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ON THE UNIQUENESS OF THE SOLUTION FOR
THE BOUNDARY VALUE PROBLEM OF INFINITE ORDER

TRAN DUC VAN and LE VAN HAP

The aim of this paper is to study the Dirichlet problem for the elliptic
equations of infinite order with arbitrary nonlinearities:

| 5 (-1)‘“10“‘4&(;.:;11,..., D) = h(x), z & Q. (0-1)
=0 - .-

©ren

As an example of such equatiqﬁé we have the equation

z (—)FD%e D u@) = A(x),
Jo] =0 '
where ¢ ,: RY + R? are continuous, odd, nordecreasing functions and P (Foo)=
= + oe. For t sufficiently large the functions ¢ (.) may bebave, crudely speak-

ing, as polynomials (see [1] and {2]), as exponentials or logarithms, and similar
such functions [3,4].

In the study of boundary value problems for equations of infinite order a
decisive role is played by the nontriviality of the correspondini cenergys
function spaces: this role is in our view, of independent interest. In[3,4] the
cenergy» function spaces for the Dirichlet problems of infinite order are

fal=]
Sobolev-Orlicz classes of infinite order W £ {o «» ¥}s which are nonlinear spaces
in general case. The uniqueness of solution for Dirichlet problems is proved
e P .
under the condition that the corresponding class W £ {o o ©} is a linear space
- Inthis paper we shall introduce Sobolev-Orlicz spaces of infinite order,
which contain Sobolev-Orlicz classes W g{cpa ) ﬂ} as subsets, and establish
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the naigueness of solution of the Dirichlet problems of infinite order without
the condition V in [3] assuring providing the linearity of the corresponding
@ energy » space.

The paper consists of three sections. The first one is devoted to the defini-
tion of Sebolev-Orlicz spaces of infinite order and their principal properties. We
si:eil verify that criterions of nontriviality for Sobolev-Orlicz classes of infinite
order [3, 4, 5] are still valid for our new spaces in three of most commontly

encountered cases in ampalysis: & bounded regiom @ ¢ R% full Euclidean

space R? and the toras T® = ST x ... x 87, where S?is the unit circle. We-
present effective methods of festing the noatriviality of these spaces. The dual
space to the Sobole¥-Orliez space is described in §2. In §3 we establish the exis-
teace and umiqueness of solution of Dirichlet problems for the equations (0. 1).

§1. THE SOBOLEV-ORLICZ SPACES

LW {9, O}, LW™ {¢ ., T}, LW™ {g,, RR}. 1)

Let G be a domain i R and let ¢o(f) be an N—function, i.e. a real-valued,
continnous convex and even function, where @(f) = O fort = O, o(&)jt - O as

t—= O and @)/t = o as f - co, We shall refer to the function ¢ (i) =

= sup {ts — ¢(s), s € B! } as the N-function complementary to ¢{f). We use
the anisolropic Soboley~Orlicz space of order N with the norm,

N
Tall g = EEO | D*a | (@a) * (1.1
where [ . || (@) is defined by
lluliey = inf { k> O: § g(e/kydz = 1},
k G

which is called the Luxenburg norm {6]. This space denoted by w¥L { 9 G}, -
is a Banach space with the norm (1. 1). In the space W¥L { ., G } we also in-

troduce the norm
N
| u II(N) = inf { k>0: T §o.(D%ukydr =1 } (1.2)
k G

%)=g

1) We distinguish these spaces from the spaces W "L {ps» Q}, w™L {9as Tn},
WTL {CP.;. Rn} considered in [3, 4, 5], Which are their subspaces.
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LEMMA 1. 1. The norms (1. 1) and (1.2} are equivalen!. Moreover
Il = Nally = M laligyy »
N ,
where M = I S(i), SU) = Card {« = (og, . » «)le]= i)
i=o
Proof. Indeed, we have
M
{k >0: X f o D*uydr=1}c {k>0:fo, /D" uydx= 1},
e [r(23)
ie.
“Dau” (.(P“) $uu”(N).hL o, l QISN(

Hence,

N
hull g =l p ||D"u|j(%) =M.l ulloyye

On the other hand, for all | « | << N ¢, >> 0 can be chosento be arbifrarily s_mall
enough. Setting

N
K= 2 (10%ullgy+cad > Ky =) D) 5 +¢, >0,

lﬁ]ﬁo
we have
N N k o N k.
' D%u % D%u a =T1.
3§ g, Jas= 3 [ E (B fes T
=0 N Kk [o|=0 ¢ X k, lej=0 %
It follows that
" N
Il i =K =ully+ Z c¢a;
(N) N o]0
' N
where X ¢, can be arbitrarily small. Therefore || u || ) =lully-
Je] =0

The lemma is proved.

1.1. The space Lﬁf‘*’{cp o+ S} Let Q be a bounded domain in R™ and denote
its boundary by oQ. Further, let Wy E {p,, Q} be the closure of C:: (Q) in
wN L {o . Q} by either the norm (1.1) or the norm (1.2). To define wN L{Lp_a"ﬂ}

we may use the o (1Lg,, [IEp, )topology, i, e. wWNL {¢,9Q} is the closure of
€5 () by the topology s (I1Lg, , T1Ep,} [9].

We consider now the following space of funcfion u(x)
0 [-2-3 - -]
LW {9., Q} = {u(z) € G, (Q), [ u|] (=) < oo},
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where . -
] (oo) 1 { >4, I Q3 "'( Ic ) = }' - ase )

af=0

LV?TM{(pa; Q} is called a Sobolev-Orlicz space of infinite order on the bhounded
domain Q. We recal] the definition of Sobolev-Orlicz classes of infinite
order [3, 4]:

LW {o., 2} = {a(z) € €7 (@)},
oy = = JrDru@ds < o).

I&!ﬂﬂ
LEMMA 1. 2. The space LW {g., Q) is a linear hull of the class
LW (g0 Q). |

Proof. Let u g L’,W {¢., Q} and p (u) K. It is sufficient to consider
the 6ase K > 1. We have

oo

D*u 1 -
o fcp,,(,K )d;r:< T @=1

Hence, flull <K fe ae LW {@a, ©}. This proves the lemma.

LEMMA 1. 3. For any u(x) € LW""{%, Q}
: llm”lI”(N) = Hu[[(‘x,)'-

‘N—»oce
Proof. 1t suffices to consider the case

lim ]]uu =M =0
N-aoe (00 T |

For any non-negatwe mteger N, we have

. N Dy
inf {Ic:>-0 z §cpﬁ( )dxg_ <M.

This implies

Ay oy ' ' ’
2 fcpa (D u)dﬂ'}gl’ VEV: 031,---

L _f
Hence ' ' BT - . R
lﬂlltw) M, o 19
Othelwxse, 1f 0<| u||(w, _M?, hy the definition 01‘: the norm ||. ||<m; we
have.Vs>O,3]c0>0.M M o te such that

& D“
5 g (k )de~.<\1.
UERE: R WA
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Thus, for every non-negative integer N,
N D%
> o, ( - ) dzr <1,

[2]=0 0

This shows that |ju]l < k,< M, + ¢ and, hence
lim Jallgyy <My + ¢
N—r oo

Since ¢ is an arbitrary non-negative number, we have
lina flull gy << My (1.5)

N —> oo

The assertion of the Lemma 1.3 follows from (1,4) and (1. 5)

THEOREM 1.4. The space LW {cp, , Q} isa Banach spuce that is the limit of

oN
the monotone decreasing seqitence of .Sobolev Orlicz space W L {¢,, Q} N=0 1’, “
In addition,

lim lull gy = lollosy -
N0 = ooy

Proof. Obviously, we have
WiL{@as Q} D WQL{‘PMQ} IR
[} ” [¢)) S flul (2)_<__ -

and each space L\?’NL{cp;,Q} is Bavach space. Farther, by Lemma 1. 3
”Hﬁ(.‘)—-— hmﬂH”(N),

N—a-oa

ie. LW {(Pu.s Q} is the limit of the decreasing sequence of the épaces

‘WL{(pG,Q} in the sense of [7,2]. By Theorem 4.1, 1 [2] LW-{%,Q} is Banach
space with the norm || « [l ¢.,» . The theorem is proved. ,

DEFINITION 1. 5. We say that the space LW{cp, , Q} ‘is -nonfrivial if there
exisls a funclion u(sc) € C (Q) such that u(x) == 0 and {u I (o) < o0 s

As in [3], we mtroduce the sequence of numbers M,

95 (Umes Q), 9, =0,
+=io =0,
where cp;‘i(t), is the inverse functiop of the N-funclion ¢s()s 2] = 0,1,...

M, =

THEOREM 1. 6. The space L\‘l, {(pm, Q} is nontrivzal if and only if the sequence
M, la|=0d,.. definesa nonquasmnalyizc class of functions of n realvariables.

Proof. Sufficiency is immediate trom Theorem 1. 1. [3] ‘and Lemma 1. 2.
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Necessity, Let A/ , generate a quasianalytic class C[3,] of functions of n
noo
real variables, and let u & LW {¢, Q}. We prove that u = G,
poo
The conclugion u € LW {g . Q} shows, in particular, that there exists a
pumber K_> 0, such that K, Tuew {¢ ©@}. By Theorem L1 [3] we have

o .
k:Iu = Q. Hence u = O, that is, L{’V {o,. Q} is firivial. The theorem is thus
proved.
Using the Lelong criterion [8] it is not difficult to formulate Theorem 1.6 in
terms of quasianalytic classes of functions of a single real variable. Further,
from Theorem 1.6 and Corollaries 1.1, 1.2 and 1.3 in [3], we obtain the following

algebraic necessary and sufficient conditions for nontriviality of LW {cpa, Q}.
COROLLARY 1.7. Each of the following condilions is necessary and suf ficient
for the space LW {pq» Q} to be nonirivial:

iIN oo
a) If p, = inf (min My , then Bl 2 4
N>n |of=N n=1 R
N [+ 2] Lol
by If T (r) = Sup (—f——) then S M dr << 4 oo
M rz
: N 1
1N - M |
¢) lim M =o, & S
N—+>= N N=o M€

N+1
Let % {Q) be the characteristic function of the domain and let (cp,_q?) e a
pair of ¢ompiementary N—funections.

Qoo
COROLLARY 1. 8 The space LW {o,,Q} is nontrivial if and only if ihe sequence
% lg | & | = 0,1,.... defines a nonquasianalytic class of functions of n real
a .

variables*, .

COROLLARY 1.6. The space LW {g,, Q} is nonirivial if and only if the

sequence ||y, () <P_m1' el =1, 2,4 defines a nonguasianalgtic class of functions

of n real variables*.
1. 2. The space LW*>{g,, T"}. Let us denote by T" the n-dimensional
torus, Consider the space

1.1 ¢ denotes the Orliez norm in the Orlicz space Ly ().
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LW {o ., T} = {u(x) e C= (T, || u (oe) < o

0 gT“ Y (Dtcu) <tk a0

R

1

n:' f{k:
e, e =l

where u(r) is a periodic function of period 2w, As usual, the gquestion of the

nontriviality of the space LW {¢_, T"} arises. We are interested only in the

space LW™>{p_, T"} which has infinite dimension, i. e. which contains an

infinite set of linearly independent periodic [unctions. Such spaces are called
nontrivial.

Using Theorem 4. 1. i [2] and considering LW {o_,, T7} as the limit

of the decreasing sequence of Banach spaces WY L {p, , T"} one can prove
the following property.

THEOREM 1.10. The space LWos {op,, T} is a Banach space with the

norm (1.6). Moreover LW™ {¢,, T"} conlains class LW™ {g,. T"} asa subset.

THEOREM 1. 11. The space LW ™ {g,, T"} is nonirivial if and only if there
exists a sequence of distinct multi-indices q,, = (‘11\, yoers qnv) v=0,1,..., suththat

(o]

S gulqe) < oo 1.7)
[

lo]=

74 4 24
— 1 v
where q,, = SR iy

Proof. Sufficiency is immediate from Theorem 2. 8 [4] and Theorem 1. 10.
Necessity. Let ms assume the contrary that the series (1.7) is convergent for
not more than a finite set of multi-indices ¢ =(g,,..» ), mamely, for | q, | <

< N g, 1< N _, where Nj are integers. Further, for any u € LW™

{pg, TR} there ezists ko > 0, such that k-t ¢ ZW* {9, T" }. Fromthe proof of
the necessity of Theorem 2.8 {4] it follows that the function k;l u,and consequently,

the function u belongs to L (exp (7y,x)), where L (exp ({g,x))is the linear hull of the
fanctions exp (ig.@) with [g;] < Ny j=1sus 1, Lo LW {9 T} < L (exp (ig,x))e

The latter contradicts the condition that LW™ {g,, T"} is of infinite dimen-
sion, The theorem is thus proved.

1. 3. The space LW™ {¢, R"}. We shall consider the following space of
function u(x): R* - C*
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LW= {p,, R*} = {u(x;. D%z : L,, (R"), jju (w0}, K" L o
D%y “ o .,
124 _mf {k>0: fo (—m) dx = i}, (i. 8) whers D~ denotes the
(oo), R ]1N l_OR o 4 k
generalized derivative of order a.

By a meihod similar fo that of Sections 1. 1, 1. 2 and by Theorem 4.1,1 2],
Theorem 2 [6] we can prove toe following resulis.

THEOREM 1. 12, The space LW~ {9, , R"} is a Banach space with the riorm
(1.8). Moreover, LW* {pa, R"} conlains the class LW {o, R"} as a subset

THEOREM 1. 13. The space LW {¢,, R"} is rontrivial if and only if there
exists a number ¢ > 0, such that ‘

= ) lul
2 (PO! (q ) L + O%e
=0
REMARK, If is obvious that the problem of nontriviality of the space
LW= {@a., R} becomes meaningful if @, 3% 0, since otherwise the function

u(x) == const belongs to LW™ { ., R"}. By this reason we can always assume
that Do i 0. ‘
§2. The space EW—= { @,, Q}. We consider the case of functions defined
in a bounded domain Q CC R".
As well known, the space W‘-"-VE{ 5‘,, ©} is dual to wiL {9., Q} 6,9
We consider the increasing sequence of Banach spaces
W E{EP‘“ Q}L"W E{q)“’ Q}"'C W—NE{(PMQ'}C-O-
{l:!’,'”_.1> HT”-Z:" . -i fl 2 _N -
We denoie by EW== {¢,, O} the :completion of
[ ] ' U WTmE e, Q)
, . . m=0
in fhe norm’

[Z [ mee = lim fxf __.
m—-eo

By Theorem 4. 1. 2 in [2, p. 113] we have

THEOREM 2.1. Let Lhe space LW {9 @} be nont:w:al Then the spacé
EW~—= {cp,, Q} is nonirivial too,

THEOREM 2.2, The following representation is valid'
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wW—= {5,, Q} = { ) : A(x) = (; (_l)lmlD“}la(;‘t‘),
|a}=0

h x) e E acr-’ (D} Z | o 1o < ~oe L
@ € E (o @) 5 i <)
Proof. Let us show that one and only one series
| 3 (1) 1o Donegy,

jol=0

appearmo in the theorem, corresponds to an element of the space EW {%.Q}

Indeed, let 11 (x) e U W™ ™mE{ ¢,,2)}, s=1,2, .. be a fundamental
m=1

sequence in the norm ||. ||(__m) . Let mg = my(s) be the amallest among all the

numbers m for which &_tx) ¢ W “ME {¢., @} Then, as it is known from the

theory of Sobolev—Orlmz spaces, the functions /1 , (%) can be represented as

m
h (x) = Z(—1}*l D*h_(z),

Gl::o

where h , € Eg, () (see[9]). o f

Now we consider the fami‘ly of Dirichlet problems of infinite order

Lu) = B (-OPLD G, (D0, @) = b, @) .1,
Dey_ ] =0, =0,1,.. - C 2. 2),
a0 . L . o

where I, is the derivative of ¢, - According to our res}ilts ‘ofr § 3 below, the
problem (2. 1) - (2. 2)3 bas an unique sqlutiém a (@)‘ e LW= {cpw '.Q}, aﬁd,"‘for:
any m 2> m_, the inequality”

ul = K & oo, o B @3

is vahd The estimate (2. 3) implies that there exists a function u(T) @
=] LW"" {q:a, Q} such that u () — u(:c) umformly thh respect to all its
derivatives. e B S T e e

We shall show that u(x) is the unigque limit point of the sequence u_(x). Indeed,

let u, (x} be another subsequence of the sequence u_(z) such that

u (x) — w(x) in C:"(ﬂ) s

‘ S N - |
where w(z) is a function from LW {.,,Q}. We must show w(x) = u(aj.
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It is obvious that
(La,) — L), vy < (b, — hy, o)

where v g LVOI?(px,Q), m=max [my(r), mg(k)] (see the definition of number my(r)
at the beginning of our proof). Hence
: -— om
(L(llr) - L(uk)9 < |l hr - hk i W~mE{(me} . It oj W L{(Pa , Q,} .

Passing to the limit when m — o=, we get the ineguality

(L(Hr) - L(uk)s D) =| hr - bk Il o) v "(w)
Since the original sequence h, (x) is fundamental in the norm [|. | (), we see
by letling k — oo, r - = that

(L(H) - L(w)s U) =0,

where v(x) € fo;“{q,mg} is an arbitrary function.

In view of uniqueness of the solution of the Dirichlet problem of infinite
order (Theorem 3. 2 and 3. 3 below) u(x) = w(x). Thus for every fundamental
sequence h (z), s= 1, 2, .., there exists one and only one function

u(x) € L\(V{fp,, Q} such that

u (x) = L7k ) - u(xy ,
uniformly withrespect to all its derivatives. If is easy to see that if the funda-
mental sequences & (z) and A (r) are equivalent the corresponding fuactions

u(x) and u’(x) are equal, i.e. u(zr) = w’(z). It remains to remark that for any
Ooc
function u(x) € LW {g,, Q} the series Z(u) defines an clement of the completion

U W™"E{$a, @} in the norm ||, || . . Therefore, the desired map
m= _ :

L(u) « hs @) s = 1,2,..
is defined. The theorem is thus proved.

§3. BOUNDARY VALUE PROBELEMS OF INFINITE ORDER -

In this paragraph we study Dirichlet problems for the nonlinear

differential equations of infinite order in a bounded domain, However, all the
results obtained below, are still valid in the cases of torus 7%, the fulj

Eunclidean space R? , etc,
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Let Q be a bounded domain in R" , n >» 1, with boundary 9Q. We
consider the problem

Lz, Dyu = ‘Z (""l)id.] DA, (x, u, ..., D) = h(x), 3. )
. i =0 .
Deulyn =0, |wl =0,1., (3. 2)

Here 4 (z, %) are, generally speaking, nonlinear funciions of &= (& ks
(&, € R1). We assume that for each « the function A (x, &) satisfies the Cara-
theodory condition and the following conditions:

1. There exist N-function ¢ (t). 2 function q (x) € L{p,. @}, a continuous

bounded function Py ( [t a<e (] t]1) < coonst) and a constant b > 0
such that ' '

| Az, B) 1 << ag(@) + b9, (ol [ B | )50
where

z Nagll iz y < oo,
=0 (@)

II. There exist funetions b _(®)e L, (D), g (x) < E {‘;u , O a cont-inuous
bounded fumnction ci( 1t])Y > ci( ]t]) and a constant d > O such that

S (4, (7,8 — g, (@), >

o|=nt:
>d [2 q»m(cua NEY—2 (x),
where
b Ilg,,ll(—)-<+’m,z [1b, (t)]da:<+oa_
lel=0 Pu m=0

1L, The N-functions g, (t) are such that the space LW""{%, Q} is nontri-
vial (see §1) . :

IV. The strict monotonicity condition, For albltlary B (§ snas Eg)s
B = s> £)and © & 2 we have the Inequahty
Z (A @, =4, (1, E)E,—E) >0

ul""m

and the equalily is valid if and only if WhE:l‘l E=r,m=0,1,2, ...
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We assume that the right hand side of (3.1) belongs to EW™> {g,, Q}

0o —oo -
{see §2). The duality of the spaces LW {g,, Q} and EW {9, Q} is determined
by the expression

(h, )= 3 g{ha(:c)n%(x)dsc',

iﬂl_—.o

,which is obviously correct.

DEFINITION 3. 1. 4 function u(x) & LW={p, , ©} is said fo be a solution of

the problem (3.1) — (3-2) if for an arbilrary funciion v(z) LWJ""{cp“, Q}

.we have

{(L{x, Dyu, v) = (h, v)
Remark. Definition 3. 1 is more exact than Definition 2. 1 in [3] because the
test function space LW>{ ®g» @} is larger than WL {g,, 0} ie. W=L {p,, 0}
LW* {q,, O}

THEOREM 3. 2. Let the condilions 1111 be s&li.s_ffed. Then for an arbitrary
righl-hand side I(z) sEW-" {¢,, Q} there exisiz at leasi onz solution uix) of

the problem (3, 1)—(3. 2) in the space LW ={yp, , Q}-

THEOREM 3. 3. Let the condition IV be satisfied, Then the solution of the
problem (3.1)—(3.2) is unique,

The proof of these theorems is essénﬁa_lly similar to that of Theoram 2.1.1
and 2.1.2 in {4] since ﬁ?’”ﬁ{cpa o} Yo L‘[f/*’{qja » Q}and the spaces Lﬁ/"“{@u ,6}
and EW-~ {¢, , O} are linear, '

Examples. We consider the following problem:

IDju= 3 (=1 D, (Du@H=h@hec e, (3.9

wl=o :

| Dom, = 0, [a] =0, 1, .. S N

For each « the function K, : Rt — R? is continuous, odd, and nondecreasing,

and K (4-=0) = +-o=; We put
. i
0 () = {1, (7) dt, % = 0, ..
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The functions g (f) are N-functions.,Obviously, as in {3], the conditions LII
are satisfied for the equation (3.3). In addition. let us assume that the functions

0% )
@, (t) are such that LW {g,, Q} is nontrivial. Then by virtue of Theorem 3.2:

. oce .
the problem (3.3)—(3.4) has a nontrivial solution in LW {cpa, .Q} for A(x) &
EW-"{p ., Q}. If the functions R () are strictly increasing, it follows from
Theorem 3.3 that the solution is unique. We examine some concrete examples.

a) Case of coefficients with rapid growth. We consider the problem

s (—I)I“IDm(aaDau exp [am(Dau)g] = h{x), | (3.5)
@=0
Duu[an = 0, lul = 0,_1,-1- . . . ‘(3'6)

oo° : ' ’
Fora, = (|a})~ 2" v >1 the space LW {exp [aat‘?] - 1, Q} is nontrivial
(see § 1). Comséquently, the problem (3.5) —(3.6) has a unmique solution

oco :
u(z) € LW {exp [aaiz] — 1, 0} for arbitrary function k(z) from corresponding

space EW-= {0y O} F.'ort:Dc = (x1y — %, v <1, the problem (3.5)—(3.6) reduces
to the triviality 0 = 0. o
b) Case of coefficients with power-law growth. We consider the problem,
) (al)f“lDa(aa/Dmu/p“"gﬂaiz) = h(x), : 3.7y
lc.]—"—'o : B '

Duul an = 0. lal = 0,1,... (3.8)

For a, = (jofy ™" i pa, y = 1, p® > 1, in accordance with Theorems 3.2, 3.3,
the problem (3.7) — (3.8) has a unique solufion in the corresponding space

oo
Lw {(pa, .Q}.
¢) Case of coefficients with slow growth, Let

o

2 (0 Do(a, sign (D0 (L + a,/D°u)) = Hah = & 3.9

lef=0

D*ufyo = 0. |a] = 0,1, (3.10)
If a, = (2] =", v > 1, then the problem (3.9), (3.10) has a unique solution

in the space Lﬁfm{l-}-amﬂ/}ln(l-{-aa/t/)j-—aalt/, Q} for h(xy eEW—"{exp [a:I/t/]_
- 1. ol
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