ON SOME CHARACTERIZATIONS OF q-BESSEL POLYNOMIALS

MUMTAZ AHMAD KHAN and ABDUL HAKIM KHAN

1. INTRODUCTION

The Bessel polynomials were introduced by Krall and Frink [10] in connection with the solution of the wave equation in spherical coordinates. They are the polynomial solution of the differential equation

$$x^{2}y''(x) + (ax + b)y'(x) = n(n + a - 1)y(x),$$
 (1.1)

where n is a positive integer and a and b are arbitrary parameters. These polynomials are orthogonal on the unit circle with respect to the weight function

$$\rho^{(x,\alpha)} = \frac{1}{2\pi i} \sum_{n=0}^{\infty} \frac{T_{(\alpha)}}{T_{(\alpha+n-1)}} \left(-\frac{2}{x}\right)^n \tag{1.2}$$

Several other authors including Agarwal [2], Al-Salam [3], Brafman [4], Burchnall [5], Carlitz [6], Dickinson [8], Grosswald [9], Rainville [11], and Toscano [12] have contributed to the study of the Bessel polynomials.

In 1965, Abdi [1] defined q-Bessel polynomials and discussed some of the important properties. He denoted this polynomial by J(q; c, n; x) and defined it as

$$J(q; c, n; x) = \frac{(q^c)_n}{(q)_n} 2^{\Phi_0} [q^{-n}, q^{c+n}; x]$$
 (1.3)

The aim of the present paper is to establish some characterizations for q-Bessel polynomials.

For |q| < 1, let

$$[\alpha] = \frac{1 - q^{\circ}}{1 - q} , \qquad (2.1)$$

where a may be a real or a complex number.

$$(q^{\alpha})_{n} = (1 - q^{\alpha}) (1 - q^{\alpha + 1}) \dots (1 - q^{\alpha + n - 1}); (q^{\alpha})_{0} = 1$$
 (2.2)

$$r^{\Phi_{s}} \begin{bmatrix} q^{(a_{r})}; x \\ q^{(b_{s})}; q^{\lambda} \end{bmatrix} = \sum_{n=0}^{\infty} \frac{(1-q^{a_{1}})_{n} (1-q^{a_{2}})_{n} \dots (1-q^{a_{r}})_{n} q^{\frac{1}{2}\lambda n} (n+1)_{x^{n}}}{(q)_{n} (1-q^{b_{1}})_{n} (1-q^{b_{2}})_{n} \dots (1-q^{b_{\beta}})_{n}}$$

$$(2.3)$$

$$D_q f(x) = \frac{f(xq) - f(x)}{(q-1)}.$$
 (2.4)

We shall adopt in this paper a somewhat different notation from that used by Abdi for q-Bessel polynomials.

In the notation of q-hypergeometric series, the q-Bessel polynomials are given by

$$Y_{n,q}^{(\alpha)}(x) = {}_{2}\Phi_{0}[q^{-n}, q^{n+\alpha+1}; x]$$
 (2.5)

$$= \sum_{k=0}^{\infty} \frac{(q^{-n})_k (q^{n+\alpha+1})_k x^k}{(q)_k}$$
 (2.6)

Thus

$$Y_{n,q}^{(\alpha)}(x) = \frac{(q)_n}{(q^{1+\alpha})_n} J(q; 1+\alpha, n; x)$$
 (2.7)

3. RECURRENCE RELATIONS

From formula (2.6) we see that

$$Y_{n,q}^{(\alpha+1)}(x) - Y_{n,q}^{(\alpha)}(x) = q^{n+\alpha+1} (1-q^{-n}) x Y_{n-1,q}^{(\alpha+2)}(x)$$
 (3.1)

This suggests the difference formula

This suggests the difference formula
$$\Delta_{\alpha} Y_{n,q}^{(\alpha)}(x) = q^{n+\alpha+1} (1 - q^{-n}) \times Y_{n-1,q}^{(\alpha+2)}(x);$$
where $\Delta_{\alpha} f(\alpha) = f(\alpha+1) - f(\alpha)$.

The q-derivative of the q-Bessel polynomials are themselves q-Bessel polynomials with the parameter increased by two. Indeed we find from formula (2.6).

$$(1-q) D_q Y_{n,q}^{(\alpha)}(x) = x^{-1}(1-q^{-n}) (1-q^{n+\alpha+1}) Y_{n-1,q}^{(\alpha+2)}(x)$$
 (3.3)

which can also be written as

$$\frac{1}{1-q}D_qY_{n,q}^{(\alpha)}(x) = [-n][n+\alpha+1]x^{-1}Y_{n-1,q}^{(\alpha+2)}(x)$$
 (3.4)

From (3. 2) and (3. 3), we see that the q-Bessel polynomials satisfy the mixed equation.

$$\alpha Y_{n,q}^{(\alpha)}(x) = \frac{x q^{n+\alpha+1}}{[n+\alpha+1]} D_q Y_{n,q}^{(\alpha)}(x)$$
 (3.5)

The following recurrence relation can be verified directly.

$$Y_{n+1, q}^{(\alpha)}(x) - Y_{n, q}^{(\alpha)}(x) = (q^{n+\alpha+1} - q^{-n-1}) x Y_{n, q}^{(\alpha+1)}(x)$$
 (3. 6)

This can also be written as

$$Y_{n,q}^{(\alpha)}(x) = (q^{n+\alpha+1} - q^{-n-1}) x Y_{n,q}^{(\alpha+1)}(x)$$
 (3.7)

4. CHARACTERIZATIONS

In this section we obtain some c aracterizations of the q-Bessel polynomials similar to those for (i) the Jacobi polynomials obtained by Al-Salam [3]. We prove here the following:

THEOREM 1. Given a sequence $\{f_{n,q}^{(\alpha)}(x)\}$ of q-polynomials in x where $\deg f_{n,q}^{(\alpha)}(x)=n$, and α is a parameter, such that

$$(1-q) D_q f_{n,q}^{(\alpha)}(x) = x (1-q^{-n}) (1-q^{n+\alpha+1}) f_{n-1,q}^{(\alpha+2)}(x) \text{ and } f_{n,q}^{(\alpha)}(0) = 1$$
 (4.1) Then $f_{n,q}^{(\alpha)}(x) = Y_{n,q}^{(\alpha)}(x)$.

Proof. Assume

$$f_{n,q}^{(\alpha)}(x) = \sum_{k=0}^{n} A_{k,q}(\alpha, n) x^{k}$$

Now by (4.1), we have

$$A_{k,q}(\alpha, n) = \frac{(1-q^{-n})(1-q^{n+\alpha+1})}{(1-q^k)} A_{k-1,q}(\alpha+2, n-1).$$

Since $f_{n,q}^{(\alpha)}(0) = 1$ so $\Lambda_{o,q}(\alpha,n) = 1$. Consequently, we obtain

$$A_{k,q}(\alpha, n) = \frac{(q^{-n})_k (q^{n+\alpha+1})_k}{(q)_k}$$

which proves the theorem.

Another characterization is suggested by (3.2). Indeed we have

THEOREM 2. Given a sequence of q-functions $\{f_{n,q}^{(\alpha)}(x)\}$ such that

$$\Delta_{\alpha} f_{n,q}^{(\alpha)}(x) = q^{n+\alpha+1} (1-q^{-n}) \times f_{n-1,q}^{(\alpha+2)}(x)$$
(4.2)

$$f_{n,q}^{(\alpha)}(0) = 1, f_{o,q}^{(\alpha)}(x) = 1$$
 (4.3)

Then

$$f_{n,q}^{(\alpha)}(x) = Y_{n,q}^{(\alpha)}(x)$$

Proof. From (4.2) it is evident that $f_{n,q}^{(\alpha)}(x)$ is a q-polynomial in α of degree n. Hence we can write

$$f_{n,q}^{(\alpha)}(x) = \sum_{r=0}^{n} A_r(n, x) \frac{(q^{n+\alpha+1})_r}{(q)_r}$$

Hence (4.2) implies

$$A_{r}(n,x) = (q^{-n})_{r} x^{r}$$

This proves the theorem.

Equation (3.5) implies the following

THEOREM 3. If the sequence $f_{n,q}^{(\alpha)}(x)$, where $f_{n,q}^{(\alpha)}(x)$ is a polynomial of degree n in x, and α is a parameter, satisfies

$$\Delta_{\alpha} f_{n,q}^{(\alpha)}(x) = \frac{x q^{n+\alpha+1}}{[n+\alpha+1]} D_q f_{n,q}^{(\alpha)}(x)$$

$$\tag{4.4}$$

such that $f_{n,q}^{(0)}(x) = Y_{n,q}^{(0)}(x)$, then $f_{n,q}^{(\alpha)}(x) = Y_{n,q}^{(\alpha)}(x)$.

The proof is similar to that of Theorems 1 and 2.

Finally we give the theorem suggested by formula (3.7).

THEOREM 4. Given a sequence of q-functions $\{f_{n,q}^{(\alpha)}(x)\}$ such that

$$\Delta_n f_{n,q}^{(\alpha)}(x) = (q^{n+\alpha+1} - q^{-n-1}) x f_{n,q}^{(\alpha+1)}(x)$$

and $f_{o,q}^{(\alpha)}(x) = 1$ for all x and α

Then
$$f_{n,q}^{(\alpha)}(x) = Y_{n,q}^{(\alpha)}(x)$$
.

The proof of this theorem follows by induction on n.

REFERENCES

- 1. W.H. Abdi. A basic analogue of the Bessel polynomial. Mathematische Nachrichten Band 30(1965), Heft 3/4, 209 219.
- 2. R.P. Agarwal, On Bessel Polynomials Canadian Journal of Mathematics, 6(1954), 410 415.
- 3. W. A. Al-Salam, The Bessel Polynomials. Duke Mathematical Journal, 24(1957), 529 546.
- 4. F. Brafman, A set of generating functions for Bessel polynomials. Proceedings of the American Mathematical Society, 4(1953), 275 277.
- 5. J. L. Burchnail, The Bessel polynomials Canadian Journal of Mathematics, 3(1951), 62-68,
- 6. L. Carlitz, On the Bessel polynomials, Duke Mathematical Journal, 24(1957), 151-162.
- 7. L. Carlitz, On Jacobi polynomials. Bolletino della Unione Matematica Italiana, Series III.
 Anno IX (1956), 371-381.
- 8. D. Dickinson, On Lommel and Bessel polynomials. Proceedings of the American Mathematical Society, 5 (1954), 946-956.
- 9. E. Grosswald, On some algebraic properties of the Bessel polynomials. Transactions of the American Mathematical Society, 71 (1951), 197-210.
- 10. H. Krall and O. Frink, A new class of orthogonal polynomials: the Bessel polynomials. Transactions of the American Mathematical Society, 65 (1949), 100-115.
- 11. E.D. Rainville, Generating functions for Bessel and related polynomials. Canadian Journal of Mathematics, 5 (1953), 104-106.
- 12. L. Toscano, Osservazioni, Confronti e complementi su particolari polinomi i pergeometrici Le Matematiche, 10 (1955), 121-133.

Received May 12, 1987

MATHEMATICS SECTION, Z.H. COLLEGE OF ENGG. AND TECH. A.M. U. ALIGARH - 202 001, U.P. INDIA