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1. INTRODUCTION

For a metric space (X, p) let 9X denote the hyperspace of all nomempty
compact subsets of X equipped with the Hausdorif metric
d(A, B) = max { max min p (q, b), max min p (g, b)}.
acAbeB beB acA
We denote exp (X) = 2% and éxp“ (X) = exp (exp? ™1 (X)),
X' = lim exp” (X),

n—»coe
X* = the completion of X",

In [8] Torunczyk and West proved that if X is a Peano continum then
(X*, X°) = (12, i; where [, denotes the Hilbert space of all square sum-

mable sequences of real numbers and
o} o
L x o= (x )el,: n>=]1(n;vn)2<°°€-.

Here we write (X, X) = (12, l‘;) iff there exists a homeomorphism £ from X*

ontol, such that f (X’) = l;.
in this note we establish similar results for compact convex sets in normed

spaces.
k,
2. MAIN RESULT

By cc (X) we denote the'hyperspace of all. nonempty compact convex sub-

sets of a compact convex set X lying in a normed space.
A family F C cc (X) is convex ifi for A, Be Eand A €l0,1] we have

AA4-(1— 1) BEE,
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Let ¢c? (X) denote the hyperspace of ail compact comwcx familics n<C (l)
Inductively we put

ce™ (X) = cotee? 2 (X) ) and | - B

ce’ (X) = Hm ce(X),

n—*oo
‘ ce* (X) = completion of ¢¢’ (X).
Qur main resuit is the following

THEOREM. Let X be a compact convex sel in a normed space.
G) If dim X — 1 then (ecr (X), e (X)) == (I, 1)

(i) If dim X > 2 then (cex (X), c¢ (X)) =(ly, L

.
.

| Here l’;_: {z=(x, )el,: @, = 0 for almost all n}.

8. PROOF
:,_¥ Lo ’

g

The proof of Theorem 1 is based on the following facts
LEMMA 1. (i) cc®(x) is an AR-space for every ne N;
(ii) c¢’ (X) and cc*(X) are AR-spaces.

Proof. We shall prove Lemma 1 for c¢’(X). The proofs for the other cases
are the same.

We shall prove that for every simplicial complex K and for every map £
from the set K, of all vertices of K into c¢’ (X)) there is an ‘extension f : K—c¢’ (X}
.such that diam f(o) = diam fo (c? Yfor every o € K. Whence according to [4),
cc’ (X) € AR. | |

Leto ={V, ., ¥V ;)& K. Then for every £ € ¢ we have

k :
m—EmV VGUOI—-l ,ai>Oand
i=1
X k
: o, =1 We define f(x) by
i=1

k
f(z) = 31 e fo (V).

Ttis easyto see that i satisfies the required conditions.

Lemma 1 is proved.



LEMMA 2. If dim X > 2 then cc® (X) is homeomorphic o ke Hiiberl cube ¢]
for every n e N,

Proof. By Lemma 1 cc® (X) € AR, Therefow according to [6] it suffices to
show thal given ¢ >> 0 and maps

Fiofo i IF > ce® (X), k = 1, 2,...
there exist maps g, , o : J LN cc?(X ) such that d (fi (x), g; () <& for evefy
z eIk, i=1,2and g, (I*) A g, () = ¢
Let f, ,fy: I* > c¢"(X) and ¢ >0 be given. Take a triangulation K of Ik

such that diam f () g—;- e for every i=1, 2 ando€ k. Let {a. a } denote

1---,

the set of all vertices of K. Selcct families l p;,..,, pj} and 3 p?,..., P’ 6 of convex

m m )

poly hedra in cc"_(X) such lhatd{pi,' fi (@) < ;—for i=1, 2 and k = 1,..., m
. . 2Y . bo— .

and {max V(pk) k= 1., m})m - mm? V( pk) k= 1,.., m{ , where V (p)

denotes the number of all vertices of a polyhedron p. '

Define g,, g,: I* » ¢cc? (X) by the formula
g; (@) = Zapfora:-—E o) a
k=1 k=1

It is easy lo see ihat g,, g, are the desired maps. Threrefore the lemma is
proved. '

kEcEklw—I 2.

LEMMA 3 (1], Let A be a proper closed subset of a mefric space (X, d). Then
there exists an indexed family {U,, ¢; } 1 & I called a Dugundji system for X\ 4,
such that ‘

(i)UI. _C;_X\Aandcl. € A foreachieJ;
(i) U = {¥; } ;¢ Is ¢ locally finite open cover of X \ A;
(iii) If = & U, then d(z, ¢, ) < 2d(x, A) for each i e J.
Let {=, } ., be a locally finite partition inscribed info’{ U, }iep We also say
that { &, , ¢, },., is a Dugundji system for X \ A.
Denote G, = {(A, 1) € ce®(X) [0, o)t A €1 cc? (X)%;
G ={A4t)ecc' (X)x[0,): Aetecc (X)};
G* = the completion of (.

LEMMA 4. For every compact set K C G*, for every n e N and for every = >0
there is a map f : K — G, for some m = n such that f | KNG, = Id and

d(x, f(x)) < ¢ for every x € K, |
£9



Proof. Take m > n such that G is an — -net for K. Let {a, ,c }iel
mn 2 I I

e a Duguudji system for K\ &_. Define £: K — _ by the formula
: @ ifxe Kf\Gm
() = T oa (x)e, .
= i i ifxe KNG
An easy computation shows that :
d(z, f(z)) < 2d(z, G, ) for every x € K.

Therefore f is continuous. Since G isan —;— -net for K we infer that d(x, f(r))<e

for every x ¢ K. Obviously f | , . = id. Thus the lemma is proved.
n

LEMMA 5. For every ¢ = 0 there exisis a & = 0 such that for every compact
set K G, there exisls an c-homolopy 1t : K — G, forsomem=n, 0 <t < 1,

such that 1‘1 = Id, and d(K, b (K)) > 6

Proof. Without loss of generslity we may assume that0 € X and there
existsae Xsuchthat | afl=1.Denotea, ={0, a}, a, =[0,a,]...., a, = [0, _]....
Obviously a, cck (X) for every k & N. Therefore (ta, ,t) € &, forevery ke N
and ¢ € [0, o).

Givent =~ 0and ne N, we takem = n énd b= (—1—'3(1 —1_5) €& . Define
% mroy m

h: K - G, by the formula
h, (z) = x + b for every x € K.
It is easily seen that &, is an e-homotopy, #; = Idk and d(K, h, (k)) > % €,

This proves the lemma,

DEFINITION 1 [7}. A metric space X is said to bave strong discrete approxims.

oo
tion property iff for eachmap f: @. I" — X and for each map
n=1
o: X — (0, o} there is a map

g: z; I" - X such that d(f(z), g(z)) < of (@)
n=1 ) .

for every x & @ I" and {oU )} is a discrete family in X,
. n=}

Here we say that a family {A } e is a discrete family in a melric space

X iff each point of X has a neighbourhood which intercsis wna at most onec
member of {A}
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THEOREM 2 [7). Let X be a separable comple’'e AR-space. Then X s
homeomorphic to I, if and only if X has the strong discrele approximation
properiys

LEMMA 6 {5], (see also [2). Let X be a locally path connecled meiric space with a
tower £, C Xy C e C X sutisfying the following conditions

AT

(i) For every compact set K C X, for every ne N and for every ¢ > 0
there is « map f: K - X for some m>n suéh that fIKr\ X, = id and

d(z, f(x)) < ¢ for every x € K,

(i) For every s >0 lhere exists a ® >0, such that for every compael set
K ¢ Xn there is an e-homolopy A, : K -~ Xm for some n>n, 0 <t <1,
such that hy = id, and d(K, h (k) > &

Then X has the sirong discrete approzimalion property.

From Lemmas 4, 5, 6 and from: Theorem.2 we get

COROLLARY 1. G* == I
Erom Corollary 1 we obtain

COROLLARY 2. cc*(X) = [,

Proof. By Corollary 1 G* ==1,, Therefore G* \ {(8,0)} = 12, Obviously
G* N\ {0, 0)} = cc*(X) x (0, o). Therefore by a vesult of Mogilski [3]
cc*(X) = I, . the corollary is proved.

THEOREM 3 [1}. Let X be a metric space homeomorphic to A and
let {X } bean increosing sequence of compact suhsels of X (respectively, of

finite dimensional compact subsels of X), and X’ = v X . Then (X X')=
n=1

Lo (. lg) (respectively, (X, X’) = (I, - I‘g)) if and only if the following
condition holds: (SK) For each compact set (respeclively, for each finite
;&;_’dim.ensional‘ compact set) K- X, for each ¢ = 0 and for each neN there is
b an embedding f: K — X_ for some m > n such thal flxnr\K = id ond

c{(m, f(@)) <e for every x ¢ K,

LEMMA 7. [lor every finite dimensional compact sel K C cc*(X), for every
30 and for every n &€ N there is an embedding f : K — cc™(X) for somem>>n

ch thai f LA ce(x) = id and d(x, f(x)) < ¢ for every.x € K.
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' “Proof: By Tethita' 4 there is a miap gk +» ¢t (X) for somes funt such
O R TR [ . B L el e e s,
that d(x, g(:c))(_< 5 ¢ for every x ¢ K and glxr\cc”(x) = id. Since X .1s t.lm‘_c
dimensional there is an embedding ¢ : K — I9 for some g € N,

Let ¢, ,1=1, 2,evvy g denole the i's coordinate funclion of p. We may
assume 0 ¢ X, Let ae X such that a3~ 0. Denote a; = [0, al, ay = [0, Ay ]enstt, =

= [0, a,_/ .. Letm = k + g -+ 1 and define f: K — c¢™(X) by the fcrmula

— . 6(1(.’,{.‘, B)
= (1 — &d(x, B e
f@) =( (x Nga) g+1

where B = K n ¢c"(X) and O is chosen so small that d(g(x), f(x)) << %._ £

(2 (m)ak-l-l e I P (x)ak-Fq + et g+t )

for every x € K. Obviously f is one-to-one. Since K is compact, f is an embed-
ding. The lemma is proved.

LEMMA 8. cc®(X) is a Z-se{ in cc™(X) for every m = I

Here we say that a closed subset A4 of metric space X is a Z-set iff given a
map f : Q@ — X and ¢=0 thereisa map ¢ : Q —~ X\ A such that d(f(x), g(z) <¢
for every x € Q. :

Proof of Lemma 8.Given f : Q — cc™ (X) and ¢>0. Take yy € cc®(X)\ cc™(X)

and define g : Q — cc™(X) by the formula

S g(@) = (1 — 8)f(z) + &y, forevery Z & Q,
where & > 0is chosen so small that d(f(z), glz)) < ¢ for every x € (., Obviously
g(Q) N cc®(X) = ¢ and hence the lemma is proved.

LEMMA 9. For each compact set K C ce"(X), for each ¢ > 0 and for each
ne N there is an embedding f : K —~ cc™(X) for some m > n such that

fl Enec HX) = idk and d(z, f(x)) << e for eachx &€ K.
Proof. By Lemma 4 there isa map ¢: K - ccP (X) for some p>n such

that d{z, g(2)) < 12-5 for every ¢ € K. By Lemma 2 cch (X)== QforeverykelN

By Lemma 8 cck (X) is a Z-set in cc! (X) for every k < I, Therefore by [1]
there is an embedding f : K — cc™(X) for seme m = p such that f 1 4. .0 x) =

gl =id, and d(f(x), gx)) < -%- ¢ for every x € K.

EN ce™ (X)

Now we are already in a position to prove our main resuit. By Corollary 2,
ce (X) == 12 . It is easy to see that if dim X = 1 then dim ce®? (X) < oo for every

n e N. Therefore (i) follows from Theorem 3 and Lemma 7. Finally fromr

Theorem 3 and Lemma 9 we get (ii) and thereby Theorem 1 is proved.
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