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ON SOME CHARACTERIZATIONS OF ¢~-BESSEL POLYNOMIALS
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1. INTRODUCTION

The Bessel polynomials were introduced by Krall and Frink [10] in connec-
tion with the solution of the wave equation in spherical coordinates. They are
the polynomial solution of the differential equation

2y’ (@) + (az +b) v @) =n(n + a—1) yla), (1.1)

where n is a positive infeger and a and & -are arbifrary parameters. These
polynomials are ortkogonal on the unit circle with respect to the weight
function
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Several other authors including Agarwal [2], Al-Salam [3], Brafman (4],
Burchnall [5], Carlitz [6], Dickinson [8], Grosswald [9], Rainville [11), and
Toscano [12] have contributed to the study of the Bessel polynomiais.

In 1965, Abdi [1] defined g-Bessel polynomials and discussed some of the
important properties. He denoted this polynomial by J(g; ¢, n; ) and defined
it as
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Jig; ¢, n; 1) = 2P [g7, getn; g (1.3)

The aim of the present paper is to establish some characterizations for
q-Bessel polynomials.
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2. DEFINITIONS AND NOTATIONS

For |g] < 1, let

R el NI | 2.1
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where « may be a real or a complex number.
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We shall adopt in this paper a somewhat d1fferent nolation from that used
by Abdi for g-Bessel polvnomm!s

In the notation of gq- hypergeomemc series, the q Bessel polynomials are

given by
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" From formula (2.8)iwe see that
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"This suggests the dlfference formala’ L .
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Where A f(cz) = f(or. +1) — f(oc)
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The g-derivative of the ¢-Bessel polynomials are themselves g¢-Bessel
polynomials w.th the parameter increased by two. Indeed we find from
formula (2. 6). :

. y® = 2=N1 — g~ 0y (1 _ gnTe+Ly y(a+2) a
1—-9 Dq o q(x) z g H{1—gq ) Yn—i, q(x) (3. 3)
which can also be written as
1 -1 +2 ,
mbqnq(x>—£ a)[n +a 4 27 YD @) G

From (3. 2) and (3. 3), we see that the g-Bessel polynomials satlsfy the mned
equation. .
ni e+l ‘
VP @ =29 p yP@ (3. 5)
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The following recurrence relation can be verified directly.

y(® Y@y = (gatEF] = n—1 (@410 3
ni1, (D Y@= " ye Y@ 6.9

This can also be written as

a) (x)_ (qn Fe41 q'-.n"'.f) T Y(OC+1)(:C) (3' 7)
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4. CHARACTERIZATIONS

In this section we obtain some c“aracterizations of the g-Bessel polyno-
mials similar to those for (i) the Jacobi po]ynomials obtained by Al-Salam [3].
We prove here the following:

"TAEOREM 1. Given a sequence {ffg'(x)}‘ of gq-polynomials in x where

deg f (m) @ =n, and- « is a parameter, such that

(1—q) quf, Y@=z~ - D @) and F 0 =1 @
Then f(cf; (&)= Yf:z (x) .

Préof, Assume

f”()_z A (m,n)jxk““
k=0 .
Now by (4.1), we have
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Sirce f;a; (0) =1 so Ao‘q(a. n)=1. Consequently, we obtain

(g7 (gotetd),

&m = (@),

Ic ¥
which proves the theorem.
Another charscterization is suggested by (3.2). Indeed we have

THEOREM 2. Given a sequence of g-functions {fia; (x)} such that

A, f( )(:v\ =" g™ x ff_’fé (x) - @2
@ o g O,
frg @ =1.f  (x)=1 (4.3)
Then f () (3:) = Y(a) (x)

Proof From (4.2) it is evident that f (=) (1:) is a g¢-polynomial in « of
degree n. Hence we can write

f(“) () = ?Z. A_(n, x) {q

Hence (4.2) implies
=il T
Ar (n,x)=(q ),
This proves the theorem.
Equation (3.5) implies the following
THEOREM 3. {f the sequence f(“) (%), where f(“) (z) is a polynomzal of de-
gree ninx, and o is a parameter satzsfzes
grtett D f( ) E
4.4
o) 2o Fiy @ | “9
) (
suchthat & (5)=Y) (x), then (‘*) ) (2) =¥ (x).
The proof is similar to that of Theorems 1 and 2.
Finally we give the theorem suggested by formula (3.7).

THEOREM 4. Given a sequence of q-functions{ f f:; (a:)} such that

A, £ (x) =
g

apfed () = (g3 — g=r=1y 5 Fog @

and f(gj (x) = 1 for all z and «

Then f( ) @)=Y @.

The proof of this theorem follows by induction on mn.
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