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STRONG CONVERGENCE OF TWO — PARAMETER VECTOR -
VALUED MARTINGALES AND MARTINGALES IN THE LIMIT

VU VIET YEN

1. INTRODUCTION

Real—valued martingales indexed by N? = N X N were first iniroduced and
considered by Cairoli [3], Cairoli and Walsh [2] and later developed by Chatterji
[4, 5], Brossard [1], Ledoux [8; 9], Millet |9], Millet and Sucheston {10] and
others.

The main convergence result of Cairoli [3] asserts that under a so-called
condition (F, ), every LlogL—bounded real—valued martingale X, » ¥, ) conx

verges almost surely, (a. s.). Recenlly, Talagrand [13) has introduoced the class of
discrete mils: a class strictly larger than martingales in the limit [Mucci (1976)],
pramarts | Egghe (1981)] and amarts [Edgar and Sucheston (1977)] and proved that

every L! — bounded mil taking values in a Banach space bhaving the Radop—
Nikodym property (RNP), converges a. s.

In the present paper, thig noiion of discrele mils is extended to the multi-
parameter case, Our main result (Theorem 2) says that under condition (Fy)

every LlogL—bounded two-parameter mil laking values in a Banach space with
the (RND) still converges a.s.

2, NOTATIONS AND DEFINITIONS
Throughout this paper let N be the set of all positive integers. We shall

i, ) if
1° 72
< t and s, << iy, Let (@, ¥, P) be a complete probability spate and let

denote by I the set N? with the usual order givem by (5, 95 )< (¢

5
7
(C‘Ft } be a filtration indexed by I/, i. c. an increasing family of complete subsig-

. —_ PR S and Gf
ma—algebras of F. For every 1 = ({,,1,) set F, = ¥ ?Ftiu and .J»i == Z?u' 1y
i
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dsetF =V F

ter
airoli and Watsh [2] if for every bounied F--mcasurable funciion X : Q ~» [
id for all f e I we have

E(X/F, ) = E(E(X/Ff )/th)).

B—valued (F,) — adapted Boehmer integrable process (X, ) is called a mar-

[ The family (¥, ) is said (o [uifill condilion (F, ) of

ngale (submartinzale) if for all s, £ € I, s < {, we have
BX, 1P ) =X, (B =R and £(X, jFS ) > X, respectively). (X, ) is

logL—bounded if sup E(]X, {| log® | X, {|) < o= In the sequel we assume
ter b
1at B is a Banach space with (BNP). We now introduce

DEFINITION. An adapied sequence (Xl.j) of Banach-space-valued random

wrizbles is called a mil if for every ¢ > (, there sxisls p == (p, p), p € N such
1t for every 1 = {n, n) > p we have
P sup | Xij — X~/ %—“fj) I > ¢) < e

P
emark. a)If Y , ¥ )is a milin the sense of Talagrand [13] then the sequence
Xij’ ?'U.) is also a mil, where Xij =Y, ‘EF'I.J. = F o, (1, J) € N2,
by If Mij is a martingale, it is also a2 mil. The methods of the theory of set

mction processes developed by Schmidt [11] allow us to strengthen Cairoli’s
sult in [3], (see also [6), Theorem 1). By uwsing the maximal inequality for a
ositive 1-submartingale [10] we prove that under condition (F,), evry LlogL-

ounded mil converges aimost surely

4. MAIN RESULTS

Before proving the main theorem we sketch a short proof cf the following
:sult which is a vector-valned versiom of the corresponding theorem of
airoli [3].

HEOREM 1. Let B be a real Banach space with (RNP) and let (Xnm) be a B-valued

wrtingale. Suppose that (X ) satisfies Doob’s condilion

sup EJX_ || << — o
R, mn . . (1)

X € L; (F) such that

hen for each m, n € N there exist X __ X _

imX =X_ as for every n > 1,

m 2\}
lim X = X__ as foreveryin > 1
n | &)



and
i;m Xoop=tmZ% _ a.8. (3)

Proof, Let B an (X ) beas in the {heorem. Then by definition, for each m and
0, (X Foy sy and (X, F, )~ are one-parameter mariingales satis-
fying Doob’s condition. Hence it follows from Chatterji [4] (see also[11, Proposi-
tion V —2 — 107) that the asseriions {2} and (3) are true. The inain part of the
proof consisis in showing that {(4) is also satisfied.

To do this, for each (m, n) € N® we define ! :F - B by

mn” "~ mn

umn(A = F (IA . an), A e an .

©)
It follows from the integrability of X that 1 is a B-valued mcasure

mi mn
with | M

ma 1= ETX I, It is also easy to check that the set function process

(M s Fppp)) 18 & martingale and by (1)

sup B, | =sup E|X, I .

m,n i.n

Nezt, for any m,n € N we define

o — I . —
¥ oo = M ‘rnm F, moe — M an *
n n
? — n - i — I
Fea=V F =V =V, .
a1 I n

It is ¢lear that 7 , I .
OCH me=

of the martingales (! . ) >10 Mo Jasg and (M), resp., denoted by M,

Fr___ are algebras. Thus, the limit measures

W oo and M, resp., are given by

Mo, =lim B (4), Ae P ; (6)
m
R, () =1lim & (4),deF_ _ . @
In
and
Koo (4) = lim o), Ael . (8;

myn
It is easily checked that pt__ ne Moo and B arewell-defined and finitely
additive measures and the setfunction processes ((lem R Fm o)) and ((P-mn )
F_, ,)) are martingales satistying

imf  (A)=limu_ (H=U1__ (4) 9
m n

for cach A g I¥ coos » Moreover, for cach m,n ¢ N the processes (Uvmn)n> '

Mipt m>1r M, ) 2and (M ) are bounded. Henee, it follows from [12,
Corollary 3.3.5] that
lim D1 =D

M Omntmn oo Hpp oo 2.8. Tor each m, (10)
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lim Dm nooo=D i a.s. for each n, {11

m n mun e 13 cen
lim Dmmunlszmm S S a.5., 12y
and .
lim D_, N U.mﬂ =D_ P a.s. (13}
n

‘here D M denotes the generalized Radon-Nikodym derivative of ¥

r.r.i. the probability measure P (see [12]).

Furthermore, it follows from (5) that

Dmn - =X_. . as forevery (m,n) € N°. C(14)
lonsequently, by (2), 3) (10), (11) and (14) we have

X e = Do Moo @.s. for every m >1 (1.5)

Xy = Doy Moo 25 for every n > 1. (16)

"inally, (4) follows from (12), (13), (15) and (i6). The proof of the theorem
8 thus complele,

For a class of mils we have the following theorem.

THEOREM 2. Let BB have (RNP) and a B-valued mil w.r.t. (F,)) which safis-
fies the condition (F ), Furthermore, assume the sequence (X-) is LlogL-bounded
n

Then (X;;) converges a.S.
For the proot of this theorem, we need two lemmas,

LEMMA 1. Lef B have (RNP), let (Fij) salisfy condition (F, ) and (Xij) be
B-valued Llog L-bounded martingale. Then (Xij ) converges da. S.
~ Proof. FFor the real—valued case, this lemma was proved by Cairoli (1970).
Chatterji (1975) and Millel—Sucheston (1981). It is worlh noling that only Chat-
terji’s proof has been extended fo the B valued case. Here, for the sake of.

completeness we preseat another proof of the lemma which is based on a
result of Millet—Sucheston {10].

Indeed, let (Xt) be as in the lemma. It is easy to see that the martingale
(X} 1s uniformly integrable and hence by (RNP) of B and Proposition V—2—10
[11, p. 112] it follows that there exists a B-valued integrable random element ¥
such that (X,) converges to X in L% Henmce X, = E(X/F,), L& N? and
Efj X{logt] X[} = oo _ -
To prove thalt X, — X a.s, we first apply Lemma V—2—4 [11] to choose a se-
quence of simple elements (Xk) in L% such that

| Xk <1 X1, as. for every k=1, 2., 17
Xk — X as.
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Set XF = E(xFP), e ¥
By a result of Cairoli in [3], it follows that

I 2.5

K
X{— =X asl — oo (18)

for each k=1, 2,...

Further, applying Theorem 1.5 in [10] {o the positive l-submartingale
I ..
(X, — %, mtc—:!’ we obtain for every A > 0 and every & = 0
1 e

k
-psup X, — X' 1> A < —
p(ip, ’1/)“‘?“31

+E$ ([ X - X)) (19)
where ¢(x) = r logte , > 0.
Fix A = (, choose sequences (611) and later (Icn) such that

5+ 1logd| E | X — x¥y

6:1“)' knfooasn - ce with
| Iog &H]E//X-—Xk” // -0 agn — oo, (20)
Hence, it follows from (19), (20) and E¢ (| X — an ) = 0 that for every
A 0
lim p(sup § X, — X, [ >4) =0,

n i

This means that the sequence (sup || X, — an I )n>1 converges in probability
: t
to zero and hence one can choose an increasing subsequence (P ) of (k) such
that

s!:p[lX, —Xfﬂ [—0 as as n — oo (21)
Finally, (17), (18), (21) together with the inequality

b Pn p p
X, - XI<ix, — X" NN X=X X" =X

yield that X, %% X. This completes the proof.

TEMMA 2. Let T1 be the set of all bounded ?:j)-siopping times and let (Pr'j) be

a B-valued (F, j)—adapied sequence, If P, ’?—G%‘qi 0, then (p; j) converges a.s.

Proof. Suppose that p, %-g;-l 0, but (p!.j) does not converge a.s. to zero.

Then, there exists ¢ = 0 such that for every pe N, we canfindneN, n>p

such that "

' P (sup [p;li=e) >s. (22)
pPSiy Jsin S ,

o



Take any pair (p, n) with p < n satisfying (22). We shall construct 4 stopping
timet=1, € 7! suchthat p < T < n and

P prli>ey=P( _sup lp;l>e) =e (28)
ps<h j<n
To this end, first define T, 1 Q > Nby
g inf {ie{p, p+ Lo} : sup §{ py li>e bif {3 =4
T (w) = PSS
1 ~ PSsI<n
n if {,} =) gﬁ.

Next, define T, ¢ QO — N by
T (w) = ;inf {Jp,p + 1., n} 1 Py (), S > eif {3 =9,
Finally set 7(w) = (t, (), T, (m-)). It is easy to see that Tis a map from &
into {p,....n}2 such that for every ({, ), p< (G N < B {T = (i, P} e F1
1.
] J
Hence T ¢ TI. Furthermore, { | Pell > e}= {sup Ilp; I > E} a.s. Thus,
P, S n '

we have proved (23) which implies that (p’[)'EET1 does not converge in probabp
lity to zero. This contradiction establishes the lemma,

Proof of Theorem 2, Let (X, ) be a mil. Then the sequence X, F;)is also
b

a mil in the sense of Talagrand [13]. This with the hypothesis on (XE) yields
that (X) is uniformly integrable. Hence, by [13, Theorem 8§, p. 1194], there
exists 2 unique decomposition X;= It’f-l + Z, where YH isa uniformly inte-

grable martingale and

a.8. ' ‘
ZHL -—»08.SI‘!—-—>0~ (24)

Furthermore, one can check that (Y..) is Llog"'L-bounded I‘hus if we put
B, = E(Y-—/F )for (i, ) <nmn=12,.. and

J
p;, =X; -—-ui for (A ef\g’
I AT A
then (Ii )1s a LloaL—houuded martingale Moreover, by Lemma 1, (", )

.I
convewcs a.s. Hence, to prove that (X )converges a.s. 1t remams to show
i

that (PI.‘-r) -converges a.s. to zero. But, by Lemma 2, it is sufficient to
J
prove_that o
Py_P -
w s T O , | (25)
teT" , o

,‘:.



To see this, let € > 0. It follows, from the defipition that there exists pPE N
such that foreverymeéN, nm 2> p

P( sup I EW\Rm/F, )—X, |2 e)< g/2 O (26)
Li, /s m 'j 7

Tet T & T1, © > p be arbitrary but fixed, Then, there exists o, > p such that

p<T <A

It foliows from (24) that there exists n e N, n, > n such that for every
nz n,,we have )
CENX;—Y o< e¥2@m — pp @7
Now, for every n >'n1 , by (26) and (27) we get

< 21_..X.—-EX——F
plil {1;_(,,])}{ 7 (_,,/,t_j)]li>e)

FRUE Ly, Iy —E@ER(F N> ©)

< p(  sup I X, —-E(X—/F 2>e)
pSijsn v
+p( Z 1{1; G, J)}”E(Y_""X s gIJ)“ > )
Py j<Kno

L /24 2 EfjX-— Y_|.7¢ _
p<iis i o
(Tsebyshev’s inequality)
gl

< e/2+ (g— p)f = c.
' 23(fg — P)2

This shows that p,. ——Ii» 0. Thus, (25) and hence the theorem is proved
1
Tl

Finally, by applying the above method and a result of Chatterji [4] on the
convergence of martingales in Banach spaces without (RNP), one can also
prove the following -

- THEOREM 3. Let B be a Banach space {not necessarily having RNP) und (Xij)
a B-valued mil salisfying all the hypothesés of Theorem 2. Then (X”.) converges
a.s if and only if the set {N;{w), r € N} is weakly compact a.s.
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