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ON A CLASS OF NONLINEAR SINGULAR INTEGRAL
EQUATIONS WITH SHIFT ON COMPLEX CURVES

NGUYEN DANG TUAN

0. INTRODUCTION

Nonlinear singular integral equations (NSIE) have been studied by many
authors (see, for instance, [2], [4], [9], [106], [11] and the relferences therein). In

- [4] A. 1. Guaseinov and H. Sh. Muchtarov introduced the generalized Holder

space H (w), then studied the NSIE
b

§—X

2 :
in that space and established conditions for the existence of its solutions.
The present work deals with a class of NSIE of the form

M)ty = a(t) o(1) + b(D) 9 [(D)] + cﬂf? S_‘E@ ar 20 S 90 g0

Tt 7Tl T—-off)
L L
+SKM(t,'c)cp(t)d1:=/\SMdt+uS’L_[im%ﬁ]dt )
L L L

where L is some contour in the complex plane, «(f) is the Carleman’s shift of
L. In (2), if the right hand side does not depend on ¢(f) and the coefficients
a(h), b(t), c(I), d(i} satisfy the Holdr’s condition on L, fhen we obtain the well-
known linear singular integral equation (LSIE) already considered in [5} and
other works. The traditional method is to reduce this equation to a LSIE not
containing shift. Then we obtain the formulas for its index and Noethers
properly e. t. ¢. But if the right-hand side of (2) depends on the unknown
function @(f) then this method is no longer applicable.

In this paper we shall prove the existence of the solution of NSIE in the
generalized Hélder space I L(w).

The paper consists of 2 sections. In Section 1, we shall introduce the gene-
ralized Hslder space on a contour, The main result of this section is a theorem
on the invariance of the generalized Holder space for the operator defined by
the left-band side of the equation (2). In Section 2, we shall prove the existence

of the solulion of the equation (2) in the space H L(m).
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1. THE INVARIANCE OF THE ¢ENERALIZED HGLDER SFACE O A COATOUR
FOR THE LINEAR SINGULAR OPERATOR

First, we introduce somc notions which we will need in the sequel

DEFINITION 1. 1. (see [4]). A funclion (c) defined on (0, {) is said to belong
to the class @ if

1) w(c) is a modulus of continuity,
l

26\ —29 4 < Duo),
) St(f"i"ﬁ) < Do (6)
0

3) there exist constants m_, M_ such that

@
m, "’(5) < (6 <M -“’é—ﬁ).

From Definition 1, 1 it is easy to derive the following properties of the
function w (c): :

(i) o, < o, implies w(G, )/61> —;-(w(ﬁz 164)
i. e. w(c)/o is almost decreasing |
(ii) w(A0) < (A 4 1) w(6) for every A > 0
(iif) There exist numbers «, § in (0, 1) such that w(s)/sc* is almost mcreasmg
and co(o)/cB is almost decreasing function.

We nofe that condition 2) in Definition 1. 1 is equivalent to cither of the
following conditions :

I
27 S —Q-)(— o= A < oo}
1]
l )
oJ(i
2N sn = B os,
’5>%m(5)5 g e

Throughout the sequel we shall consider a curve _consisting in the general

case of m 4 1 simple, smooth, closed, Liapunov curves I = Ly + L e + Lm.

Besides, the plane is divided into two parts [+ and D-. D+ always lies on the
eft-hand side by moving in the positive direction on L. We shall also fix on I,
1 Carleman’s shift a({) satisfying the following conditions ;

1’y a(f) is a diffeomorphism of L on itself,
2 afall)) =1, t € L,

37 e(t) # L,

4) a’'(t) 52 0, ’(f) € HI—'Y (L).



where Hlﬂ#(L) is the Holder’s space with index1 — vy (0 < y < 1). Using the

notations

S¢) () = 1. S %(t) dt - singular integral operator
Tl T 1
L
(Wo) (B = g[u(f)]-shift operator
(S 9) () = AS f [t’rr’ 94 g,

— i
L

' e b FIL T 9(0)]
(9 @y = 1y b

L
h® (f) = h[a(t)], where h(?) is a given function, the NSIE (2) can be wriiten in the
form of an o e:a or equation

Mo = ag + bWe + cSo + dWSp + Dy ¢ = c5f(p + Wdge. (29

DEFINITION 1. 2. Let I = | L1 be the length of the curve L and be a func—
tion defined on [0, I] and belonging to the class ®. By generalized Hilder

space Jigk (w) we mean the set of all functions u(¢) satistying

[u(t,) — ulix) |

L 1 2

H (u) = sap << oe,
@ e = 1)

With the norm defined by

el gLy =1l gy + Hog
HL (w) becomes a Bauach space.
In the sequel we need a move refined classification of the space gt (w).
DEFINITION 1. 3. Suppose R K are positive numbers and w{f) is a function
of ®. We say that the function u(!), { € L belongs to HE (R; K; ) if
DiaH| <R tel
2) | ut,) — u(ty) | < Ko (| t;—1,)).

LEMMA 1. 4. The shift operator maps HL(R K; o) into HE (R, K(][a || +1),m)
The proof is immediate.

LEMMA 1. 5. Lel ¢(t) be a function in HL(R, K ; w). Then (S¢) (1) belongs fo the
class HY(R’, K’; w), where R’, K* are some posilive constants.

Proof. First, we estimate | (Sp) () |. Itis well-known (see [1]) that there
exists a number m* such that | dt |  m* «dr. We have



w(

(So) (t)gg_%ugi(_"_i;;_f?ﬁ’_ dfc\_i_vrlcp(t)ng %[zmvﬁg 1{") dr ..

L
4+ TR < 24 jmro(l) K/ + R=R.

2 estimate | (S9) ({,) — (Se) (fg) | , we consider {wo distinct cases
a) Case 1: 1, eLi,tgeLJ.,O\{i;ﬁjgm

1 this case, we have

‘ 1 1190y — ofty) P(T) — 9lty)
| {Se¢) (ti)——écp(tg)lg;[l T d'cl—[—ls_-’c—_g-—d’c

+ mle ) —oly)l]

rom L, N Lj = ¢ it follows that
' min

nd then [ = min { min 1i1—12]}>0

O<izZjsim 1€ L; g€ Lj

3y putting K, = [/ T, we obtain

L(Se) (1) — (So) (1) | < K A m*(Ky + Dy + D@ (11— 15 1),

b) Case 2: 1, 1, eLj 0L j<Cm
At first, for the curve L there exists a number 60 such that for every t on
L any circle of radius 5K 60 centered at f intersects L at only two points
see (8D, |, — 1 |2 8, s then it is easy to see that
| (Sp) (4,) — o) ()1 ap
ta& L o( 1t;—1y 1) \CB?:%K

t,,

where
Cy=int 23 >0,
6e(o) oF
Suppose |i1 -—i?l < 60 . Fix an arbitrary number k, 1 <l <T 60/11'1 — i?\ .
Draw a circle of radius 0 =k ]tl — t2| centered at the point {,.” This circle
lobviously intersects L at two pcints A and B. The part Lj lying within this
circle is denoted by AB.

Putting
PO — D o

=
70 S )

L

78

A
b



we have o L

PlT) = ol ) PlT) — olly) P(r) — (i)
L L AB
(1) — o(t,) [o(ty) — ()] [T —(ty)] (t, — 1))
S 1:-—12_2 dT‘i‘S*—f:—tII de S ('c-—ii)z(tjtz)j -
AR LN\AB LN\ AP

= A1 + Ag + A‘g + 1’14_-9 )

¢(1) — @ty
AB . 0
Similarly

'A f < 2BAom* (k+ D w (|t, — 1)),

It is easy to see that

1A3l l(PU y—o{f )l lS _"“““"’ KM o (t,— 1)),
. L\A4B
k—1 ' k_|_1
R T Rl RS [T —1] | 3)
Therefore
lo (1) — o) 22+ Dk + 1) . |

]Aél\{lt]— 9|S]T~t[l‘£—f] T << Tk —1) Em*B w (|t =1, =

LN\A4B

= B KM, m'o (|1, — 1,

By taking : ‘

M*:mam32Amm*(k+1)+M1+BmM2m*; 2R ‘

cﬁ&ﬁ

we obtain

: . 1 :
89 ¢ = Sot ) < - [Jottg) — 2| - | 0lt) — ) < B 1y

_ K =D,
Thus we have proved that
1 59) (L) = (59 U< KK o (14— 1, 1)

10 1y @ L and

K* = maz {44  jm> (Ko + 1)/ + 15 M 1)

Lemma 1.4 is proved.

for every ¢

From these lemmas it follows directly that {he operator M= a®l — bW 4
4 ¢*S — dWS maps /1L (R, K,) into HL)RE : Kg)"’ where R~, K~ aresome
. 4l

positive constants,
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DEFIN1TION 1.6 The operator
(Do) () = S K@, ) g1y dt,
L
is called operator with regular kernel of degree v (0 < v < 1) if
A(L,T)
(t=nT’
where A(4,7T) is some function bounded on L x L,

K(t. "C) =

LEMMA 1.7. Assume that

A, (5T)

(t—1)7 .

where A, (1, T) is a function continuous logether with iis partial derivalives with
respect {0 1, T; vy is the posilive number delerminedin #') and 0 <y +p < 1 for

any number B such Lhaf m(s)/.s'B is an almost decreasing function, Then the cperalor
D, wilh the regular kernel K a7 (I T) Is @ complelely coniinuous operator mapping

Kpt,T) =

HL(w) into itself. Moreover, the operafor; with the kernel is also a complelely
continuous operaior in Hl(w).

Proof. First, we prove the invariance of HL (w) for the operator D,

Without loss of generality, we can assume that L consists of only one
closed contour, _

Putting - RO
Kﬂ;(f, 1:) = K.M(t’ T) ('C"“" t) (4)
it is easy to see that .
K :
‘i_(—t)( )| Cu €, >0 (G
at le—if ¥ ,

As in the proof of Lemma 1.5 we have

K* (T h iz,
(D39} (1) — (Dy) (L) zs_{—(—t—) e(T)dT — g_._:c,_&.z,.:c_)_ ¢ (1) dT -
— 1 .
‘ - 4B 7 AB
K* ({3, Ty — K* (I3, T) ’ I{" (e T)
M M —
S P— @(T)dt+S(t1—tz)(—-—T I (T ,t)cp(”c)d’c
L/AB . ‘ - L{AB
' =Ii+12+13+14' :
Taking (4) into account, we obtain
K*
IIII‘{r Sl M (tl’ 't) ” P (t) [d’l"l g AB‘I H P H c m*Sig
[T — 1 ry
L/AB o
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CAUC ol [a— =Y <€ AyCptlo) ool — 1, N A—VEg

< Cy el gollt;—1,0)
Similarly, using (3) we have /2] << C'3 lell qolt,—i]
and from (3) and () it follows that
KE (L, T T dt

di] < A ko, —t S <
l'[——l'j “'Z-—-fgfl l\ ﬂjil(p”(;k_j 1 ?I IT_fIII-{-T

LjaB LiAnB

<Ay lol Cf'a*ﬂjlfl —LIOTT=TTY <C ol ¢ @ (i — b))

It remains only to estimate I,. Let us note that the assumptions of the lemma

together with (5) show that a K.*M (, ©)/0t is a conlinuous function, bounded on
L x (L/ 4B). Expanding K;i;'{(i, T)

into a Taylor’s series at the point (t;, T), we have
61&1,”(1‘1,'5)
ot

* *
K-’U(tz’ T) = I{M(tl’T) + (f2 - il) + ofly 1),

hence

[ %
g ' K. (4, .
' I‘;(tz’ )~ K:;(il, DIt —t| 08y (le T) | o(l &) clty z%)

ot -t | ) T—tf)
where ¢ is a certain constant. Therefore,
| dt
ILl<c|ti—1] oy, S ]—tl—!pr:;{ Seloll o t—tk]).
’c.._.

LiAB !

Combining the two aboves eslimates, we have

LDy 0)(B) — (D o)) | el S| LUl ti—1H]). (6)

Thus Hl(w) is invariant for the operator D,.

Now we check that D, is a completely continuous operator in H(w). Let

H . H(w) be an arbitrary set bounded in norm in HL(w). Obviously H is boun-
ded in the space ((L). Due to Arzela’s theorem, H is a precompact set in C(L).
Therefore, from any sequence {qJn b 9, € H, we can exiract a subsequence

{(p"k} which converges i:; norm in C(L) to ¢. It is easy to see that ¢ € HI(w).
Putting ‘P’nk == (p"‘k — ¢, We now prove that

020 N

un, -0, &k ~> oo;

HH{w)
Indeed, from the assumptions of the lemma and from (4) it follows that

D

u ¥ g L(w)<(65+ ?IeaLxS!KM(t, OhdT) v ll, >0, k_',m‘

6—2196 ' 81



which shows that D si a completely continucus operator: Next tet us consider
the operalor with ¢ hc regular kernel K (¢, 7). We put
K (t, 1) = (T — 1) Ka(l, ).

Then the following estimmate holds

|a(t) — &(T) + (T = D2} | = | 3 [27(0) — a™(f) d0 | < As S le—ff Yid
< Amt | T— (Y,
Moreover,
- 1 _ o
Ja(T) —a(f)l" ST —tp
R L l = -« 0, we obtain the estimate
Tt | @(t)—a() Lo’ (i l
oK, (1, 1) 3K (1, T) , a(l) — A(T) -+ (T—Da(l)
Tzlt—'”]_“ﬁ?”‘__l{a(t:r) =l°‘-(7’)| [o:(’l‘,’)-—-a'(i)]z
FCT&
Sa= "

Using these estimates, we can p ove as in the first part of the proof, that

the operalor wilh the kerzel K2, 1) is compleielv continuous in Hi{w). The
proof of Lemma 1. 7 is complele,

Usmg Lemmas 1. 4,1, 5,1. 7 we can derive the following | -

THEOREM 1. 8.- Let a(b), b(D), e(t), d(t) be continuously differentiable functions
on the conlour L, Suppose that K, (t,T) is @ sregular kernel satisfying the condi-

tions of Lemma 1. 7. Then
M=al + bM + ¢S + dWS + Dy

where D, is the operator with the kernel KM (1, T) acting invariantly in the space
HEw).

Now we study the nonlinear singular operators Sf . S where the functions
f, I satisfy the conditions:
If (> Tyt y—Fty> Ty 2)|\<\A w* (1, —1 |)—rB ([T, — Ty D+C lui-—-ugl, (7)
[F(tj’TI ) —Fly, Ty, ) A ox(t, - L)+Bro(t, - Ty{)+ CF\HI —ugl,(S)

where Af, Bf Cf, Ap BF’ CF are positive constants, w, o™ &€ @ such that,

w*6) ln (6) < T w(6), € = 0. )

THEOREM 1.9- S_upﬁose that the functions f, F satisfy the conditions (7), {8, (9).
Then-for evergy ¢(l) = HL(R, K ; w), we have '
a) (Jpe) () € H" (B, Ky, w)

8% PR
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b) (Sp @) (1) & HU(Rp, Ky, w)

where the constanls I, , K RF, KF depend on R, K, |,

f’
Proof. a) Put

g{t, vy = f(t, T, @ (V) G(L T) = F(l, 7, ¢{D) (10)

It is easy to see that -
190;,77) —gUys T 4, o* (¢ — 1)) + B, o (Jt;—T,)). (11
G2 T,) — Gy, T < Ag o (=L, + By o (T, —Ty)) (12)

where Ag:Af,AG = AF,B _B —1—KC B, = BFTI‘KCF
Now put

fay = S_‘?M dt, Mg = max (gt, D My= maz |G
It g (1 T)ELXL (LT)ELXL
From the inequalities (11), (12), and the compaciness of L X L it follows

that Mg, M, = oo. First, we estimate 1%(!)1

L F1< S g(i?_tga D dt + g 1)1 < B A, m(l)+nM .
L

To estimate | f(f, ) mﬁtz } |, we consider two distinct cases

Case I.tieLi,igeLj;Ogi#j(\_m.Wehave

7 = — —g(t,, 1)
Fep— Tl < [S 9t D — 90 1) d"‘MS glty, W =9l ty) 1

L
+ 7l g(i_-l' t_-{)'_' ggtg'-fg) [+

As in part a) of Lemma 1.5, we have

et el ez

dT.I <44,B m(Ey+De

L .
(lti"_tg )

‘where K, is determined from Lemma 1.5. Moreover,
m10 1) — 9y, ) | < m[Age® (4 — 1y |) - Bgo(1 7, — Ty 1] <
< n(sAg-"c“/tn2+Bg)m(1tl__t2). '
Therefore in this case we obtain _ '

I f(fI)-—f(fg)l (44,8, m*(K +1)+TE(3A Cﬂﬂ?—l—B )]w(lt — i, |

Case 2. Euppose 1, , ty € L, {0 < j< m) and AB, §... are determmed as in
the proof of part b} of Lemma 1.5. Then: ' -
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|

Sg(fj!’ﬂ_g(listg)d |Sg(iz9t) (2’L)a"[[

T — 1 T—l, T
AL AD
gy, v — gty , T (4, — L, )M9ly > T — gty Ly )
1 9 1 2 2 27 'y
+[S T-—1 } {S —1 T —1 d dr |-
1 (T—1) (T—1y)
L\ AR LN\ 4B
, dt
T a0ty tg) —g(ty.,)1X [m +S ’f—%Hz511|+|121+{13l+14!+115/.
LN\ AB
Let us estimate each term of the right-hand side
of | T—1,1) —
H 1< B, 'ﬁl ldv | < 4,8, M, of|t, 1,D),

AR
[, < 4,8 My ell; — t)
!
IIslgAgg l’E—-jiI |2 |dt|§2Agmoé(|fI—igl)s_r_g
L\ AB &
\<\2Agm*w*(|t1—t2l)xln(l/ﬁ)agfri Myo(|t,—t, |)

|14[nggtI-—t2|S o( 1T —1h1) ldt1< B, B, i, o1t — 1, 1)
ft—1¢, llz-—tj '
LN\AB

From the inequality

‘1i7r+§ de < Ms

- . LN\AB
we obtain

1 Is] < 545<3Ag_5/:n2+1?g) w(lti—t: 1)
Thus
e — fu | <14 O, + 4,8 (L, + Mok BgBmﬂ},; 4 3AgE:/zn2+ B M) .
_ | co|t; —ty])
where M ; are positive constants, )
-Selting
MF = max { #4,,B mHE, + 1) 474, 'C'/lnz+B B [Ang(Efi“i"Efz) + A,CHs +
= A 1(A B w(l)-{-rM I{f = | A | M.

f
we can easily seé that :

_(cff(p) () € HL(Rf, Kf; )
84
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By an argument similar to that used in part a) we have
(CSF(P)U) & HL.(RFs KF: w)

The theorem is proved.

2. EXISTENCE OF SQLUTIONS OF N.S8.LE. WITH SHIFT
IN THE GENERALIZED HOLDER SPACE

We first consider the case where the shift a(t) preserves the orientation of
the curve L. It is well-known (see [1]) that for any operafor

M=al+ bW + ¢S+ dWS - D,
there exists a so-called regular operator of the form

M= a*] — bW L. ¢S — dwsS ,
such that

MM =ml -+ nS+ Dy,
where

m = aa® 3~ cc® — bb* — dd* ,

n = ac® + ca® — bd% — db* .
Then we can write the equation (2) in the form

;;tq) -+ ;;Sq: + Dy @ = ch!;:fcp + Wéf‘.ﬂrp .

Therefore, our main task is to find solutioms of the equation (13).

Let us denote A, == n: -—I‘;, A2=r;1 e ;z and assume that A1 (5= 0;
Dy (D) # 0 on L. Put
A, ()

%Mﬂ:’ = ind ——-—AQ @

and let a( M), B(M) be the numbers of the eigenfunclions of the operator M and
its adjoint operator respectively. :

It is easy to see that the operator defined by (13) is an operator with the
regular kernel satisfying the conditions of Lemma 1. 7. In fact, it is shown in
1] that the operator (SW — WS) is an operator with regular kernel

1 L (1)
T—t  o(t)—all)

From Lemma 1.7 and the conditions of Theorem 1.8 we deduce that & oy {, 1)

K, (6 7) =

is a linear combination of bounded regular kernels of degree v.
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1n the remainder we assume that _G}:Mf{; > 0. Then by the Vekua-Carlemdn’s
S

nethod, the equatiol (13) can be transformed ioto an integral Fredholm’s
,guation

o0 + (2,5 w00 @ar =0, (14
L

where

n()Z (1) I&M:\:r (T4, ©

~ (1) =m() K~ (G, T) —
Ly b o=mh K560

g A
i L.éw:j)('cj -1}

£, =m @) [(S, M) O+ (WSpie) (0] —

FROYAG I V) (1) + (WCSFﬁcp)(T) J
S Z(ty(xt —1)

—

1:+'B} 0 ZWPg ~ O

i

L
. T@) + ~
Z(H =0, (DX ()= N, () XH(l)=e ® ’Via:MMTE (),
m o : .
R = =20 1)
LEMMA 2. 1. The operator with the regular kernel ‘gM'ﬁ' (I, T) is completely

continuous in HY (w).

Proof. First, we prove that glﬁ {t, T) is a regular kernel of degree ¥.
- A

Indeed, K, (1, T) = (r — 1) Kyppy (4 ) is an operator with a regular kernel of
degree y satisfying the conditions of Lemma 1.7

Without loss of generality, we assume that L consists of only one closed
contour. Draw the circle O (f,8) of radius o centered at the point 1. O (1,8)
intersects L at two points A, B and by AB we denote the part of L lying within
O (1.9).
~ Suppose T is 2 point of AB, so obviously S = kjt —{f with some k> 1.
‘We have ' :

b * -
SKMM T, T dt. = S K MM (11’ 2 dr. — 1
92T, (T — 1) ’ 1 72 (Tt — TNt — 1) T i
Kii ™ LSO LSRR
A dry - Yo R (=D Y g \ dz; =
ABL(TI)(’C —1,) AU ) | R4 ISTI)(TJ — T (T —1)
1

= Ut Ty

86 o o , RERSECIY



Putling m , = min |z(t)| > 0, and taking the inequality (3) into account, wé
1EL '
obtain:

l“\& UU["_nlldﬂ< MM ( _k )S ldtil < N i,t__tii—'y
li \A’(LI)HL-—’C\ o= my V-1 ip 11.——11\'\' 1

T—1, k-1 =Y¢ - dt
II2| < uu/ ) S\ ” Ild 1"“*( I ) o~ S l JI
AB\ 1 \

C ~lt—t [ [t =¥ C =it k+1\" YEkme)l dr
MM 1 MM
1131 m T—1, ||t ,—1 ‘ 1\\“ m k k—1J 2-(2-y) <
2 L\ABl JH ‘1 l 2 rea
§Nslt-—111—'v
Consequently, ,
yu(r »0) T e N
a1 g \< Njig—t'"V =
S(t —1) Z(ty) e fe—tl =
7 :
Ky ™
That is S‘W;T) dt, is a reguiar ke.rnel and_ then ‘ﬁM‘i}(l, 1) is also a

regular kernel of degree v. Since K .--(t 'c) satisfies the conditions: of Lemma
1.7, L’, (t 1) also satisfies the same condilions in any region not contmmna

singular pomts From Lemma 1,7 we conclude thal ‘the operalor with the
kernel L’ - (t T) is completely continuous in HL(w). Lemma 2.11s thus proved

LEMMA 2.2. The homogeneous Fredholm integral equation

oW +Y Ly 5T p{T)dt =0 (15)
L :

kas no eigenfunclion if and only if
«(MM) = X, (16)

where a(MM) is the number of Imearly wdependeni solutions of lhe equai:on'

MMg = 0.

Proof. a) Necessity. Suppose that the equation (15) has only trivial solution.
Then the homogeneous equation (14) is solvable without any condition. We
have to prove that in this case, the equation ' ' o

MMy = f | - an
is solvable for every rlght-hand side f(i) Indeed if we put

&7



- _a ZO( [ _dz
it = & f @) —"FO 2D I W 2P = O
L

then by the assumptions of the lemma there exists ¢(t) € HE(w) such that

o) + S” 5 (6 1) o(o)dT = f,(1),

i.e. ¢(t)is a solut’on of the equation (17). So (17) is solvable for every righl-
hand side f(f) ¢ H(w) and B(M M) = 0. This proves the equality (16),
b) Sufflclency. Suppose that the equality (16) holds and f(f) is any function
of HL(w) Put
T )+ WD) = gl

Smce f(f) is a solutlon of the equahon (18), f({) must be of the form

The assumption implies that there exists a solulion cp*(l) of the equation
_(Mllfcp) (1) == g(b). It is easy Lo see that ¢*({) is alse the solution of the equalion
| el + s Ly DT = f(1).

This fact shows {that the non-homogeneous Fredholm’s: equation (19) is

solvable for every right-hand side. Therefore, the homogencous equahon (15)
bas only the trivial soluuon The lemma is proved.

Remark 2.3. The class of all singular integral operators witkout shilt salis-
fying the equality (16) of Lemma 2.2 is very wide, because it is well-known (sce
[1]) that in most cases the number of sclutions of full equalion is not greater than
that of its corresponding characleristic equation.' In particular, in the case of
nonnegative index, the number of solutions of the characieristic equation coin-
cides with the index,

Henceforth, the conditions of Lemma 2.2 are assumed fo be safisfied. Then
the equation (14) is equivalent to the non-linear singular integral equation with
shift

o) = Fi) — SRM;; D o(dT, (20)

L
where the function RMB';_( {, T) is the resolvent of the equation (14) which is de-

finitely represented via the kernel ﬁMﬁ”’ T). As we know (see [1], [6], [7]) the
function R ~(f T) is a sum of iterated kernels and the iteration betiers their

properlxes The;efore the functional pr opertles of the resolvent are the same as
those of the kernel. In other words, the operator :

a8



(Bq))(t')_=8 SHTAL "5) fP(’f)d’C
. ! L . -

is completely continuous on H (m) :
Denoting by £Z¢ the operator defined by the right- hand side of (20) we have.
~ o~ Y VA e M fp) (OHWI Ay) (’C)
2o =mW)[(S 1 9)D) + (WS M @) (D] = S AGTE=DE

Tl
L

+ EWZOPoy ~ (0= O%) {m(’C)[(c5 Mql)(’ﬁ)—l*(“ S vcp)rc)]-"
‘ Xyar-1 Ryt :
_ ; e

——

A(T)Z(T) S (Sp Mcm(1:o+ (Wc5 Mtp)(’m

Z@) @ =) dty+ R (O Z(0) P~ (O} dT (22)

i
L

" Since the op erator B is compleiely bc;niinucﬁs in PIL'(m) for every ¢(f) €
c HL(R, K; v), we have .

1 Bo W ry SH I pn) < <R+ KM,
where M  is the norm of the 11nea1 operator. Now for every funclion
Y ed (R;}, M’ ) we put
'ty = (£¥)(@). o
Then with the aid of Lemmas. 1.4, 1.5 and 'lheorem 1 9 we ohtam

| T(H | < AR, K) 1A+ BR, K)[K ]+ 1+BR>:|nnCnZuC P -(231

| Tty — Tlt) 1 <<{ C(R, KD [ A4 D(R, K)(1) 4 (1 4+ M) Ul njl W20 C@ﬂ—
o H(nZ) M pl 4 M, (1+ Bp) (Rl ol Z0 g p} ol L t—tz1); (24)
where ' S o

M p =max ] P&y

) |y Bp=-maz\ | Ry (1, T)-de 1 e=HE(Poe =1 %
tel, w47 tefS‘ MM( ),I',.dt_‘ P ‘”.(‘ %_MM_—;

L

A(R, K), B(R, K), C(R, K), D(R, K) being posmve constants depending only on
R and K.

_ If wechoose

R > (1 + Bp) |In, =, M, o

K= (1+M, Yz, 1=, M + H" (n7) M, ] + M, 1+ BR)”EHC 121, M .
then there exist numbers 4 and 1 such that EE B '
AR, K) A+ BB )41 + (1 + By il Nl M, < R, (@)

C(R, A)IA|+D(R Ix)lul+(1+u ){[!nﬂ izl M +HE (n~)M ]+
M, (4 B il R @)
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Let us endow HE (R, K; @) with the melric of the space of continuous functions

(o) = (u, v) = max ja(ty — v('i) |={u—1| . (27
ter ' ¢

H P 5]

It is easy lo see that, HL (R, K; w) is made into a closed convesx, compact and
complete metrie space. -

LEMMA 2.4. Suppose all assurhptions of Theorem 1.8, Lemma 1.7 and the ine-
qualities (7), (8), (9), (25), (26) aresaiisfied, Thenthe operaior £ conlinuousiy actg
on HL(R, K ; w) |

Proof. It o(t) € H (R, K ; w) then W(f) € HE (R}, Kir; w), where ¥({) — (o) (D).
For that reason, from (23), (24) and the assumptions of the lemma it follows

that (Z) (1) € HEY (R, K; w). It remains to prove the continuity of the operaior ¢.

Putting )
. , fj (l‘, ’E’)_(P (T)) = f (ls T, (P (1:)) - f (1:3 T"’ ¢ (T)) (28)
we have : ‘
£ f; @ T o(x) : o
(cffcp)_(l‘-‘)‘m /\S : r— dt - A Sf—(%z_-__—“;—(-t—)— dt = (Sp0(1) +
- L L ‘

+ TEA(qu,) (1,
where f o(1) = f@, t, ¢,

For g4 (D). pol) € 'HL(o) and every fixed posmve number v of the infer val (0,13,
the following mcquahues bolds
I—v v, | 7 —

It T, 0,(0) —F(h T e 1< 24 Clor (1t —t 1) o, —

— (T | V. .
The Riss-Chvedelidze’s theorem shows that S is continuous in the metric (27)
Loe Spl,<<USU, fioll, for every o () ¢ H “(w). On the other hand,
it is not difﬂcult to see that the integral

S[m*(t'f—tm“

=10 Idt |

converges. lndeed, by the property (iii) there exists o ex(O, 1) such that
w* (N < C,r* tor every r e (0, ). Consequently, ’ '
: : ¥

S[_wiil‘f_“ﬂ)_lj_v'; iy <G me Sﬂd" _ ol UV

Tt—£] S (RO
L :
Putting '
7 -y .
1w, TG iy
If(/\)~21A|A C“ml =W ro (N = AL 81, C
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we have o
fHL(CSI-(PIs C\‘f(Pg) < rif( /\) [PHL((Pj_' (Pg)]v + r2f(l‘\) pHL(qjj' (PQ)

. Similarly
P L(CS ‘Pp Sr Pa2) < jp(u”)[P L((Pp P2))’ +f'9[vU’L5 P 'L((Pls ?y ).
It is obvious that thc linear operator W is continuocuns in the metnc (27) in
ot (w) Furthermore, for 'the op\,lator Mcp = a*p — bW@ 4 cbtp — dW.S@
ithe following estimate holds : _
AMel, < (Nal,+0b0, +lel, isl, +1 d.lc 'usﬂc)_u oll, = M, e 1lcf |
Fmally we obtain S

pHL(ﬁcpl, Loy < (I + B(Iml, +0mi, 4 Z0, 181, /mg{trﬂ ® +

1)6‘ (u) U X [pH L1, @)’ [rt)F(I) + S‘)f (U') ﬂ‘[ pHL((Pl! ’)}

This inequality shows that the operator £ ¢ maps continuously HYR, K ; w)
into itself. 'lhe lemma is proved. e ;

Now we are in a position to prove the followi ing
P P

THEOBE\1 2.5. Suppose that ull asswr ptions of Theorem 1. 8 Lemma 1.7 and
the inequalities (7), (8), (9) are fulfiled If 111, | | sotisfy the inequalities (25)

(26) then the equation (2) has solutions in the generalized Hilder space L (w).

Proof. From Lemmas 1.4, 1.5, 1.7, 2.1, 2.2, 2.4 and Shauder fixed point prin-
eiple. it follows that the equation (20) and hence the equation.(13) has at least

a solution o(t) € HL(R, K :w). If we put 9(f) = (Ef(p)(i), then ¢({) is a solution of
the equation (2) and belongs to the class I:{L(Rﬂ, KEI} ; w). The theorem Is

proved,

So far we have assumed that the shift «({) preserves the orientation of the
curve L. The case where the shift «(f) changes the orientation of L can be treated
analogously, Moreover let us note that the operator SW + WS is an operator
with regular kernel and the regular operator is

Ho = a%¢ — bWg — c*Sp — c*Sp — dWSe,
where

m{)—nd=a{t)=a )

m 4R @) =08, ) =A &)
AD=@" O+ M EeBO—a@®)—COHFdD)E* @) —b* EH+0

The author is greatly indebted to Nguyen Van Mau for his suggestion on

the preblem and his attention to this work.
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