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ON THE PROCEDURE OF MULTIDIMENSIONAL QUANTIZATION

TRAN DAO DONG* and TRAN VUI**

INTRODULTION

Let G be a connected and simply connected Lie group. In order to find
irreducible unitary representations of , Kirillov’s orbit method furnishes a
procedure of quantization, starling from linear bundles over a G-homogeneous
symplectic manifold (see [5, §15}). In [1] and {2] Do Ngoc Diep has proposed a
new prozedure of guantization for the general case, slarting from arbitrary
irreducible G-bundles associated with the given hamiltonian mechanical system.
This new procedure of quantization of‘Do Ngoc Diep gives us a large number
of irreducible representations of G.

On the other hand, in 1980, M. Duflo ({4]) proposed three methods for cons-
tructing large subsets of the unitary dual of a Lie group. Each of them reduces
Kirillov's orbit method toa speeia Icontext. The first is a reduction to the case of
discrete groups, with the procedure of guantization of Do Ngoc Diep as its
geometrical model.

The aim of this paper is to suggest a reduction of the procedure of multi-
dimensional quantization to the case of Lie groups whose Lie algebra is either
semi-simple or reductive. Our geometrical constructions will be based on some
ideas of M. Duflo (see [4]). '

By using a new notion of polarization we will construct unitary represen-
tations of G by the aid of solvable or unipotent co-isotropic distribntions. We
will modify the nsual construction of holomorphically induced representations.
The representations thus obtained will be called partially invariant holomorphi-

cally induced representations and denoted by Ind (G&; £, B, o,)- They will then
be illustrated as representations obtained -from a natural generalization of
Kirillov’s procedure of quantization.

1. CO-ISOTRGPIC DISTRIBUTIONS

Let us denote by G the Lie algebra of G and by §* its dual space, The
group G acts in §* by the coadjoint representation. We will simply call ita
K-representation. Let F € §* be an arbifrary point in an orbit Q, and G be the
stabilizer of this point.” Denote by &, ils Lie algebra, R(F) the radical of "gl;
and R the corresponding analytic subgroup in G. o

g
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14. SOLVABLE CO-ISOTROPIC DISTRIBUTION.

Let S be the semi-simple component of G in iis Cartan-Levi-Maltsev's
decomposition Gp = R . Sp.

From the local triviality of the SF-principal bundle SF 3= RF \G——ka- GF\G,
where the base Q = G\ G is paracompact, there exists on the bundle a
connection I' (see [6, Ch. 2, § 2]).

This means in particular that we obtain a fixed decomposition of the tangent
bundle into horizonlal and vertica!l parts

TR, \ 6)=T xR\ &) @ TR\ G
m Then the Kirillov 2-form B of K-orbit { induces a nondegenerate closed
G-invariant 2-form ABQ on T (RN G) defined by the formula
Ba®) X.7) = Bq (F) (&X, kT, -

where f R\ G, k(fy = F € 9, and k, is the linear lifting isomorphism

induced from k.

DEFINITION 1.1. A smooth tangent distribution Z TR\ G) in called 2
solvabler co-isotropic distribution iff

i) I is integrable, G-invariant

ii) 7. is invariant under the action Ad of Gpe

iif) L is horizontal (i.e. L ¢ Ty (RN G)).

iv) L is co-isotropic at f &€ R\ G such that k(f) = F with respect to
EQ, i.e.

& Y < I.,
| where (Ef)f is the set of all elements X & T (R \ @) such thgtaBQ(f) (X, Y) =0,
¥YelL.

It follows from the definition that if L is co-isotropic at ome point
f € R\ G, then all other points of Rp\ G also have this property.,

THEOREM 1.1 There exists @ one-to-one correspondence befween solvable
co-isotropic disiribulions and Ad G -invariant co-isotropic subalgebras of the Lie

algebra G.
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Proof . LetZ C T(RF \ G) be a solvable co-isotropic distribution. According
to the Frobenius theorem, Lf is a subalgebra of T(f)H(RF \G), and then
L =k L is a subalgebra of TEQ Fat gF « Thus, the inverse image 7B of

f
subalgebra £ = L under the natural projection

is an Ad G -invariantsubalgebra of G.

Denote by 3 the orthogonal component of 3 in € with respect to
Kirillov’s form B, . Now we verify the coisotropic property of 3. Indeed, let

X e 3. We have Be(X,Y)=0for al ¥ € B == p~!(£), then
By (F)X,Y)=0 foraliY e £=1L and X ¢ T,

(R NG

This means B (F) (k*i k*?’) = 0 for every Y & Ef ana }? & T(f)H o

-

Therefore, Xe( )fc Lf since L is co-isolropiec, It follows that

X=kXeL,=£ Thus X ¢ B= p-(£) and " ¢ ®. This shows that & is

a co-isolropic subalgebra.
Suppose now that ® C of is an Ad G -invariant co-isotropic subalgebrae

We define a smooth distribution L ¢ T Q by the formula
_ LF = p(®),
Lo == K(g),LF ;M P = K(g)F € (.
By definition L is integrable, G-invariant and Ad GF-invariant.

Denote by L the horizontal lifting of L into the tangent bundle T (R, \ 6);

i e. L - TH(R N\G) and k (L) = L. Then L is G- invariant, integrable, hori-

zontal and Ad G -invarian‘.
Now we verify that L is co-isotropic. Indeed, for every Xe (Ef)f
we have Eg(f)(}?, f’) = 0; % Y e Ef « By definition, this means
Bo(F) (X, 1Y) = 0; kY e L,

or (F,[X,Y]) = 0; ¥Y €3 such that Y =k, Y. Hence, X & B C B since
B is co-isotropic. Thus XelL_ = k Lf The latter means

~

CXeki(Ly) N (T 4y 5 (B\G) =L

Then, we have (L )f C Ef. The theorem is proved.
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1.2, UNIPOTENT QO-ISOTBOPIC DISTRIBUTION

Suppose that G is an algebraic Lie group. Let F e g Denote by U the
unipotent radical of ‘GF and by, @ (F)its Lie algebra. Let QF be the reductive
comgponent of G in its Cartan—Levi’s decomposition G = U, . Qp.

Using the Qp — priucipal bundle @ — Up N\ G—— G\ G we can cons-

truet a nondegenerate closed G-invariant 2-form B, on the horizontal component
TH(UF NG) of T(Up \ G).

DEFINITION 1.2 & smootk distribution L C T (U \ G). is called a uni polent

co-isoiropic distribution if it is integrable, G-inveriant, invariant under the action

Ad of GE’ horizontal and co-isotropic at f with respect to EQ.

1

The following theorem can be proved in a similar way as Theorem 1.1.

THEOREM 1.2 There is ¢ one-to-one correspondence beiween unipolent co-iso-
tropicdisiribution and Ad G F invariant co-isotropic subalgebras of the Lie alge-
bra G.

2. (0sMy) -POLARIZATIONS

DEFINITION 2.1, A point F € §* is called readmissible (r for jradiesl) if the e
exists a character 7, (i.e. one-dimensicnal representation) of RF such that its

derivative is the restriction of V—1. F to R (F).

Denote by yirr (F) the set of all equivalent classes of irreducible unitary
representations of G, such that the resiriction of eachof them to R isa mul-

tiple of the representaion 7p. Then there is.a one-to-ocne correspondence between

Yirr(F) and the set of all equivalent classes of irreducible projeéiive represen-
tations of the group R \ G (its Lie algebra is semi-simple).

Remark and definition 2.1' Let G be an algebraic Lie group. Note that
the Lie subalgebra 9 (F) of the unipotent radical UF is unipotent. So, from the

diffeomorphic property of exponential map it follows that there exisis a charac-
ter 0, of U, such that its derivative is the restriction 7. F | % (). Hence

we can say that every point F e ' is u -admissible.

Denote by ZIr7(F) the set of all equivalent classes of irreducible unitary
representations of G, such that the restriction of each of them to Uy s a mul-

tiple of the character 0 ‘There is a one-to-ong correspondence belween Zirr (M
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and the set of all equivalent classes of irreducible projective representations of
Up\Gps

Since the reductive component (J, of GF has only a trivial covering, we can

identify Z¥7(F) with a subset of the set of all equivalent classes of irredncible
nnilary represenlations of Q (see [4]).

In order to find irreducible representations, we consider the imporiant
generalization of the co-isotropic disiribution by «going over to the complex

domain », This means that we definc lhe co-izotvopie disiribulion L in such a
p

way that Ef is a complex subspace of (T(f)H(RF\G))C,

Then Theorems 1.1 apd 1.2 are also valid for the complex case.
Lel L (TH(_RF\G))C be a co-isolropie distributiop such that L N Land

L + I are the complexificalions of some real distributions. In this case, the
corresponding complex subalgebra @ C G, (see Theoremn 1.1) satisfies the
condition: P¥ 1 @7 and GF L 2" are the complexifications of the real Lie
subalgebras @7 ) § and " = (P +?) N G. Denote by B” aud M¥ the

corresponding analytic subgroups in G.

Similarly, we construct the complex unipotent co-isotropic distribution

Lc (T y(Up\G)) e Now suppose that the subalgebra ® = @ N § is algebraic
co-isotropic.

DEFINITION 2.2. A solyable (resp. unipotent) co—isotrépic distribution L i
called closed iff all the subgroups BF, M/» and the semi-direct products
B = G.B", M = G..M" are closed in G.

DEFINITION 2.3. Let 8 be some fixed irreducible unitary representation of

G in s separable Hilbert space V' such that its restriction to Ry(vesp.Uy) is a

multiple of the character 1, (resp. 0).

The triplet (f., p. 0p) is called @ (;, Mpi-solvable (resp. (;, 6)-unipolenty
polarization. L is called a weakly Lagrange disiribution iff

(i) o¢ is an irreducible representalion of the group B in a Hilbert space V*
such that :

(a) The restriction o F=g¢
) 0 GF n B

Fl
Gp M B
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(b) The point o, in the dual ’I.Q\F is fixed urder the rnatural action of the
subgrqup GE . Recall that the subgroup (;'F normalizes BF, thus GF acts natu-

rally on the dual BF of the subgroup BF , (see [1])).

(ii) p is a representation of the complex Lie subalgebra ?¥ in V'’ which sa-
tisfies . Nelson’s condition and p | g . = dg, where o, is the represeniation of

the Lie subalgebra ®F in V’, corresponding to o

PROPOSITION 2.1. Suppose that F e of* i& r-admissible,z is closed and (I’Z 0s 95)
is either a (;, N J-solvableor (s, 8y )-unipotent) polarization. Then

1) There exists a structure of mixéd manifold of type (k, 1) on the space
B/G, where k — dim G — dim M, [ = %- (dim M — dim B).

2) There exists a unique irreducible representation o of the subgroup B= G

BF such that

o | GF = F!;': G‘BFz 6, and p I%F: do.

PROOF, 1) The assertion follows from Theorem 1 in [5, § 13.4]
2) Notice that % is invariant under the action Ad of GF and GFacts natural.

ly on the dual BF of the subgroup BY. From the assumptions, o, is fized
under the natural action of G . The formula

@ ) %3 @ o () w e Gy be B,
defines a representation of the produet G, x BF in the space V = V ® V’,
Indeed, since o, is fixed under the natural action of GF in BF we have
T (2, D) T (2, b) =0 () 5 (B) & @) o, (B)

=5 (x2) [ (2" o, (B) 5 ()] o9 (D)

s (az") [ag (b) oy (0)]
= o (xx} 54 (bD")).

On the other hand, by definition we have t ((, b), (x’ b)) = 1 (zx’, bb’) =

ll

= :(xx’, &g {(b0’). It is clear that the representation T is trivial on the kernel
of the surjection

F — F
G, X B B =G, BY,
(x, b) e s bn
Thua, there exists a unique representation of the semi-direct product

B = Gp. B | We denote this representation by o. Obviously, o is an irreduc-
ible representation and o | GF = g, G‘IBF = oy. The proposition is proved.

24



v

2. INDUCED REPRESENTATION OBTAINED FROM THE SOLVABLE OR
URIPOTENT POLARIZATION

Suppose that 6 : B — AuiV is the representation obtained in Proposition 2.1,
Denote by@v S GB,GxV the smoolh G-bundle over B\ G associaled with

a {see [5, § 13]). Similarly, we a consiruct the G-bundles €|, , = G X V and
) 6 s
F!

GV‘ s = ﬁ XDV-
o Ry

To obtain an unitary representation we apply the usual construction of
uaitary G-bundle (seell], [3, § 13.2])

Suppose that A Ap are the modular functions of the groups G and B,
respectively. Let 0%(h) = A B(h) S0 () e B be the non-unitary character of I,
We consider the G-bundle M = G X € associated with the zpon-anitary

Ry, &2
character &° of the subgroup R. Denote by ni2 = G xg the G-bundle asso-
RF’

~

. . ~ 12
ciated with the character & = (AB/AG)1/2. The bundle evﬁ,o = 61,‘ R !

is a G-bundle over R\ G. It is called an unitarization of "év e

According to the construction, the unitary G-bundle @V §o can be identified

with the set of pairs (g, v)-€ G X V factorized by the egunivalence relation:
(g9, v) ~ (g", v°) iff there exists h € R such that ¢ = hg and v’ = 3(h)c(H)v.

Then we have an isomorphism of vector spaces (see [5, § 13]):

T (e )= C=(G:V, 8s, Ry)

~
s 1= fm,
Y

where C=(G ; V, do, RF) is the space of smooth functions f on G taking values

v, Oc

in V and satisfying the following equation

f(hg) = S(hys(h)f(g) ¢ k€ R, g & G.
Similarly, we oblaia the unitarization €, g, anl GV’ 3o 0L Cp 4 and Ey o,
respectively.

A sectlon s e F(BV &) 18 said to bhe S -equivariant iff f (ig) =
= o(h) o(h) f~ (g), VheSg, gel.
PROPOSITION 3.1. There exists isomorphisms of wvector spaces

‘FSE(GV,(SG) =T (GV‘&,)
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and

FSb.BE (€yps) = r(-e_-V"S"'

where FSF(—éV,ESc) and FSF.BF (%V,éc) are the vector spaces of SF—eqzzivariant

and SF'BF -equivariant seclions of bundle €y &g, respectively.

Proof. The assertion follows from the definition of Sp -equivariunt section
and the construction of the unitary G-bundles .év,ﬁc and ev,&,,

The space I‘SF (év, 8 is too large to yield an irreducible representation.

By dint of using the (g,nF)—solvable polraization (i, 0s 60) we will resirict this

space From Proposition 2.1 it follows lhat if's € FS BF (Ev,f)c) then || S/ I‘E
I
is a B-cquivariant section of . Then the integral
1S =Sy dpe®
B\ G

is justified and we can define the scalar ‘product of every pair of sections of
this type by the formula

Grosg) = | &5,@) @)y dp @)
B\G
By fixing a connection I’ on the principal buadle B»s>G—>»B/G, we
obtain the connection y on the buodle €, s, Using the natural projection =:

GF\G->B\G and the projection J: RF\G-->GF\G (see[6, §6)), we obtain the

connection %’ on € v,0a° The following diagram holds

(Gv,ac Vv (ev,écr; ) (ét‘,éc 3 ﬂé) G XV
T .. . & } ! y
BLG BN < GNG e Rp\G ——C

DEFINITION 3.1+ A section S e FS oF ((21,,66) is called parfially invariant
e
pariially holomorphic if its corresponding funciion f~ satisfies the following
s

equation

(Ly + o(@) -+ do(@)] f=0;%xe?PF.
Denote by 76 the Hilbert space which is the completion of the space of all

partially invariant partially holomorphic square-integrable section s of G-bundle

v

&, 5o

6.

S



The matural unitary representation of & in %% will be called the partially

invarisnt Bolomcrphically induced representation and denoted by Ind (& L, B,
€3 Ty )e

Remark. Suppose that o: B — AviV.is the representation ohtained in
Proposition 2.1. Let G be an algebraic Lie grovp. Then we can censiruct the
smooth G—bundles :

eV! G - GBXGV, evs o= GGX E, evs g =UG >fJ'V
? FGp FoUg

Theé construction of the unitary G—bundle discussed in the preceeding pa-
ragraph gives us an unitary representation of . We also denote this unitary
representation by Ind (G L, B, P> G )e

THEOREM 3. 1. The representation Ind (G ; I, B, p, oo) of the Lie group G in
the space J6 is equiivalent lo the representation of ihis group by right translations

in the space C(G: L B, o, 5,) of smooth funciions f on G with values in V sati-
sfying the following sysiem of equalions

(1) f(hg)=S(R)o()f(g); Vhe B=GLBF,geG
@ (L, % o(@) + dS@)f =0; ¥z ey,

where L_ is the Lie derivalion along the vector leld on G corresponding fo Z.

PROOF. According the definition, the partially invariant partially holomor-

phic {sections s are identified with smooth functions f~ on G which satisfy the
3

conditions (1) and {2), Then lhe action of g € & on a seciion 5is identified with

the action by right translations of the fuaction f:f;v, (see [2]). The space of

partially invariant parlially holomérpbic square-integrable sections is then

identified with the space C=(G; , L, B, 0, o) of smooth functions f: G -V
satisfying (1) and (2). The asscrt'on of our theorem is pmved

4, UNITARY REPRESENTATION ARISING IN THE PROCEDURE OF
MULTIDIMENSIONAL QUANTIZATION

In this seztion applying the procedare of multidimznsional quantization in
{3}, we will propose a mechanical interpretation of the representation

Wd (G; L, B, o, 8,),
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As a model of the quantium system: we cheose the Hilbert space %6 in Sec-
tion 3. We define the procedure of quantization as follows :

O : ¢ @ — 3@

fomFe=f+ L9t

14

where vé‘f is the covariant derivation associated with {he connectiony on the

G-bundle 57,60' We recall that ’{7'“& is defined by the formula
/
—— = L=~ H -
Ve E - —« )
S TR (Ef)
where « is 1-form of connection %”, L- is the Lie deriva‘tion along -&f whichis
the horizontal lifling of striclly hamiltonian vector field Efcor.‘espond-
ing to f.
By a similar argumert ss ir {3] we obifain the following result.
THEOREM 4.1, The three following conditions are equivalent:
(i) The application f —»? is a procedure of quantization
() Curo v (£,7) =~ = Ba (5 M 1
dids « € 1) = — By (3 01,
where T, ¢ @re the horizonial lifling of strictly hamilionian field &, n on © and

Eﬂis 2-form defined in Section 1.

Having this procedure of quanfization, we obtain the following representa.
tion of the Lie algebra § in space B (%6): :

AN:G—>B(H)
i ~
;C—)/\(x)"'";. fa;’

where x 6 Gand f € C™ (Q)is the generating function of the hamiltonian
field . corresponding to x.

If G is connected and simply connecied, we obfain a unifary representation
T of G defined by

T (exp @) = exp (A (X)) # € G

We say that it is the representation of G arising. from the procedure of
multidimensional quanlization.

28



THEOREM 4.2. The representation A drising from the procedure of multidimeri=
stonal quantization colncides wilth the representalion

¥: G — B(H) _
@ = 4(w) = Ly + - 0(E,)

where e, is the differential 1-form associated with the represen’ation i (do+-dd),
I

= k3 is the Planck’s constani, {(In [3], ¢ is just the covariant derivation of the
h
representation Ind (G; E, B, p, ).
Proof. The covariant derivation associated with V is defined by the formula

vi =L, —aE,) 2,

where « is the dilferential l-form of V with values in the Lie algebra of the

structural group of the G-bundle ¥ V, &, Then we have ¢ = oy - B, where
is delined as follows:

Let F e (. The function p_=(., x),
¢,: O-R
F - (F, z)
is the generating function of £ - On the other hand, we can consider (F,.) as a

differential 1-form § on G by setting
®, & (F) = (F, E(e)s

where E is an arbitrary vector field on & and e is the unit element of G. Then

9 (F)=(F,z) = (B, £_) (F). It follows that p_ = B(E ).

By the definition of Py P () == Lg + % o, (Ex). Since

cpx=§3(gx), we have
¥o) = L +sz—;43(£m>+i~a1 &),

—Lgx —I— P, —I-'—[ﬂl(E )—BE Db

Therefore, ¢, — B = a. Hence,

#e) = —i—[wx+.iL~g +u('g )],

L

L

i o~
ﬂ?[q)“‘_{_—vgac]_

The theorem is proved.
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