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OPTIMAL STATE ESTIMATION FOR A STOCHASTIC DYNAMICAL
SYSTEM FROM POINT PROCESS OBSERVATIONS

TRAN HUNG THAOQ

This paper is devoted fo the prohlexﬁ,of""ﬁptimal state estimation for a
stochasiic dynamical system of the form

dX, = a(t, X,) dt + Za(tX)du.J *
=1
where B, = (H, ,...,'H,) is a martingale, and the observation process is a point
process Y; of intensity k. L e

Some preliminaries on Innovation Method for Point Process Filtering are
given in the two first sections. In Section 3, we recall some results on filtering
for a semimartingale from point. observations. In. Section 3, we consider the
filtering process corresponding to system (91@) and derive the filtering
equaﬁons in the fwo important cases of Brownian motion and Poisson
martingales, : ‘ :

1. PRELIMINARIES

Let (Q, F,P) be a complete probability s‘paée equipped with. a right
continuous increasing family of o-fields F (>0 of F. The signal

process will be an F, -adapted stochastic process X, .. The ohservat;ons will
be given by a n-dlmensmnai point process Y, of the form-

]‘h ds + M, : wn

where. M, is'an R-dimensional F -martingale such that:
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a) for any t the fufure o-field oM — M, : u>1) is independent of
the past one 6(7 s u ragh

b) the n.dimensional process b, = (htl, .,h?) contains  informations

about X auad E[E [[h ]2 ds] < oo for any ¢ > 0,
=1 0

Denote by..Ff the o-field generated by Yt

Fl=6(Y,s<1).
s
The conditiona! expeclation
CEELFD (1. 2)

will be called the optimal state estimation (filtering) of X, , It will be denoted
by =. Thus ’
ﬂ(Xt) = E(X,t 1 Ff)_

. 2. INNOYATION. FROM POINT PROCESS OBSERVATIONS

* Let m, be an n-dimensional process defiged by : | |

m, =.Yi '—éﬁ(hs)ds | 2.1)

THEOVREM 1 m, is a point proceés F?—— martz‘néézle aﬁd for -any. & ‘the
future o-field of m —m :u > t)is independent of Ff’.

Proof. We have, for any # > s
t

Eimim P = (| G wttg du £ ) 5 o, =, £

o
Sice  E(h, | F)=EGUIF )<y

nt foilows that the first member of the right hand side is 0. The second member

£ [M —- M) | JIS also 0 because of xndependence of {he future 6(M, -*Ms’
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t> s)on the IlJast‘F? —6 (Ys , § < f). Therefore E(m, — m_ | Ff =0,so m,
is an F? — martingale and 6(m, — mg, ¥ > s) is independent of Ff.
Remark. Since m, iz Fty — measurable, itis obvious that the o—field generated
by m, is included in F?r 26(m ;s <hHE< 'FIY. If 6(m ;s <1)= F} for any 4,
the process m, is called the innovation,
TAEOREM 2. (Bremaud, cf. [1]). Integral Represenlal ion
THEOREM. Lei R, De a Ff— martitgale. Then there exisis a F}’ — prediclable
vector process Kr = (Kt y e ,-Kt) such that for all t 20
‘ ) :
§8Khmpa<w P—a.s. 2.2)
i=1 o ‘
and such that R, has the following representation -
robo
R =R+ [ K dm,
i=1o

or using Kunita’s notation [2]:

: .
R =Ry J (K ,dm}. - , (2.3)
0

3. NON-LINEAR FILTERING FOR A SEMIMARTINGALE FROM POINT PROCESS OBSERVATIONS

In this Section the signal process is 'sﬁpposed to be an one-dimensienal
semimartingale of the form

i
g=m+£&¢+4 3.1

where Z, is'an F, -martingale, H, is a bounded F, -progressive process and
E(SﬂpIXs [)-cct:.

§ &

The observations are still given by a one diﬁnemional point proceés of
intensity A, : - - S S

+ A
Yt=;rbsds+Mt<' S ' (3.2)
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where M, is an Ft -martingale of O-mean and h, = tht ) is_ a positive
bounded F, -progressive process.

Denote again by m, the corresponding innovation: -

mg =Y, — [ n(h)ds 3.3)
o , :

which is a F:" -martingale of point process. Then, the filtering process n(X, ) is

. determined by

THEQREM 3 (see [4])

(&, ) = 7(Xo) +§' wt(H )ds +°§ K .dm . {3.4)
where
K, ==t (h)[=(X, )k — n(X_)h + ()] (3.5)
u = Tid; (Z, M), and ( , ) stands for quadralic variation of two processeés.

Remark. The fillering w(X, ) is an Ff-semimartingale since R, = [K dm_
0

is an Ff—martingale.

Indeed, R, is F?r-adapted and in view of (3.4):
: t
E(R, — R\ F}) = E[n (%) — n(Xo) — § n(H )du|F’]
0
L Y
= E[X, — Xo—é‘ I du| F_]

-— e —— — Y — — Y =
b._g[zt z Fs}_ E[EZ, . Z§]E‘(|Es] 0,

4. FILTERING FOR DYNAMICAL SYSTEM FROM POINT OBSERVATIONS

Suppose that the n-dimensional signal process X ;= (Xf,...,X? satisfies the

follov{ring equation for a dynamical system:

m .
dX, = aplt, X, )dt + ,E_i a,(t, X, )du, - (4. 1)
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; . ‘
! where: a) The components X, (i = 1..., n)of X, have no common jumps.

b) M{ (j =1,..., m) are independent F, -martingales, In parlicular,
II{ = W‘: (j == 1,..., m) are independent Ft -Brownian molion; p,{ may be
also Ft-standa_rd Poisson martingales, i. e. u{ = NJ: —{ (j = 1,..., m) where

the Nﬁ are independent standard Poisson processes. Note that in the two latter

pariicular cases we have
W, nhy, =1, (4. 2)

c) The vector coefficients a_(/, z) € R a (1‘ z)eRM (j = 1, ..., m) are con~
tinuously differentiable in¢, tw1ce contlnuoualy differentiable ina and their first
derivatives are bounded.

f .
. - J . -
d) The integrals g a; (f, X_) dit: are F, — martingales. In-the case of Brow
. - t .
nian martmgales [d- =W J , this is obvious for Itd integrals a; (, X‘) de .
o :

t .
¢) The integrals [ @’ (s, X, ) f(X ) ditJ
J. s i 3 s
o ax ‘
(i=1,., n; j=1,.., m) are F,-martingales and this is also the case for

Brownian martingales u{: Wtj

a; (s X,) dn! (43)

O ey e

. t m
X, =X +[a (s X)) ds—[—.Z
o j=1
Assume now that f: R? — R is a function of clasl C? such that its first
and second derivatives are bounded. S
We wish to calculate the filtering by f of X,, i. e
7y (%) = =(f(X,)) = EIf(X,) | FY] (4.4
from a point process cbservation of the form (1.1):

t
Yf=fhs d.§'+ .Ai[r.

o

The Ito’s formuls is then wrilten as follows




n ;
F8) —f(X) = 2 [ DfiX) X +

; +§~ 3 % /DD fX,)d ey (X ),
i=1 k=10
¥ I, -, - £ DFE_HAX] @)
oLt ) i=1 .

where D, denotes the derivative with respect to the ith variable, X¢ is the con-

tinuous part of X and as usnal, (, ) stands for quadratlc variation of two
processes.

Since
' ot _ t
i A NS S - i i :
Xt=XO+Sa0(s,XS)ds+ p> Sa.(s,X) dw’, 4.6)
. ] 5 3
7 =1y ‘
we have ‘
¢ t
SD fx )dX‘:Sa;(s.Xs) f(x,) ds 4
, 3z
0 0

j ? ;ax'
f H m__‘-l‘ .
£ {nfapax={a0raper =\ aoraam,
L =L B T A
where
e LT Y T, R AU L
A;() f@)= 151 a; (s a‘),—a-;f (). )

(=012, ..,m.
Because X: and Xf have no common jumps and U tj (j =1, ..., m) are indepen-

dent, itis easy to see that(it/, W7, = 0if j 3 L and

(), (Xo), = I

J

: : :
. k . '

18 a} (s x) a, (s, X)) .d <“,j' ll.f)s. .'_(4.9)

. .
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(In both cases of standard Brownian and Poissonian martingales (l-lj N Yy =1ba
It follows that

Fy= oy 228D, Df (X3 d((X5), (x5, =

‘)

—fL % % S X,yak (s X,) Fxya@ Wy (4.10)

2 j=1i=t =17 oz gak
and that F, is of bounded variation,
Denote by F the third term in the right haad szde of (4.5). Obviously G is of
bounded variation. Then (4.5) can be rewritten as

fF(X,)=F(X)+ [F,+6, +5A OF (X,)ds] 4 % fAGFx)dw, @i

j=1o
Taking account of hypothesis d) and of the above mentioned remarks, we see
from (4.11) that f (X)) is again a semimartingale. Applying then Theorem 3 to

x, = f (X,) yields an equation for the filtering process 7 (f (X,)) . Let us- con-
sider the two important cases where IJ-t = Wt and ].Lt = Poisson martingale,
Then (!’j>t= t.

Set

L) f () =._§Iai(s, ) 6% f (x) E

g—k
3
o)
]

[ * i -y ek
) ;Ez 21 k?—zaj(s"?') a;(s’?)
=A4,6f @ 3 i: AP flay. (4.12)

f @

ortaxk

{4.11) becomes then: . o
F(X)="FfX)+ 6 +§4,6FX)ds+ S L
m t ! . ‘ = . .-
+} LefX)yds+ = [AEFXH A~ @15
o j-_—'] (4] s o

Denote by @, the martingale component in (4.13)

i=1°

m .
Q== S 4; (s)f(X ) du . (4. 14)
Let Mi be a process defined by

'”i=‘d?'<“ Mg S (4.1§)
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where J, is the martingale in the point observation (1.1), Consequently,

(Q M! )l = Sf IE uil Aj(s)f(Xs_) ds,

o j=1
hence
4 Dy = Sl A (o) (X 4.16)
oo uh,=Sdaefas
and
d d I d n :
—_ —_ — . 17
(0 ), (dS(Qaﬂ)s,...,ds(Q,M).,.) (4.17y
Denote the vector (4. 17) by
Df@R) == (Dﬁ f(X,)s . D f (Xs))- | (4.18)

Then the filtering process = (f(X,)) is obtained directly by Theorem _3 and we
thus have; :

THEOREM 4- Under Lhe assumpiions al the beginning of Section %, the fillering
process =(£(X,) ) for dynamical sysiem ’

m .
dX, = ao(t, X, )it + 2 ;@ X,) dth
! 1

i
from a point observation Y ;= § h ds - M. , is defined as follows:
[+

a) if Lljr are siandard Poisson martingales:

_ | .
=(f(X,)) = n(f (X)) + *G,) +0§ n(A(Nf(X, N ds + § =7t (h,) [=(f(X, YB,Y —

~ o(f(X,_Nnth ) + 7D X )] dm, (4.15y
where m, is the innovation from Ihe_:observafion Yz '
t
m =Y, ~f n{h)ds (4.20)
[}
and
26,) = I [RF&X,) —n(fX, )] —
oS st
" w
-7:5.__1 D, f(x,_)AXY (4.21

b If u-rf are standard Brownian martingale, the second ferm in the right hand
side of (4.19) is omilied i.e,
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. ¢
n(f(X,) = =(f& ) +§ w4, ) (X, Nds +

t _
5 7 BOREE Oh) — 7(fX (k) +

+ 7D (X )ldm, 4.22)

where m, s the same as (4.20).
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