| ALTA MATHEMATICA VIETNAMICA _
Vol. 14 . No 2 (1989)

FINITE DIFFERENCE METHOD ,
FOR AN OPTIMAL ‘CONTROL PROBLEM
OF QUANTUM PROCESSES

DINH NHO HAO

.. INTRODUCTION

In recent years there has been growing interest in gemeral problems of
control of objects governed by equations of quantum mechanics, electrodyna-
mics and quantum fields, See {1] and [2 — 6] for an up-to-date survey and an
extensive bibliography. A typical class of these problems is encountered in
nuclear energetics, automatics and compuler engineering techmiques. Unfortu-
nately, theoretical researches have been extensively developped, only few
resulis have been published-on approximate methods for these -prablems |7].

The 2im of the present paper is to suggest a scheme based on the finite
difference method for approximating a nonlinéar optimal-control problem of
quantum processes governed by nonstationary Schridinger equations.

- In Section 1 we describe the optimal control problem to be studied. Then in
Section 2 we develop the finite difference scheme for this prblem. The main
results are formulated in Section 3 and established in Section 4. :

Throughout the paper we shall use the notations of [8];

]
1. OPTIMAL CONTROL PROBLEM OF QUANTUM PROCESSES

Let Q be a bounded domain of R?, T be a given finite, positive number
LetQ =0 X [0,T], S=1TI %[0, T], where I is the ‘boundary. of €. Considey
the following system

¥ . 2

YR k,l?:i a;i:k'( kj(:c) - ) -+ ta(:c)llf-]-zu(:c)llf—o - (11)
7, =0 P ¢ =)
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Wlf=0 =g{x),re, . . (1.3)
where
(i) ap o a(x) belong to the real funciional space L (L),
_ e > 1 n==1
(i) u@) e L (Q),g=3¢n+¢ Ye=0n=2
-1 n n=2

(iii) a{x), u(:b) > 0 almost evéxijhere__in Q;
(iv) ay; (@) = @y () k,je[l2.., 0}

n
M EE < I a,@) 5 < HlEh
k,j=1

(vii) © is a ball, or a ball Iairer, or a parallelepiped or Q can be transformed

into one of these domains with the aid of a regular transformation y= y(z) € C2(0).
P P« Mo are fixed and posilive constants, 3 = (§; »w. E,) is an arbitrary

vactor of RP, lsl‘? F + . +52.

DEFINITION. A Tunction v is said to be a genexahzed solutlon in W (Q) of
s/

the problem (1.1) — (L3), if ¥ belongs to W2/ (Q) and satisfies

oL n )
§ (= o, +1 2« .wx, 1, +iapn)dxdt
Q ko j=1 Y .o
4 i j u wndmdt = Scp't] (w,O) d:r , - - (1.5)

for all n from \\ 9.0 (.
Further, let
v & Wy, (@) (1.6)
Then the problem (L1) — (1.3) has a unique generalized solulion in

1 (Q) ([2]). Furthermore, this solution be longs to “,72,1 (Q). Consequently,

A (x, T ; u) makes sense and ¥ (z, T; u) € w2 5(Q). From [2] we also have L
| Cv@swg = el =1, ¥rer] 17 Y

Let z (:c) he a glven functxon from w? 9,0 (- Suppose that the control u (x)

belonns toa bounded closed and convex subset ¢ of L Q). (L (Q)H- {u (@) |
l lz(a:) & L (), u (z) >>» 0 almost everywhere in Q }). Th control problem we
are concemed with is to minimize the functional S
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Fm=1| v @ T;m—z@) ]| dr= v T;uy—z@) |2 18
£l

subject to the above constraints,

This problem arises from the control of quantum processes ({1], [6]). It is
known [6] that under the above mentioned conditions it always has a solution,

S 2. FINITE DIFFERENCE SCHEME FOR THE PROBLEM

Let the upper-half space E_ x [0, o=) of variablgs @, 1) be covered by a‘grjilt_i
=k h ,h >0k €{0,+1, :1:2 Je i € { 1,2,..., 0} and t=k T, >0
I{O'G {0,12,.} Let Q(k ) = “’(ih) x (k Ty +1) O = {(x 0): k By <
<z, < (k41 &k, ko'l: < f = (I\O ol ) 1:}. By Qh we denote the closed ‘do-
main consisting of these cells @ (sep) which are contained in Q. Iet S, be the
boundary of Q, and Q, = .O. — §, . For funchons tp defined on our grld we
nse the notallon Py s hut occaszonally for the sake of slmphclty we write ¥
instead of wh if no confusion is possible. Further, P, (k) denotes the restrlclmn
of the grid function Py, to the layer { = {, = kT,

Let

@y (k) = [y (k) 3, (K1)

’ = (aR)~I{  w(x)dx, Ah =h 1:2 wh, . o
(k) Oerny . CL ‘<
kT . )
P ¢
=@an~1t=1 ;I ¢(@ndad,

E .
A z=(kh), =k, T S (ko =0T (kn)

where { (x, 1) is any function from L2 (QT s
For any grid {2, consider the following problem

Ih’,c ([u] ,)=( hy? g | bp (N) =z, l2—> inf,. .(2.'1)
h I o .

Wy (k1) —w, ()
T h —_1 = (a IJ.h a ‘{-’ (k))il
Lj=1 i L
-|-za cnph (k)—[—m awh(k)_.o - (2.2)
in Qh'ke {0! 1’ 2"-'-: N = [%]{s |
9, (]S, =0 SRR @.3)



R T P € X

[}, e U= {lul, = {u, }, u, e}, : (2.5)

vhere ¥, (I, [u], Yis a solution of ihe. problem (2.2)~(2.4) corresponding to
ontrol [u], . - - ' - -

We shall assume that for every grid , X w by any available minimization

. =
nethod one can compute the approximate value [/, o 4-¢p 4 of the infimum

'k
hr

of the function I ¢ inl, subject to conditions (2.2) — (2.5) and appro-
timate control [u]h . = {"h L n, € U such that: - :

=!=

Ih,’f <1 BT ([?I]h,E‘ < BT + Sh T : {2.6)

where ¢, . converges to zeroas kb, B,..., b and T tend simultaneously to zero.

3. FORMULATION OF THE MAIN RESULTS

For every functoin Py 1 (k) defiped on Va"grid_gh Xw, we put
Y Op=gh, T =kt &1 € Opppy X0y

;‘Fh'c(m’t)z : Ay = LN .
, 0 s (1) €9 ) Xa,

THEOREM 1. The finite difference scheme (2.2) — (2 4) has a unique grip
solution ﬂfh T and its’ mlerpolatmn wh T (:v,t) strongly converges in W1 1 (Q) to

the generalized solution in'WLf (Q) of the problem (1.1) — (L.3) v (xt) as

By h

g 1eess b, and ¢ tend mmmtaneously to zero. Furthermore -

I 'lp ” = ]} ” R @)
and S .
IR (x’t)'\t—tk — 1‘!}_ i (i) ~, ” 2l e (t _{_ (/_\_h)z (2.8)

where the constant ¢ does not depend on T-and B, but depends only on the
domain Q and the coefficients of equalion (1 b).

THEOREM 2. Let u* be-a solutmn of the problem (1 8)e Then

Iim I+ = J* = inf J{u),
h:l’]lg’ 11’1——3 O h,’c h He% .
T=>0 o .
¢y (@ (1) + VT F B 17 < I* — J* <5 VT (any, 2.9)
h,fc R o 3

6




where w ~(h) is the module of continuily of u () in L (£2). If the sequence
{[u]h E} is de!ermmed from (2.6}, then

<J ([u],, =<y (o, (h) + vr+ah)2)+ € (2.10)

4. PROOFS OF THE CONVERGENCE THEOREMS

'Proof of Theorem 1. From (2.2) we haﬁé
i TS a6 T y
h(k+1)—1i E‘I,j_zi-(aljh Ve (k+1))5£ +i (ap+uy) ¥y (kt1) =

=¥, (1:)+z—y(awsyﬂ (k))fcl'__t 2 p ) ¥, (k) (4.1)
inQ,, ke [0,1,,, N —1.

Let p (k) = {ip! (k)b let H, be the lirear space of all vector-funcucna
defined in Q. I*rom (4.1), ‘) (2.3), (2 fl) we have

(E—-z?L)‘P'(k T)_(E-}-x-—-‘Lh)‘{I (ky, (4.2)

where E is the idenlity operator in Hh‘ L, is the operator defined by the system

{4.1) and the condition {2. 3).

OO PRLAT N

Operator L, acts in the finite dunensmnal space I, so it is bounded. Fur-
ther, condxttons (1.7), (+.8) and (2.3) mean that Lh is symmetrlc (or gelf-adjoint)
and negalive defined. Therelore, the spectrum of the eperator A is real. Conse-

quently, the operator B —"i-;— L, has an inverse bounded operator.

Now, by the above and (4.2) we obtain

W+ 1) = (E—i-2—Lh)' (E+i52_L )11{(16.

Operator K = (E——z’% L-)-—I (E—[—z—;—L) is the Kelleg ‘transform of the

.

self-adjoint opelatm L, ,so 1t IS isometric ([10] point 121) Therefore

L W(k+1) nH —(A h) z | w,, (k+m
L h . - .
=(A m.?pz o, )| 2=lp R

2, Hy”



jve. || Eh (k1) | - I ;i\;h(r'f) ﬁg. From this equalitjr, it is_éasy to see that
N w I qnh f ,*ﬁce{l 20y N

The proof of the convergence of the fmlte difference scheme (2.2) —(2.4) is
similar to the one in [8)] and [9], and therefore will be omitied, Now, we study
the accuracy of this scheme.

Let

- o W =——J vk d

nL B OG- S T
T oz ) =y () — g, (R,
We have '

i - Lz (k
(r-5 ) s n=(erig o
. T T
=—(L‘_.z—2-L )y(k—]—l)-l—([ +ig L, )y(k).
Henpe, .
| 2 {kd1) = Kz(k) —y(k) + Ky @
and oo .
Ly 2
I Z(H-l) II : <z (k) H +[]g(11+1) y (k) I| “r-‘-ll (E—K)yyk) ™.

On the other hand

I+ =5 0017 <N (@, (k1) T)y— (@ kvl 2
o I av (z, 0) ||2

: ot

From conditions (i)—(vii) it is easy.to see that | K — K I] < CTe .

L er?, kt K (k+1)1:. '

Hence,

o

—1 . 2
Lhu =6

"2
(Throughout the sequel ¢, C;s Cgsune denote.a generic positive constant indgpen—
dent of & and 7).
Finally, we have . o
1% e+ 1) 1< ULz (1) “_2&“ R E O
Consequently, _ . ‘ '
” lph(k + 1) - qf(x’ (k + 1) T) “2 “ 1])‘ I‘ 1) - yh (k+1) ”2
+ Ilyh(1f+1) _— (k+ DR et + nyh (k+1) — Wz, k + D) |

cz+§ i wa ¥ (z, (k £ 1)) dw — ¥ (e, (A+1)r)ll
h (&h)



—=ct 4 3 u b ¥ G D7) — S, (K + H))ae

=ct+ I § | l—s Y (2, k1)) — V@ (k+ 1)) dylde
R . S . |
~cr+>: $ I § e § 2 anfds
SRR L
“(ER) D khy T
Set+3 ) |amd d§ laq:],dnlzdx= o
“(xh) Ony k) | : :
=t +3ang [2an” o DR
h "’urz) ' '
<ot 2 (@n) | ’aw‘
- Q0w o
<ot (0B) “ ” &t -+ (ARYD).
Thus,- - - 7
¥, (k1) — (x, (e 1)*)412 (T + (ARY?y.
Theorem 1 is proved. B R
Proof of Theorem 2 We shall need some lemmas

LEMMA 1. (F.P, Vas1hev ([11], p 299)), Let U he a convex, closed set of
L (€2), u(x) an element of U..Then: :
u, = —1—- § u@drel, . o (4.3)
AR, : ,
(kh)

LEMMA 2. Lel all the conditions of ’lheorem 1 hold. Then for every uel
we have

|J(H) — I ()] < eVt (ah)®. - (4.4)

Proof. From Lemma 4.1 [8] (p. 301) we have " R
| ]["E(x)‘_.z(x)u_;bésh—‘»'o. |

Further. since z(x) € w2 5,0 () it follows that

9z

Il (3’") — z(:r) I? < c(Ah
On the other hand
Ty ((aly) = (Ah)’* g\‘*’h,r Whfal ) = 2, [

. o as

o= n,1 % Ts u) — z(a:) li A



-ence : .
7@ — I, 2], I'm |1 ¥(.T; 1) — @) 12
o L e O
L (WW@, T; w) )+ 1 ¥, @5 all 41 @) |+ 12@) DX
(@ Ts 1) = ¥y T w1+ 1 2(a) — 2 1
From (1.7), (4.5) and (2.8) we get ‘
| /) — Il | S ey T+ @R

LEMMA 2. Let all the cordilions of Theorem 1 hold and {u] be any confrol
rom U. Then S

I J ([;] RS P (LIN l < clw (B) + VT (ahy), (4.6)
vhere w () Is the module of coniinuily of u(x)in Lq‘(.Q).

Proof. Using the inequality for the coefficients of the equation (1.1) ([2] and
6], p. 18) we can write .

\J([ffl,,) — I, ¢ ([u]) [ < e[| ¥ T3 [a),)

— @ T () |+ 2) — 2@ 1)

< o | W@ T ) = ¥@T 0|+ 1T u) =
CF, s ) I @) @ 1) |
< (i, — ull  + VEFARE + ab)

| < (o, (BY + VO 2k,

Let us now prove Theorem 2. As seen above, the set of all optimal controls

of the problem (1.8) U is non empty. Let us pick u* € U, According to Lemna
1 [u*], e U. Consequently, it follows from Lemma 2 that

* . BT
Ly o <TI0, <J@9 eV T (o
A S wn

Eurther, the function 7, . ([u],) attains its infimum on the compact set U/ h.

[ ]

is€a Ih,'t > — oo, L’h # (5, Simce U is convex we have[u]h K- U Now, from

Lemma 3 we get

Te < It <1, (0ul) + clouwsih) + |
4 VTR = [ clo o) + VT AR (*8)
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Hence,
—c(w MW +VT (ARF) < I o — I <c¢ Ve + (ah)%
Since mu(h) — 0 as h — 0 ([12]), §3), we get
lim "
(-h! T) -0 h,T = J*
Consider a sequence {[u]h’ <t determined by (2. 6). Clearly,

[ﬁ']'h,s e I/ and
0 < :1'(['5],!,\g ) —J" = [J([E]h, e) — g,z Uty &N

+ U Q) = I Uy ¢ — Ik
From (2. 6), (4.4), (4, 6) we then oblain
Jiul, ) —7* < clw () + VT 4 (AR + ¢, =,

This means that the sequence {{u]h e} is a minimizing sequence for the
problem (1.8).
The proof of Theorem 2 is complete.
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