A NOTE ON THE FIXED-POINT SET FOR MULTIVALUED MAPPINGS

NGUYEN HUY VIET

The aim of this note is to extend the main results of [1] on characterization of the fixed-point set in terms of the maximal total-variant subsets to the case of multi-valued mappings. Also, the invalidity of Theorem 4 of [1] is shown.

1. NOTATION AND DEFINITIONS. Let X be a set $2^X = \{B / B \subset X\}$, $Y \subset X$ a subset of X and $F: X \to 2^X$ a multivalued mapping. Let $F_{ix}F = \{x \in X / x \in F(x)\}$ be the set of fixed points of F, $F(Y) = \bigcup \{F(y) / y \in Y\}$,

$$F^{-}(Y) = \{x \in X / F(x) \land Y \neq \emptyset\},$$

$$F^{+}(Y) = \{x \in X / F(x) \subset Y\} \quad \text{and} \quad \overline{Y} = X \backslash Y.$$

A subset Y of X is called total F — variant if $Y \cap F(Y) = \emptyset$. If $x \in F(x)$ for all $x \in X$, it is evident that there exist no total F — variant subsets. But this case is trivial and so up to Theorem 3 it will be assumed that there is some F — variant point. Our assumption assures that

$$\mathcal{A} = \{Y \subset X/Y \cap F(Y) = \emptyset\} \neq \emptyset.$$

 $F: X \to 2^X$ is called injective if $F(x) \cap F(y) = \phi$ for all $x \neq y$.

LEMMA. If $F: X \to 2^X$ is a multi-valued mapping then \mathcal{A} has maximal elements (with respect to set inclusion).

Proof. If $\mathfrak{B} \subset \mathcal{A}$ is a linear ordered subset of \mathcal{A} , i. e., for all B_1 and $B_2 \in \mathfrak{B}$ we have $B_1 \supset B_2$ or $B_2 \supset B_1$. Then, it is evident that the set $\cup \{B, B \in \mathfrak{B}\}$ belongs to \mathcal{A} and contains every $B \in \mathfrak{B}$. Further, the conclusion of the lemma follows from the principle of maximal elements.

2. MAIN RESULTS.

THEOREM 1. If $F: X \to 2^X$ is a multivalued mapping and $Y \subset X$ a maximal total F-variant subset of X. Then

$$\overline{Y} \wedge \overline{F(Y)} \wedge \overline{F^{-}(Y)} \subseteq F_{ix}F.$$
 (1)

Proof. Let $x \in \overline{Y} \cap \overline{F(Y)} \cap \overline{F^-(Y)}$. Because $x \in \overline{Y}$, the maximality of Y implies that $F(Y \cup \{x\}) \cap (Y \cup \{x\}) \neq \phi$ and then $((F(Y) \cap Y) \cup (Y \cap F(x)) \cup (F(Y) \cap \{x\}) \cup (\{x\} \cap F(x)) \neq \phi$. But $F(Y) \cap Y = \phi$, $x \in \overline{F(Y)}$, $x \in \overline{F(Y)}$. So $\{x\} \cap F(x) \neq \phi$, i. e., $x \in F_{ix}F$.

Using Theorem 1 and de Morgan's laws we obtain the following factorization theorem.

THEOREM 2. Let $F: X \to 2^X$ be a mapping and $Y \subset X$ a total F-variant maximal subset of X. Then

$$X = F_{ix}F \cup Y \cup F(Y) \cup F^{-}(Y).$$

THEOREM 3. Let $F: X \to 2^X$ be an injective multi-valued mapping and $Y \subset X$ a maximal total F-variant subset of X. Then

$$\overline{Y} \cap \overline{F(Y)} \cap \overline{F^{-}(Y)} \subseteq F_{ix}F \subseteq \overline{Y} \cap \overline{F(Y)} \cap \overline{F^{+}(Y)}$$
 (2)

Proof. In view of (1) it suffices to prove the last inclusion. Let $x \in F_{ix}F$, i. e. $x \in F(x)$. It is clear that $x \in \overline{Y}$. If $x \in F(Y)$ then $x \in F(y)$ for some $y \in \overline{Y}$, and we have $F(y) \cap F(x) \neq \phi$. By injectivity of F, $x = y \in Y$, which contradicts the fact that $x \in \overline{Y}$ Thus, $x \in \overline{F(Y)}$. If $x \in F^+(Y)$, then $F(x) \subset Y$ and $x \in Y$, a contradiction. Thus $x \in F^+(Y)$ as required.

THEOREM 4. Let X be a Hauskorff topological space, $F: X \rightarrow 2^X$ an upper semi-continuous mapping with non-empty compact values, Y a compact maximal total F-variant subset. Then Y is open.

Proof. Let $y \in Y$. It is clear that $F(y) \cap Y = \phi$. Because F(y) and Y are both compact, we can construct an open neighbourhood V_1 of y and an open G such that $G \cap V_1 = \phi$, $G \supset F(y)$ and $G \cap Y = \phi$. By the upper semicontinuity of F, there exists an open neighbourhood V_2 of y such that $F(V_2) \subset G$. Because Y is compact and F is upper semi-continuous with compact values, it is well known that F(Y) is compact [2]. Then there exists a neighbourhood V_3 of Y such that $V_3 \cap F(Y) = \phi$.

Setting $V = V_1 \cap V_2 \cap V_3$, we have $F(V) \subset G$, $F(V) \cap Y = \phi$, $F(V) \cap V = \phi$ and $V \cap F(Y) = \phi$. Therefore $Y \cup V$ is a total F — variant subset. The maximality of Y implies that $V \subset Y$. Thus Y is open.

THEOREM 5. Let X be a connected compact Hausdorff topological space, $F: X \to 2^X$ an upper semi-continuous mapping with non-empty closed values. Let Y be a closed total maximal F-variant subset of X. Then $F_{ix}F = X$.

Proof, By Theorem 4, Y is open. By the connectedness of X, the only simultaneously open and closed subsets are ϕ and X. By the definition of total variant subsets, $Y \neq X$.

Thus, $Y = \phi$, i.e. $x \in F(x)$ for every $x \in X$.

Remark. Theorem 5 shows that there is no mapping (except for the trivial case $f = I_X$) which satisfies Theorem 4 of [1].

REFERENCES

- [1] M. Deaconescu, The fixed-point set for injective mappings, Studia Univ. Babes-Bolyai Mathematica XXIX, (1984), 13-15.
- [2] C. Berge, Espaces topologiques. Dunod Paris, 1966.

Received December 12, 1988

INSTITUTE OF MATHEMATICS, P. O. BOX 631 BO HO 10000 HANOI, VIETNAM