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EXISTENCE OF SOLUTIONS FOR A CLASS
- OF DIFFERENTIAL INCLUSIONS WITH MEMORY

NGUYEN DINH HUY

1, INTRODUCTION

It is well known that differential equations with the continuous right-hand
side in Banach spaces, even in the separable Hilbert space, may no{ have solu-
tions. However, solutions always exist for differential inclusions . with the
continuous right-hand side which in a cerlain sense is substantially multi —
valued. This is shown in the paper {1] by F.S, De Blasi and G. Piagiani. Namely
they proved that the following differeatial mclusmn in reflexive separabie
Banach spaces always has solutions

; (?er(t :r(t))

) =T .-
if ['is a continuous map such thai, for any ‘f,x, the closed convex hull of
I'(, ) has nonempty. interior. :
In [3] or [4], Phan Van Chuong has proved that under an additional condi-

tion that I" (t, x) is convex (with nonempty in'erior) the inclusion

{2 () € Extr T ({, = ()
!z (0) = o

admits solutions, where Extr 4 denotes the set of extremal points of 4 — X,

The aim of this paper is to extend -the just mentioned result of [3]
to differential inclusions with memory. Our approach is also based on the
well known Baire’s category theorem which was initiated by A. Celhna and
then developed in [1], [3] and [4].
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2. STATEMERT OF THE MAIN RESULT

Throughout this paper, for fixed T > 0 and & >» 0, I denotes the interval
[-h, T]in R, U is a closed ball of a reflexive separable real Banach space X

and G: [0, T] X U — 2% is a multifunction taking closed convex values with
nonempty interior. We shall suppose that G is continuous with respect 1o the
Hausdorff distance H associated wilh the norm || .} in X and that G{{0, T'] X U)
is bounded.

We denote by Extr G{f, x) the set of the extremal points of G(f, x), Let o°
be a given. function in CX([—»h, 0]) sach that %) € int U (the interior of

U) for all g € [—h, 0] and let r : [0, T] — {0, &] be a continuous function. We
set ¢ — r(t) = «(f) and x(«(t)) = (T¥ z)(f).
Consider the following differential inclusion with a retarded argumentin the
right-hand-side:
a(t) e Extr G(t, TTz)(®)), if ¢ € [0, T}, M)
T(9) = 0%), if g € [~ A, 0]

We say that a function x(,) defined on [—-&, T(] (0 < T < T) is asolution
of (1) on [—h, T,] if it is continuous on [—h, 7], absolutely continuous on [0, T\
and satisflies the inclusion (1) on {— &, T}).

The main result of the paper is stated as follows:

THEOREM 1. Under the above hypotheses on X and G, the inclusion (1) admits
at least one soluiion defined on an interval [—h, T,) with 0 < T, < T.

3. PROOF OF THEOREM 1

We shall use the following notations: int A (resp. A): the interior (resp.
the closure) of a set A C X in the norm topology of X; B(x,d): the ball of cen-
ter x € xy and of radius 8 = 0; B = B(0,1); B((, x), 8): the ball of center
(1,z) € R X X and of radius & >> 0 where R X X is equipped with the norm
1 (f, )l = max {11, 0=l }s (.): the bilinear form pairing between X and
its topological X’; Gr(): the graph of &, i. e., the set {tz; wye[0, T X U X

x X: ue G(t,z)}; Cyf—h, Tiresp. Li[—-h,T]): the space of continuous function
(resp. The space of equivalence classes of integrable functions) from [—A, T} into
x ; %,():the characteristic function of a measurable set A in B.

We shall also consider the following differential inclusion:

’:;:(t) & G, (TTT) (1)), ifte[0,T]. @

2(0) = 9%), i pe[—h0].
It is easily seen that there exists T, > 0 such that the differential in¢lusion

(2) admits a solution xI(.) on [—A,T';] with constant derivative ' () and, moreo-
ver, ' () = a € int G(t, (TT ) (1)) (¥t € [0, To)) ‘
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indeed, first let us set xi(s) =¢° (5) Ws €[ —h0]) and take a € imt
G(0, 9°(—r (0))). Consider the following two cases:

i) 7(0) > 0. There exists T > O such that {—r () <0 and a €int
G(t, ¢° (a(t))) (¥ [ € [0, T ). For every 1 > 0 we set I (ty=¢° (0) + at.
Obviously, z7(0) = ¢°(0) 2nd x1(t) = a e int G(t, (T" ') (1)) (¥ ¢ € [0, T )«

it) 7(0) = 0. We take a e int G(0, ¢° (0)). Obviously, there exists TO > 0
such that a € int G(t, 9°(0) + aa(t)) (¥ 1 €0, T, T). We set /() = ¢°(0) + at,

It is easy to see that 27 (f) = a & int G(t, (T” =) (1)) (¥t &[0, T,
Further, let S (resp.S; ) denote the set of all solutions of (1) (resp. (2))

on [—h, To] andlet§Gbe the set of all solutions x(.) of (2) on [—1, TO] with

the following property: x(f) takes piecewise constant values on [0.T,] and
x () € int G(t, (T7 @) () (¥ £€[0, T, ). As was shown above, z/(.) ¢ S,

hence SQG +
By using the same arguments as in (1] it can be shown that SG is closed

in the Banach space CX [—A, T, ] and Lence the closure §G of §Gin CX [—A, To]

is a nonempty complete set, contained in S, . In what follows, SG and ‘§G will
be endowed with the metric of Cy [—h, T ]

It is well known (see e.g. [3]) that there exists a function ¢ : Gr(G) —[0, 4-o)
satisfying the following properties:
i) ¢ is upper bounded on Gr(G) and upper semicontinuous on [0, TIxUxX,
and for each (¢, 2) €[0, T] X U, ¢({, 3.} is a concave function on X;
ii) o(f, 3 u) = 0if and only if u € Extr G(4,2), _
Consider the following functional on CX[—h,To] xL; [—h, T T;
L8]

To
Jfz(), a()] = § o z)(t); alt)di,
For each o > {0 we set

§% = {z()e ?G: J2(), ()] < ake

e g
LEMMA 1. N s™ =8, NS..
P={ G

The proof of this lemma is analogous to that of Lemma 3 in {3

/

0
To prove the main result, it suffices, by Lemma 1, fo show that N s P#@.

p=1
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Weé shall show that each set S/P iz open and dense in g Since b is a nonem-

pty complete metric space, the conclusion of theorem Uzen follows from fhe
Baire’s category theorem.

LEMMA 5. For any « > 0, 8 is"open in §G‘

This lemma is proved in the same way as the proof of Lemma 4 in [3).
Y * 3 n S ¥ -.

LEMMA 3. Let a = 0.1, =[t. ], I, C {0, T ] () € §, withx (f) =

(corstant) for everp t e I Then. there exist 8% = 0, o> 0 such tbai for every

5 ‘5(0 &%), andt <1, satisfymg [t,:t +01 6] CIz’ every absolurely conimuous
Function y() on [0. £, 1 with y(®) = ¢° @) (0 & [k, 0) such that
a) y( ) is piecewise constant on (0,1 ] and g(z) € int G(i,(T"y)(t)) for every
te 0t 1 ,
b)) y()== )
¢ ﬂy(t) —z () | < & for every e[o to]
o g ¢
& (To@y®;yOd<a .
U

can be exten'de& fo -an absoiuiely conlinucus funclion onto [ — h, 1, ] with

“ty=to4- Sc, such thal all properties a), b), c), d) wilh io in place of 1, remain
valid. . _

Proof. Let us take

@ A
=3 O,mingl,————g) 3
P ( 1T T 40 ( )
where ¢ =mazx {1, sap [§vfi: veG ([0, T} X Uj],
Sup [ ¢, = w): (f x5y 6 Gr ()]}
It follows from the boundedness of G ([0, T] X U) and the upper boun-
dedness of @ that I < ¢ <{ {-oo. - _
According to Krein — Milmann’s convexity theorem, for every s € I; there

exist £, > 0, A; >0 and b; & Extr G(s, (T"a) (<) @= 1,2 ..., n,) such that

'nS
B(a, 28 ) CG (s, (T" ) (s)), = _h?: 1
i=1 .
and
ity
la— TR PI<EB @
i=1 ’




Since @ {s, (TTz) (5); b)) =0(= 1,. 2, ..n) there exists y, & (0,1) sucp
that ¢ (s, (T7 x) (5) ; c?) < B/4, where c? = (1 — ;) bf + oy, (=12, n).
" Further, let 8 > 0 be such that
" B(a, Es) < Gz, z),
BlesyE)C G (z, 2),
] 5 8
¢(t, z; ¢) < B/4

for every (t, z) € B((s, x(«(s))j, d ) (=1, 2, n}.

(5)

Let {(s, — &s/4; s 651/4}1_‘ ; Dbe a finite subcovering of the open
i i i i= .
covering {{s — 8s/4, s +- 8s/4)} < 1, oF I1. Set

8 = min {651/4}.

1< 6

For every &, > 0, there exists 8py >0 such that for every £, [0, To] and

for every function y(.) on[—h, {)] with y(g) == ¢°(s) (¥ ¢ € [~ & L] I g}(t) H<e
(¥ t e [0,1y]) we have, for all £, s < £,

[t —5]=<8w= I| (TTg) &) — (Ty)s) | < &,

Indeed, given §; = 0, let 6: be chosen so that for amy 1, f, ¢ [—h, 0},
the inequality [l — £} <& implies || °(ts) — @%(ts) || < Bofd.  Set & =
=min {8, 8o/dc} . It is clear that for any Iy, £, & [~k, 0] satisfying [, — £ <
< 6; we have § y(t) — y(t,) i < 8,/2. Take now 8g0 > 0 such that fe(fy — «(s) |

< 6; and [ TTy}) — (T7y)(s) || < 8,/2 < S whenevert,s < f, and [t — 5| < Sy
Further, set & = min {5, §,,} énd o = (1——2;3-)— . It is clear that

O* L min {&s; ~ 4} Let 8 e (0,7 5*] and I =c,8. Then !l = a+ps < 8§ <
1Tk 6¢
<%, /4({=1,2,..,k). Hence, there exists j & {1,2,..., k} such that

[t .8, 1< [sj— 6j/ 2, s+ éj/ 2}, where 5}. 3 e Ssj-. {For'simpliiily we
shall write 5 and & instead of S and & ;s Tesp ectively. Setting L=t_,+ hf_ S e

@=12,...,0 4 1) with Ai; 41= B-and A= [t _ p .}, we see easily
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n, +1
kS
that t‘ 1 = ty . I and, hence, [to, t0—§— = \; AT
i=
For every ¢ in [0, T,] such that [t,, 1, + 1 C i, and every absolutely
continuons fumction y (.} on [0, t ] satisfying a), b), ¢), dy, set

Hs _ _
- (a -z W )
¢ =a+ i=1 * / and
ny +1 B
¢
y() = X(@t) +S u(t) dv for every t € [1,. t,+ Il @)
¢
o
where
ng+l :
u®= % ¢, %y B (8)
i=1 i
We have
fo+! O
f uwmdt=J x (1) dt, )]
e to

Hence, || y{f) — = () | < d foreveryf e [—A, t + 1. Indeed, for ¢ ¢, the ine- '
quality is obvious, If I & [, t,+ [] we have

Ny —zHi=1 fI (u (r) — ) de =i ftDH @E)—z@)de il <L72.
9¢ < B. ¢ t
Thus we have ¢) on [—h, ?O ).
it fcllows from (6) that
[ (@7 g) O — (T 2 (A< (T g) O—(T"m (D] +
LT () — @2 (Hh< S, +8<28,<8. Thus

B(c"i_", T+ & ) G (5, T7y) (), |
B (g, tr)C G { (T (),

hence a) holds on [—h, ;o 1-

Further, b) follows from (9) and cj,
Finally, we have
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T
- r -
§°¢ O @7y § O) de = §p (6 (T7g) (03 gt +

{y+1 al ;o oalt +3¢,)  at
LT (g () df < =2+ P o1 _ o
J ot Ty @y @) T 4 =7 = 5

Q o]

t
0
Thus, d) also holds on[— £, };] and the proof of the lemma hereby it complete,
It follows immediately from Lemma 3 that for any « = 0, 5% is dense in
§G' As stated above this completes the proof of the Theorem 1.
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