP(Q), (P = o+ 2), 1(0) € LA(n),
then Lhere exists a weak solution u(x, 1) € W(Qyp) of Problem (1.1) — (1.4).

Proof. Arguing as is the proof of Theorem 1.1 in [4], we can show the exis-
tence of a function u(x,!) g W(QT) satisfying a(x,0) = J(z). Moreover, we have

the integral identity (1,5) for n e / _, where
m
ﬂm:{n[ﬂ_—_ 2 dp() we, dy € W0, TP, d D _0} ({wy} being the
K=1

base in [ 4]

—a

But U ﬁtm = 1//1712 O(QT) N LF (QT)‘, the function u(x, ¢) satisfies the integral

m=1 ' . .
identity (1.5) for all 1 € WY (Q) N LP@Qp). |
LEMMA 2.1, Assume that u, v € W(Q,. ) and p is a positive numnber such that
0 :

p L —— if n> 2, Then the 0 perator
n— .
Gy = Jf (Juif 2— |p|° v) nd = dt
Q¢ :
satisfies the inequalily
(G@y]< C(]ni 2 + 1w ? )

Wg,o(QT £2(Qy)

+1 :
¥neW,, Q) w=12—0,TE]OT] Qr = 2 X 10T,
where C does not depend on 1. ‘
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Proof. We shall prove the lemma for n > 3. The same argument can be
used to show the validation of the lemme in the case n= 2.

Since f(x)=p 2Pl (o + 1) a xP + a?*?, (a = 0) is a nonnegative function
on {a, 4 o[, We have
|2 (luf —01P) < plu](lul — o)y <plufPlw| for juf> vl
Erom this, it follows that
[QuPa—lvPoj<pldf |w]|+]off |w]

or  [(lufu—]vP o) <plol|w|+]ulf |w]
and therefore
[(JalPa—|olP o) [ <(p+D(zl° + 0] )iw| 2.9

From (2.1) we have
él(lﬂlp u—\vlf v) ﬂldT<(9+1)§J; (ulP -+oP ) w|nldz.
Applying Holder’s inequality for% + %- = -—;— and Sobolev’s imbedding
o :
theorera W (Q) ~ L%(Q), we obtain

fl(lulpu—|vmpv)ﬂldx<(flafl§1 v, Y%

W (Q) W Q)
w1l 2
X (ll"ﬂ[l °1(Q) + ”Lg(ﬂ) (HUHW(Q )+II IIW(Q )) X
Xnns o’ :
I vl 2@y
for almest all & [0, T], and therefore
LG 1< C ()’ +lwy? )R
L? Q)

,O(ch)
where C does not depend om 7.

THEOREM 2.2 Assume thaip is as in Lemma 3.1. Then the weak solution of
Problem (1.1)—(1.4) is unique.

Proof. Let u, v & W(QT) be two weak solutions of Problem (1.1) - (1.4), We
shall prove that u = v almost every where on Q-
o s D ~ ¢ < T,

: t
Indeed, put Wz, )= 3 1 w(zr)dT, 0 < I < B,
b
where b0, T[, 0w = u-— 1w
We easily see that 1 e \/ﬁ; 0(Q,r)'.

From the inequality

T . ..P T P
L1ty dly dzdt]™ <f (S | wlzt) " dzdd)
QT o 0 QT

1/p 1P

df,P:p+2,
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it follows tbat 1 e LF (QT)"

Thus, we have 1 & W; L2 N LA, (2.2)

Using the same argument of [3], Chapter IV, Theorem 3.1 and taking account
of Lemma 2.1, and condition (2.2}, we obfain uz==v almost everywhere on QT’

as desired.

§ 3. SMOOTHNESS OF SOLUTION

In this section we consider only the case n & 2. Then by Sobolev’s imbed.-
ding theorem, the space W(Q,) has the following form:

W(Qp) = {u e L=, T; W(Q),n,« L= (0, T; L2 (Q));
LEMM4 3.1.1) Suppose that
RO W(Q BRCEE
iiy p=> L
Then _(]ulpj?) s LPQQ), (¢i < 1)y (W €10, T[), (WP > 1),
2) If, in addition,

B <6 i,

Wi, )

then [[ (ff)° fl, P 2 < Ci, (¥ <), (¥p > 1), (VT 610, T[), where C; depends
Q¢
on C, p, Land Q.

Proof. We firat observe that condition i) imples that

( i
(e e weep sna fga)y =@y <o,
w(a,)
Now; we prove the lemma by mductlon
For [ = 0, the [irst assertion of the lemma is valid by Sobolev’s 1mbedd1ng
t \%4 Lre .,
heorem W(Q.) — ( Q‘L‘)

Assuming that this assertion holds for!= [ — 120, let us consider the
case I =1, |
We have
1 .
| 1 uff 5y =N [ela)P~ I (lay, Yo~y =
| t ]LP(Qt) SR ()
P ~1 ~1
| = ol qup(™ + z c,o__I (Iaf 7 ey, =
- L (Q't)
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. ,,
< el 0w+ E G T g, Y=
(Q‘t) r=1 L (Q’C)
- p—1 (lo) ‘
e LI pogpmgy » TR lqu.(Qt} +

(Qg)

lo—1
+ 2 €y e HI ol q;“" 2
r=1 Ploy AN

1 1 1
Applying Sobolev’s imbedding theorem W(Qt) ¢ LP Qpy WP =1 and
nsing the induction hypothesis, we have ' '
() & @) (vi <O
The second assertion of the lemma tollows f rom the first assertion andthe
observation at the beginning of the proof,
LEMMA 3.2 1) Suppose that
D @ & WE) (¢ < D,
ii) p>0and p>1—1,
. 2 .
Then ([uPu)® e LQ), (Fi<h, (¥t €10, T).
2) Moreover if ' S

i)
1@P g0y <& MIKI=D, (1)

then || (ul?@)® 1 <C, + €, 1 @?y i

wl )

L*(0p
2,077

v e l0, T)). where 61 depends on C, p, [ and QT .
Proof. Sincel Juf? ul =[u 1P+1, the first assertion of Lemma 3, 2 is a direct

consequence of Lemma 3. 1 and it suffices to prove the secon donce,

Reasonning as in the proof of Lemma 3. 1, we can show that

e HPy) 2 <G+ 0 {1 aap®y Con T
T

+ 2 eh? N g 1 D704 cw}

for 1=1
Furthermore, we have

It i iy < jaf?

!( >(” ’’<

L@y’ )
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< el | e D gy <

<o r; fray - KI5 () 3.1)
for almost all ¢ € [o, T}. |

To complete the proof it remains to apply Lemma 3. 1 and inequality 3.1.
LEMMA 3.3.If the conditions 1), 2) of L.emma 3.2 are natisfied, then

| Py Dazdr | < €yt Cy 1l @01 W (g + (¥E 10 TD.
T
where C, depends on €, in Lemma 3. 2.

Proof. We have

‘ (IHPH I) (HI) dzrdt P (1) (H'j <
Ié{t I" ), (a); zdt | <} (Jul ), I 240y + I () (Q'c)

O
+ 1 (&), i .
22 Q) Wl (eq)

Therefore, applying Lemma 3.2, we obtain the second conclusion of
the lemma.

<torat PP p?

Remark 1. Lemma 3.1, 3.2 and 3.3 remain valid if the conditions on p
are replaced by the condition p ¢ §,p = 1.

THEOREM 3.1 Suppose that the followmg conditions are satisfied for =1
B (A6 L2 (@ph (W <
and (F)® (@, 0) = 0, (i < 1~1) ;
ity u(x, 0) =u, (x, 0) = 0;
ity p € {1, 2., l-—1} Ull—1, 4 o[
Then the weak solution u(a: t) of Problem (1.1)—(1.4) salisfies the inequality
where € depends on p, I, f and QT

Proof. 1. For I=1. Due to Theorem 2.2, we see that the wéak squtioﬁ ux, f) €
€W () of Problem (1.1) — (1.4) may be found by Faedo-Galekin’ s method.

We know that the approximate solution

m
um:ki‘hkm ) w, (x), with {wk} being the base in [4], is computed from the
system of non-linear differential equations

(@ (0, wg) = Ly, O w) + (Ju, O1OP e, 0w, )= FWw, ) G
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with the initial conditions
u  (0) = u;n @ =0 (3.3)
Differentiatina both sides of equation (3. 2) with respect to and maultiplying
both sides of the just obtained equality by 11 (t), then summmd up with res-

pect to K, we obtain

1 d 3 2
—_— 2 .. = :
9 di Ll gy | L"‘(Q)_}— I(GLJ umf:cj g umtxi)] 9 i,§=1 (aijtumfxi’ Hmf.pj) +
d 2
+ ) 2 {azﬂt mixj ? mtxj) - E ;.ﬁ(aijtam;ri : umtzj)J +
i, j=1 iy J
2
+ 521(1 i T Wy s Upyy) (2 an‘ R T G Uy s Upyy) —
— (( [ H Pu )t’ Hmll) ! (ft ' umtt) ‘ (3.4)

Integrating both sides of equation (3.4) on [0, t], for T €] 0,T [and using
Lemma 3. 3, Remark 1, condition (1.1)", condition (3. 3), we can show that

02,00 P20y + 1y, (O Py = mald + r( 1 2 P2y +
+ltu,,. HZLz(g))df] for almost all T ¢ [0, T), (3. 5)
where y, is a constant depending on p, f and Q.

- Applying Gronwall-Bellman’s ineqnality to (3.5), we obtain
=u_, | W(QT) = Y9y (¥m),

where ¥g is a constant depending on p, f and QT . It follows that

1 ,

i=n
where C depends on p, f and Q,. . .
Passing to the limit as in the proof Theorem 1. 1in {4}, we obtain the
conclusion of the theorem for I =1.

2) Assume that the theorem holds for! = [, = 1, we have to prove it for, y
[= I 4 1. The proof can be made by the same argument as in the case [ = 1.

Turning to the study of the asymptotic behaviour of the solution, we shall
nse the function y(P}), P ¢ v, introduced in Section 1.

We transform the main part of the .operator L at the point P €7 into the
canonical form. Consequently, v (P) is transformed into another angle denoted
by o (P). It is always required, that w = 7 .

THEOREM 3.2. Assume that the conditions of Theorem 3.1 are salisfied, Then
the weak solution of Problem (1.1) — (1.4) has the foflowmg form

u(z, t) = c(t)rT'IW D (g, t) 4 uy, (z, ),

118




where ¢ (t) e W1 ({0,101, @)P e ﬁfﬁ ), H<l—1),

v 2 | 2 T9
D, HeC”, r= r1+:c2>0,cp=arctgx—,

1
Q=0 N{i=1},1e]0, T[.

Proof.1) Assumethat I=1. Theorem 2.1 shows thatthere exisis a weak soluuon
u(z,HeW (QT) of Problem (1.1) — (1.4) :

By Theorem 3.1, u, € W{{Qp) . It is not difficult to show that u (x, 1) is a

weak selution (in the sense of [5]) of the following problem:

- F =0 (3.6)

:ri)a:]
u (x,t) | 0O — 0 (3.7)
in the domain § (I) for almost allte]0,T[

2
Z (aiju
i!J::t

where F—u , + [ u | Pu ——Ej_azu —au—felL (Q(i))

By [2, Lemma 1], ue WO (Q()) and by [2, Lemma 3], u € W2 (Q(t)) (3.9

We now rewrltc equation (3.6) as

2
i,j=§lj (0, Hhu = J_- F — 3 _I[aij(x,t) — al_j(O,i)] uxixj_
—221 M su, o =F_. (3.9)
1,j=1 6:!.'] T, 1 :
We can assume that
a,, =9,, = 1,i=]

i Y 0,i#]
Consequently, from equation (3.9) we have
Au=F 1

From the inequality |a; i (:c,’ ) — a; (0, ¥ < const ]mlt and (3.8) it follows
that F ¢ L ) = ﬁ’g Q).
Using [1, Theorem 1.2], we get _ . 7
a(,ty = COF® @ (@) + u; @1), (3.10)
where © (@,l) =sin % i, , € ﬁ (2) QH),

and
Il oo <CHUF,I o Flull,, 1<
Vo) 1w o) W Yo
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1<

SCLIF,| » +1lal_,
_ L7 (Qp) W00

SCTUT g+ 2l 1. @.11)

It follows from (3.11) and C(f) = (g e ) = 7/ ( sin Z2 ¢ )‘1 that

€@y e L2 (o, 7).
2) Assume that the conclution of the theorem is valid for I:lo > 1, we

have to prove it for [ = lo + 1. For this purpose, we rewrite equation (1.1) as
Lu=u”+]u]9u—f=F2 . '
By Theorem 3,1, Lemma 3.2, Remark 1 and the induction hypothesis, we
have (F,) <;‘> € L2Qu)), (Wi < l, ), for almost all 1 ¢]0,T].
It follows from [3, Lemma 3.1] for K = 0 that the weak solution of Problem
(1.1)—(1.4) bas the form
u(@d) = € r™® @ (ul) +u, (@,0)
where C(t) ¢ Wl ([0, T]), _
() P ew?Quyn wi<L)
Remark 2. From the proof of Theorem 3.2 we see that, if w < = and I=1,
then by (3.10) and (3.11) u e W? (QT ). Moreover, we can show that u € LT0,T;
W2 Q).
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