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ON THE EXISTENCE OF AN OPTIMAL CONTROL FOR A
STOCHASTIC OPTIMIZATION PROBLEM WITH CONSTRAINTS

TRUONG CHI TIN

INTRODUCTION

This paper deals with discrete — time stochastic optimization problem with
constraints. The main result of this paper is Theorem 3. 1 which gives suffi-
cient conditions for the existence of an optimal control for this problem, The
proof of the main result is based on the dynamic programming approach. An
application of this result {o the problem of the existence of opfimal control
for the hydroelectric station « Hoa Bink » will be shown,

Let (2, ¥, P) be a basic probability space. Let us consider an object whose
dynamics is given by the following system of equations:

’xu-l-i = fn(xn’ Hn’ qn+2)

. xo=x°,n"—“01 co,N"""l . (0'1)

with constraints.
u, e U (C Uy . (0.2)
P{xn-l—iexn“l-l}——l n=01..,N—-1 (03)

where {g1, ..., gy} is the perturbation process with values in {0 @y s Q)
(C R%); the state { g, 1o, x,} and the control policy {uy, &y, vy u,_,} are
stochastic processes in R” and R™ respectively; {X, ) {Uk’ U}, {Qk} are closed

subsets of R, R™ and R4 respectively; the functions f.k: RRE 5 Uk X Re
- R® (I = 0,1,..., N — 1) are Borel measurable.

The control u — {uk, k =0]1,., N — 1} is called admissible if 1z, = gy(zo),
u;=g,(®,q) (=1 2,.. Jr—1)va:'he;:eg,;.-X(,—aUo,gr X, X Q. -~ U, are
Borelian functions and the correspondmg solution of (0. 1) satisfies the coms-
traints (0.3). The set of these control is denoted by 9.

If % < ¢, then for every u € 9 we consider the cost functlonal of the
form: _
N—-1 '
J(@gs ) = E {ho(y, 1) +- 21 h(x, ., q,)+ hy(xy, qN)}, (0.4)
n=
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where {£ } are Borelian fuzctionals bounded from below. By is the mathema-
tical expectation of the random variable y.
An admissible control U is called optimal if
J(zy @) = inf J(z, w).
ue Y

In {1], [3), [4], V. L. Arkin and L.I. Krechelov have given a necessary condi-
tion for an oplimal conirol for this problem by means of the stochastic maxi-
mum principle. Buat this necessary optimality condition and the conditions (E1)R
under which the class of admissible policies is non—empty, are practically dif-
ficult to verify. Recently, in [2] F.J. Beantler and K.W. Ross have studied opli-
mal policies for controlled Markoy chain only for the case where the state
space contains a finite number of elements.

In this paper this restriction will be eliminated. In Section I, we shall give
some conditions for 9/ to be non-empty. Section 2 is devoted to the formulation
of a necessary and sufficient condition for the optimality of a conlrol by
means of the eqnation of dynamic programming. In Section 3, we shall prove
the existence of an optimal control and give an application to the problem of
optimal control for the hydroelectric station «Ioa Binh» in the Norih of
Vietnam,

1. EXISTENCE OF ADMISSIBLE CONTROLS

THEOREM 1.1

i) Assume that for every n = 0,1,.., N = 1, Un is compact, the function
f, (% v, q) is conlinuous with respect io (z, v)eX X Uand ¥ xe X 3v el ¢
f, (= v, 91/ € X, (P —a.s). Then % == ¢,

ii) Conversely, if there exists an admissible control u e (# ¢) and {wn}'is
the corresponding solulion of (0. 1), Q, (=1, 2,..,, N) are discrele spaces, then

Vn:O,i,...,N—-IElX;chn P {xneXn}r:I and’d“a:eXngueUn:

fa(@mv,9)eX —(FgeQ )
Proof. i) Foreveryn = 0, 1,.., N — 1, let us consider the set~valued map
£ from X tolU defined by :
En' (:17) = {D = UR: fn(x! b, qn+1) € Xn+1 (P'_‘G-S.)}. : '
Since Xn-;_j is closed and f is continuous, it follows that F (@) is closed

and non-empty. Indeed, let {v,} (C E (%) -0 as K - oo, Set: Q 1=

={oe:f @v,q ()eX 1} Q :k21 Q. Then P, =P(Q)) =1
¥ k € N. Furthermore, for every o € h '
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fn (%> b, qn-H (u))) = lim f:z(x’ Vi Tntt (w)) e Xn—l":l ilewve Fn (a’)'

koo
We now prove that the sel-valued map Fn is upper semicontinuouson X . For
cach closed subset £ of U, put ¥ :={z eX :F (%) NE ¢}. Consider any
sequence {y, } (C Y ) -7y, k ~ oo, Clearly, j & X .Letv,sF _(y,) N E(keN)

Since U is compact, withont loss of generality we may assume that

Uk

~TDe U, nE It f.oliows easily that Ve F, (E;')\/\ E,i e. ?;\e Y .Henoce Y
is closed. ' ' '

From the selection theorem [6] it follows that there exists a Borelian func-
tion g9,: X, . U}1 such that g (@) e F_(x} ¥ 2 ¢ XH (n=01,., ¥N —1). Hence

there exists the admissible control u= {u =g _(z,), 2 =01, N — 1} e .

ii) It should be noted that if the spaces {Q_} are discrete, then for eachue?
so are the state spaces {X’) } of {x }. The second part of theorem is then

easily proved.

COROLLARY 1.2. Assume that for each n = 0,1,0.., N — 1 Un is compact, the
funciion fn(a:, v, q) is continuous with respect to (x, v) € an U‘,1 and erXn
welU:f, (.09 eX, L (¥geQ 4 1) Then 9 + 9.

Remark,

The above results remain valid if we add the following constraints to the
problem (0,1) — (0.4):

P{rn(xu, u o, q, ., e Yu.+ 1}j= 1, n=01,...,. N —1
where Yn is a closed set and ro@ v, qis continuous with respect to (x, v)

eXn ¥ Un for all 1.

2. EQUATION OF DYNAMIC PROGRAMMING

In the rest of this paper we assume that {g,, gy s, 9, } is 2 Markov chain
with transition probabilities {Pn (dy, q), n =2, 3,..., N} and an initial proba-
bility P, (dy). '

It should be noted, that in this case, {_ . n=0,1,.., N} is not necessary a
Markov chain but forn, =g (=, q,) the process {(xn, 7,» 0K < N} s
Markovian.
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For each k = 1,2,u, N — 1, (z, ) ¢ X, X Qk’ we denote by %g"; ithe set

of all control policies u(k) = {gj, j=k, k+ 1., N —1}, where ¢, 9)
¢ U, and for each { =k + 1, k+ 2, 000 N—1g,: X, X Q, —T, fis a Borelian
function such that the solution of the corresponding system:

Vi 2= T 9 0 0 P

}mk =$,qkﬂq,j=1{,k+1,u.,N——1

satisfies the constraint: P {:cj +q € Xj+ god=k k- LeoN—1} =1
V@:=pelU :P{f v q  JeX =i Vaeek (e =0, I,
N — 1)-
If the conditions of Theorem 1.1 are satisfied then these seis are
non-emply. ) .
Wy @)= by (2, Q) ¥ (x, Q) € XN X Qy
N—1

W]f (a:’q):z inf E 2 hn (xn !gn(wn’gn)’qn) +h‘v (XN L] qN )/qk = q
U\) (I’C) n=k o

xs g )
Yz, q) € Xk X Qk (k =12, N -—1)

Wo (x,) : = inf J(xy, 1) .
usY _
Then we have the following theorem,

THEOREM 2.1. Assume that the conditions of Theorem 1.1 or those of
Corollary 1.2 are satisfied and there exist functionals {W, (x,q), (Z, ) € X X Q.

salisfying the relafions :
WN (x, ) = hN (x,q) ¥ (x, q) € XN X QN ’
W, (x.q) = inf {h, @ oo )+ [ W py(f (v w), 9P, (dy, 0}

vEVk () Qi1

V@, geX, xQ (k=12.,N—1)

Wowo) = inf {ha(@s ©) + J Wafol@o vs g §) Py(dy)}e
vEVo(axp) Qq

Then iy W, (2, ) < W, (@, @) ¥(@ ) e X, X Q (k=1 20 Ny
Wo (o) < Wo (o).
i) If the contro!/g\-: {ﬁ; =% (a), = zz?: /g\‘,‘_ (;:\;{ - )
k=1, 2,.., N — 1} () salisfies the relalions:

W, (z,¢)=h (x,a{ @ g+ § W, (f. (9 kaq) 9% 9).P sy (dys 0)
Qe
Ww, q) € Xk X Qk (k, =1, 2,.., N — 1)

Wolze) = Bo @or o laca)) &+ § Wy (fo (a0, To (@)> 1) 43P (A1)
Q1
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P
where { x e k=0,1,., N} is the corresponding solution of (0. 1), then uis an
optimal control,

ity Conversely, if u is an optimal control in the following sense:

Wolio) = Iz @)

N-1
W, @on=E{ 2 b/

‘ =k
Vi, q) € X, X Qk k=1,2..,N—-1,
thenn satisfies Lhe relation in part (i)

)

o~ —~
xr

.’L‘n ’qn)!qn)+hN (?N’qN)/ qk=qf

.
9w

(&)

Proof. It is clear that 3 u o q

€ U

N—-1
L; 2 Ry @ g, (7,5 00 @)+ Dy (xy, qy) 0 =qb >

n=k

> h]{ @, gk(m’ ) N+ E {Wk-l-l (fk(x’ gk (s q)= qk+1)s qk+1)/qk:q }'

From the above inequality and the equality W_T—N (%, ) =Wy (%, q) the asser-
n i) follows by induction on k=0, 1,... N—1. Also, by induction it is easily
én, that for each k=1, 2,..., ¥
. N k—1 E T TN . -

:L'g) =L {ho (.?30, 9y (xu))"l" X fln(ﬂﬂn, gn (xn’ qn)’ qn)+ ‘Vlc (xk’ qk)}.

n=]

_remaining part of the proof is obvious.

8. EXISTENCE OF AN OPTIMAL CONTROL

/e now use the equation of dynamic programming in part ii) of Theorem
prove the following theorem which is the main result of this paper.

OREM 3.1. Assttme thal the conditions of Theorem 1.1 or those of Corollary
satisfied and for all I = 0.1,..., N —1

r U8 a conlinuous -function, the functional hy, is lower semicontinuous and
! 'S .
» U, is compact;

r any lower semicontinuous functional H (@ v, yonX e XU X Qg
tonal S H (z,0,y) P, 11y, q) is lower semicontinuous on X XU XQ,,
Qe

M - » A
exists an optimal control u,

- It is easily seen that for each k = 0, 1,..., N—1, V, @) is compact and
ed map Vk from Xk to U, defined by

: .Vk(?.?):={DEUk:P{fk($, D, qk-[—l)eXk'f'l}:I}
micontinuous,
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We want to prove that if Y»’WJ,‘__!_1 (x, q) is lower semicontinuous then so are
the following functionals: '

Tk(l', 0, Q’):= f ‘Vk“{*l Uck (.'L‘, b, y), Q) Pk+1 (dy’ q)‘l_hk ((B, Uy q}

QI;+1
Wk(m, q):=inf T, (z, v, q).
veV, (x)

Indeed, from the hypothesis of the theorem it follows immediately that T,
is lower semicontinuous. Assume that {gn(e XA)} - Y, . — oo Since U, is

compact we may assume, without loss of generality, that for any subsequence
{y s} of {y,} there exisls a sequence {o, € Vi (y,)} such that v . -, 0’ >oo.

From the hypothesis i) and the properties of the probability measures it
follows that v &€ V, (). :

LEMMA 3.2. Let Y be a melric space, U a compact melric space, f:¥YxU-R
a lower semicontinuous and lower bounded funciional. Assume that there exisls a
family of closed subsels {Uy, y e Y} of Usatisfying the following pro periy

[y e}~y o el )} =t o] >uel

Then the functional ')E(y) D= inf1 f(y, u) is lower semicontinuous and bounded
| _ uebg_

from below.

Indeed, from the hypothesis of the lemma it follows (hat

vyeYau el : ) = f, ). @.1)
For every sequence {yn(e Y)} —» 1, let {un g Uy , & N} be a sequence having
. n ’

the propexty (3.1) and {u .} a subsequence of {u,} such that lim f(y .;u )=
= lim f(y,; u,) Since U is compact, we may assume tIl:;C:zn, —uel,
i -—t-l-:::
It follows from the hypothesis that uz & Uy, Hence we have
lim Fy,) =lim @, u,)>few >,

n—>ea e
i. e. T is lower semicontinuous.
. Lemma 3.2 shows that W, is lower semicontinuous. By indaction, it
tollows readily that the functionals { W, T,k = 0, Luees N —1} are lower "

gemicontinuous.

LEMMA 3.3 (5. Let X be a melric space, U a compaet melric space, ¥V oan
upper semicontinuzous sel-valued map from X toU, T : X x U — R a iower semi-
continuous and bounded functionat. Then the sel-valued map G from XiolU
defined by : ,

G(a): = {u e V(x) 1 T(z, u) = min T(x, v)}
pEV ()
hd



is Borelian-closed, i, e for every closed subset E of U the set {we X:G(x) N
I < ¢} is Borelian.

Let us consider the set--valued map G from X, % Q, to U deflined by
G@@Q:i={ueV, @):T (& uq = il T (@, v, )
v ) & V, (z)
It is clear that the subset G, (x, ¢) is non-empiy and closed for all (z, q)
€ X, X Q. From the lemma 3.3 it follows that set—valued map G, is Bore-
Yan—closed,

From the seleclion theorem {([6]) it follows that there exists a Borelian
functiona $ X, X Ok - Uk such that?k(a:, q) € Gk(:v, Q¥ (x q)e X, X Q.
(f =0.1,.,N — 1)

Hence, from the equation of dynamic programming of Theorem 2.1. the
conirol u = {I/z;_—_a(/:z?o), l/l; == @;(};. Q)s k-1, 250, N—1} (€ ) is optimal

Application,

We now apply Theorem 3.1 to the following problem of optimal control
{or the hydroelectric station « Hoa Binh ».

Let = ,¢q,,W_,» Dbe respectively the volume of the reservoir, the flow of

the water arriving to the reservoir, the flow of the water wsed for the'generator
and the overflow at the moment n. Further let us denote the period of ex-
ploitation by N. Then we have:

'I"IH"I: xn — W, Dn + qn+1
xg = n=01,.,N—1
with constraints : '

WS wn S W, O<. o

n g‘?ﬂ, n—901..,N—1

P{Xﬂ L < X,Y < h(.}: » W, 0 ) g'?n, n=01, .,N} =1

where: w_, w X X ¥ u» ¥, are given constants;

h(x, w, v) = a[Ht(a:) —H,w + »)]° w, H(x)=c¢ xd,

H () = ey, a= (176403)~1, b = 1, 10159: ¢ = 2; e = 0,0294:
d =0,4; i = 0,63377.
We have to maximize the total gain functional

N-1
J(xg, u) = E = Iz(x s U )f, where u, = (w_, u }.
n=0
In actazal] practice, the conditions stated in Theorem 1.1. are satisfied. The
relations between the random variables {qn, n=1, 2, ..., N} are given by:

e

Ity =4 4+ T p =01, N 1,



where s En = Ing — Ing, ;9. A is a constant, r  has. a normal distribution

™. s s 1 " — ’ LN
N(O. 675 0z (g_.q75+> Gg) are given random veriables; fr.n=12 .., }

and (q_ g G _qgqsen g, ) are independent random variables. Set :

T = Gpegyr G e T B = D2 Mo _,
We have: B

» .
Tnt1™ f(:c“, “a qn+1) P=E, —W, =,

N

To apply Theorem 3.1 it remains to verify its hypothesis ii) or, equiva-

lently, to show that forevery n=1,2,., N—1L 2> 0;y, z ¢ Rf”

P{qn+1<$/(] = Z, q _7 = y} = P {qn+1 (x/q;-_—. z}
and the family of the dlstrlbuhons
{F iy (®B2) 1= P{qn_[_l(x/qn ==z} z¢€ Rf}
is weakly continuous.

Indeed, for each z = (2, 2 me Zz9) & RY we have:
Plg, .z (:c/qn =z} = Pllng,, , —lng __, (Inz - lnqn_z/q; = z}

= P{A(inqn - lnqn - 12) + rn+1<ln (%) jq:; = z}

, 77
=Pt (5) = 1 (2
= @ [6;fr;(1n (zjz;)— Aln (2512/20))]

where @ (x) is the distribution function of the normal law ¥(0; 1). By an analo-
gous arguament, we have:

1
@ [67) (In(x/z) — A ln (z9/20))]

Hence, from Theorem 3. 1 it follows that there exists an optimal control
for the above problem of optimal control for the hydroelectric stalion ¢Hoa
Binh».

The author would like to express his thanks to Prof. Nguyen Van Huu for
his comments and suggestions.
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