ON CURVES MINIMIZING POLYHEDRAL FUNCTIONALS IN Rⁿ

TRAN VIET DUNG

INTRODUCTION

The problem of finding minimal surfaces in Riemannian manifolds was studied by A.T. Fomenko [5], H. Federe and W. H. Fleming [4], Dao Trong Thi [1, 2, 3], J. Simon [7] and others.

Using the language of current theory Dao Trong Thi [2] established necessary and sufficient conditions for the global minimality of currents with respect to a functional J given by a Lagrangian.

The aim of this paper is to describe the curve minimizing a functional J, where J is given by a polyhedral norm.

§1. MINIMAL CURRENTS

In this section we collect some facts on current theory that will be needed later (for details see [2, 4]).

Let \mathbf{R}^n be the *n*-dimensional Euclidean space. Denote by \mathbf{A}_k \mathbf{R}^n and \mathbf{A}^k \mathbf{R}^n the vector spaces of *k*-vectors and *k*-covectors, respectively. The comass of the *k*-covector ω is defined by

$$\|\omega\|^* = \sup \{ \omega(\xi) ; \xi \in \bigwedge_k \mathbb{R}^n, |\xi| = 1 \}$$

and the mass of the k-vector ξ is defind by

$$\|\xi\| = \sup \{\omega(\xi) ; \omega \in \Lambda^k \mathbb{R}^n \text{ and } \|\omega\|^* \leqslant 1\}$$

Let M be a Riemannian manifold. We denote by E^kM the vector space of all real differential k-forms on M. A current (with the compact support) on M is a real continuous linear functional on E^kM . For each k-current S the mass of S is defined by

$$MS = \sup \{S(\varphi); \varphi \in E^k M, \|\varphi_x\|^* \leq 1 \forall x \in M \}$$

We denote by $E_k M$ the space of all k-currents with finite mass (and with compact support) and equip it with the weak topology. The boundary ∂S of a k-current S is a(k-1)—current defined by $(\partial S)(\phi) = S(\mathrm{d}\phi)$ for every (k-1)—form ϕ . A current S is called closed if $\partial S = 0$ and exact if $S = \partial T$ for some current T. For each $S \in E_k M$ the complete variational measure $\|S\|$ is defined by

$$\parallel S \parallel f = \sup \left\{ S(\varphi) \, ; \, \varphi \in E^k M, \quad \parallel \quad \varphi_x \parallel^* \leqslant f(x), \ \forall \ x \in M \, \right\}$$

for an arbitrary real nonegative continuous functional f on M.

If $S \in E_k M$ then there exists $a \| S \|$ -measurable section \widetilde{S} of the Grassman bundle $\bigwedge_k M$ with $\| \overrightarrow{S}_x \| = 1$ almost everywhere in the sense of the measure $\| S \|$ and such that

$$S(\varphi) = \int \varphi \left(\overrightarrow{S}_{r} \right) d \parallel S \parallel (x) \tag{1.1}$$

for an arbitrary k-form $\varphi \in E^k M$.

Let J be a functional on E_kM . A current $S{\in}E_kM$ is called absolutely minimal with respect to J if $J(S){\leqslant}J(S')$ for any $S'{\in}E_kM$ such that the current S-S' is closed. A Lagrangian of degree k on M is any mapping $L: \bigwedge_k M \to R$ such that its rectriction on each fibre $\bigwedge_k M_x$ of the Grassman bundle $\bigwedge_k M$ is positively homogeneous. Each Lagrangian L of degree k on M defines a positively homogeneous functional J on E_kM by the formula:

$$J(S) = \int L(\vec{S}_{n}) d \parallel S \parallel (x). \tag{1.2}$$

Let ω be a differential k-form satisfying the following conditions;

(i) ω is exact,

(ii)
$$\omega$$
 (ξ) $\leqslant L(\xi)$ for every $\xi \in \bigwedge_k M$.

Then the set

$$F_x(\omega) = \{ \xi \in \bigwedge_k M_x; 1(\xi) = \omega (\xi) \}$$

is called the bunch of the minimal directions at x.

THEOREM 1. (see [2]) A current $S \in E_k M$ is absolutely minimal with respect to J if and only if there exists a differential k-form satisfying the conditions (i) (ii) and such that $\overrightarrow{S}_x \in F_x(\omega)$ for almost all $x \in M$ in the sense of the measure $\parallel S \parallel$.

Let R^n be the *n*-dimensional Eulidean space. Then each piecewise differentiable oriented curve S can be naturally identified with the 1-current [S] which is the integration along S. Moreover for each regular point $x \in S$ we have $\overrightarrow{[S]}_x = \overrightarrow{S}_x$, where \overrightarrow{S}_x is the oriented tangent vector to S at x with $||\overrightarrow{S}_x|| = 1$.

§2. MINIMAL CURVES IN Rn.

In this section we consider a functional J given by an arbitrary polyhedral norm L.

A norm L on \mathbb{R}^n is called polyhedral if the set

$$C_L = \{ \xi \in \mathbb{R}^n ; L(\xi) \leqslant 1 \}$$
 (2.1)

is a convex polyhedron. We put

$$S_L = \{ \xi \in \mathbb{R}^n \; ; \; L(\xi) = 1 \}$$
 (2. 2)

Clearly, S_L is boundary of the set C_L . We denote by $H_1,\ H_2,...,\ H_m$ the (n-1)-dimensional faces of C_L .

DEFINITION 1. A linear form ω is called a supporting form of the norm L at a point $\xi_0 \in S_L$ if

$$\omega(\xi) \leqslant L(\xi) \text{ for any } \xi \in S_L$$
; (2.3)

$$\omega(\xi_0) = L(\xi_0). \tag{2.4}$$

Obviously, for each i $(1 \le i \le m)$ there exists a unique 1-form ω_i such that H_i is defined by the equation ω_i $(\xi) = 1$. It is easy to check that ω_i is a supporting form of L at every point of H_i . Denote by $\overline{\omega_i}$ the differential 1-form defined by $(\overline{\omega_i})_x = \omega_i$ for every $x \in \mathbb{R}^n$. Then we have

$$F_{x}(\omega_{j}) = \{t\xi; t \geqslant 0, \xi \in H_{j}\}, J = 1, 2, \ldots, m.$$

Clearly, the set $F_x(\overline{\omega}_i)$ is fixed when x changes. Hence we may write $F_x(\overline{\omega}_i) = F(\overline{\omega}_i)$.

LEMMA 1. Let ω be a differential 1-form on R^n such that the conditions (i), (ii) are satisfied. Then for each $x \in R^n$ there exists i $(1 \le i \le m)$ such that $F_x(\omega) F(\overline{\omega_i})$.

Proof. Let ω be the differential 1-form mentioned in the lemma. Then there is a point $x \in S_L$ such that ω is a supporting form of L at x. It follows that

there exists a face P containing x such that ω is supporting form of L at every $t \in P$. Then P is contained in some face H_i . We have $F_x(\omega) = \{t\xi; t \geqslant 0, \xi \in P\}$.

Since
$$F(\overline{\omega}_i) = \{t\xi ; t \geqslant 0, \xi \in H_i \}$$
 we obtain $F_x(\overline{\omega}) \subset F(\omega_i)$.

The proof of the lemma is complete.

LEMMA 2. Let J be an integrand given by the polyhedral norm L. Suppose that S is a piecewise differentiable oriented curve in R^n such that $\overrightarrow{S}_x \in F(\overline{\omega}_i)$ for almost $x \in S$ in the sence of the measure ||S|| and for fixed i ($1 \le i \le m$). Then |S| is absolutely minimal 1-current with respect to J.

Proof. Obviously, $\overline{\omega}_i$ satisfies the conditions (i) and (ii). As is well known $\overline{S}_x = [\overline{S}]_x$. Hence [S] is absolutely minimal by Theorem 1. The lemma is proved.

LEMMA 3. Let a and b be two points in \mathbb{R}^n . Denote by [a, b] the oriented straight segment with endpoints a and b. Then [a,b] is absolutely minimal with respect to J. Moreover J([a,b]) = L(b-a).

Proof. Clearly, there exists i such that $(b-a) \in F(\overline{\omega}_i)$ From Lemma 2 it follows that [a,b] is an absolutely minimal curve in \mathbb{R}^n . We have

$$J([a,b]) = \int L([a,b]_t)d \| [a,b] \| (t) =$$

$$= \int L([a,b]_t) d \| [a,b] \| (t) =$$

$$= L([a,b]_t) \| [a,b] \| ([a,b]) =$$

$$= L([a,b]_t) \| [a,b] \| ([a,b]) =$$

$$= |b-a| L([a,b]_t) = L(b-a)$$
(2.5)

Thus the proof of the lemma is complete.

THEOREM 2. Let J be an integrand given by a polyhedral norm L. A piecewise differentiable oriented curve S in R^n is absolutely minimal with respect to J if and only if there exists an index i $(1 \leqslant i \leqslant m)$ such that $S_x \in F(\overline{\omega}_i)$ for every regular point $x \in S$.

Proof. By Lemma 2, it is sufficient to prove the necessary condition. Suppose that S is absolutely minimal. If there exist two points $x \in S$, $y \in S$ such that \overline{S}_x , \overline{S}_y do not belong to the same set $F(\overline{\omega}_t)$ for each i $(1 \le i \le m)$, then a contradiction will be obtained.

Since S is absolutely minimal there exists a 1-form ω for which the conditions (i), (ii) are satisfied. Moreover $\overline{S}_t \in F_t$ (ω) for every regular point $t \in S$. In particular, $\overline{S}_x \in F_x(\omega)$ and $\overline{S}_y \in F_y(\omega)$. By Lemma 1, it follows that $F_x(\omega) \subset (F\overline{\omega}_j)$, $F_y(\omega) \subset F(\overline{\omega}_k)$, where according to our assumption $j \neq k$ and $\overline{S}_x \notin F(\overline{\omega}_k)$, $\overline{S}_y \notin F(\overline{\omega}_j)$.

Obviously, the set $F(\overline{\omega}_j)$ is closed. Since $\overline{S}_y \notin F(\overline{\omega}_j)$, there exists a point $z \in S$ such that $(z-y) \notin F(\overline{\omega}_j)$. Denote by $S_{(x,y)}$ the part of S joining x and y. Since S is minimal, $S_{(x,y)}$ is minimal, too. On the other hand [x,y] is also minimal.

According to [2], we have $\overline{[x,y]}_t \in F_t$ (ω) for almost all $x \in R^n$ in the sense of the measure $\|[x,y]\|$. Hence for any sphere $O_{(x,\varepsilon)}$ of center x and radius ε there exists a point $i \in [x,y]$ ($i \in [x,y]$) such that $\overline{[x,y]}_t \subset F_t$ ($i \in [x,z]$). Whence we may assume that $\overline{[x,y]}_x \in F_x$ ($i \in [x,z]$) and $\overline{[y,z]}_x \in F_x$ ($i \in [x,z]$) we obtain $(y-x) \in F$ ($i \in [x,z]$). $(z-x) \in F$ ($i \in [x,y]$) and $(z-y) \in F$ ($i \in [x,y]$).

From the minimality of S, [x, y], [x, z] and [y, z] we have

$$J(S_{(x,y)}) = J([x,y]) = L(y-x),$$
 (2.6)

$$J(S_{(y,z)}) = J([y,z]) = L(z-y),$$
 (2.7)

$$J(S_{(x,z)}) = J([x,z]) = L(z-x). (2.8)$$

Further

$$J(S_{(x,z)}) = J(S_{(x,y)}) + J(S_{(y,z)}) = L(y-x) + L(z-y).$$
 (2.9)

Let P be a 2-dimensional plane in R^n defined by the origin 0 and the vectors (y-x), (z-x). The set $Q=P\cap C_L$ is a convex polygon. The edge d_i of the polygon Q is contained in the set $P\cap H_i$. Put $V_i=F(\overline{\omega_i})$ if P for every i $(1\leqslant i\leqslant m)$. Then $(y-x)\in V_j$, $(z-y)\in V_k$, $(z-x)\in V_j$.

First assume that $d_j + d_k$. Let d_j , d_k be the straight lines defined by the conditions:

$$\begin{split} &d^*{}_j \ni 0 \quad \text{ and } \quad d^*{}_j \parallel d_j \text{ ,} \\ &d^*{}_k \ni 0 \quad \text{ and } \quad d^*{}_k \parallel d_k \text{ .} \end{split}$$

Putting $e_k=d^i_j\ \cap\ d_k$, $e_j=d^i_k\ \cap\ d_j$ we have for each vector $\xi\in P$

$$\xi = \xi_i e_i + \xi_k e_k$$
 , where ξ_j , $\xi_k \in R$ (2.10)

and
$$L(\xi) = \max\{\xi_i, \xi_k\}$$
 if $\xi \in V_i \cup V_k$. (2.11)

Suppose now that

$$(y - x) = \alpha_j e_j + \alpha_k e_k ,$$

$$(z - y) = \beta_i e_i + \beta_k e_k .$$

Then
$$(z - x) = (\alpha_j + \beta_j) e_j + (\alpha_k + \beta_k) e_k$$
, where $\alpha_j \geqslant \alpha_k$, $(\alpha_j + \beta_j) \geqslant (\alpha_k + \beta_k)$, $\beta_j < \beta_k$.

From (2. 11) we obtain

$$L(y-x) + L(z-y) = \alpha_i + \beta_k$$
, (2.12)

$$L(z-x) = \alpha_j + \beta_j . \qquad (2.13)$$

Consequently,

$$\alpha_j + \beta_k = \alpha_j + \beta_j$$

Whence
$$\beta_k = \beta_j$$
 (2.14)

Since $\beta_k > \beta_j$, the equality (2.14) cannot be satisfied. We get a contradiction.

Now suppose that $d_j \parallel d_k$. We denote by e_j any vector on d_j , by e_k a conlinear vector to d_j . Then for each $\xi \in P$ we have

$$\xi = \xi_j e_j + \xi_k e_k$$

and
$$L(\xi) = |\xi_j|$$
 if $\xi \in V_j \cup V_k$.

Using an argument analogous to the previous one we shall get a contradiction.

This completes the proof.

Example. Let L be a norm given by the formula

$$L(\xi) = \max \{ | \xi_1 |, ..., | \xi_n | \},$$
 (2.15)

where $\xi = (\xi_1, ..., \xi_n)$.

Then the set $C_L = \{ \xi \in \mathbb{R}^n : L(\xi) \leqslant 1 \}$ is a convex polyhedron. The notation being as above, we have

and

$$\overline{\omega}_{1} = dx_{1},
\overline{\omega}_{2} = dx_{2},
\underline{\omega}_{n} = dx_{n},
\overline{\omega}_{n+1} = -dx_{1},
\underline{\omega}_{2n} = -dx_{n}.$$

Hence

$$F_{x}(\overline{\omega}_{i}) = \{t\xi, t \geqslant 0, 1 = \xi_{i} \geqslant |\xi_{j}| \forall j \neq i\}$$

for $1 \leqslant i \leqslant n$ and

$$F_{x}(\overline{\omega}_{n+i}) = \{ t \xi, t \geqslant 0, 1 = -\xi_{i} \geqslant |\xi_{j}| \forall j \neq i \}$$

for $1 \leqslant i \leqslant n$.

Using Theorem 2 we can obtain all globally minimal curves for the integrand J given by the norm (2.15) in \mathbb{R}^n .

Acknowledgement. The author would like to thank Dr. Dao Trong Thi for his suggestions and advices.

REFERENCES

^[1] Dao Trong Thi and A. T. Fomenko, Minimal surfaces and Plateau's Problem. Nauka 1987.

^[2] Dao Trong Thi, Globally minimal currents and surfaces in Riemannian manifolds. Acta Math. Vietnamica 10 (1985). 296 - 332.

- [3] Dao Trong Thi, Minimal real currents on compact Riemannian manifolds, Izv. Akad. Nauk SSSR Ser. Math. 41 (1977) .853 867.
- [4] H. Federe and W. H. Fleming, Normal and integral currents, Ann. Math. 72 (1960), 458 520.
- [5] A. T. Fomenko, The variational method in topology. Nauka 1982.
- [6] I. V. Girsanov, Lectures on the mathematical theory of extremal problems. MGU, Moscow 1970.
- [7] J. Simons, Minimal varieties in Riemannian manifolds, Ann. Math. 88 (1968). 62 105.

Received August 24, 1988

DEPARTMENT OF MATHEMATICS, PEDAGOGICAL INSTITUTE OF VINH, VIETNAM