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ON THE SMOOTHNESS OF SOLUTION OF THE

MIXED BOUNDARY VALUE PROBLEM FOR THE

SECOND ORDER HYPERBOLIC EQUATION IN
A NEIGHBOURHOCOD OF AN EDGE

NGUYEN MANH HUNG

1, EXISTENCE AND UNIQUENESS OF A WEAK SCOLUTION

We consider the second order hyperboiic equation

Lu=u, — Lu= f(z, 1) - (1.1)
n i
Lu= {75 o ((fu(x. t) uxj) 4 :a (x,1) u, + a(x, t) a,
6 j= 1 ’
xn+1=t’az‘j .r’vg a8 §; \Mg.v>0,

where al.j(:c, I}, a; (x, 1), a(x, 1} ave real £unct10ns having infinite smoothness in
the -eylinder tj; = G X [0, T] where G is the closure of a given bounded domain
G whose boundary is a piecewise smooth face, including in (n-1) dimensional
smooth faces Fi (i = 1, 2, .., ). Suppose that Llhe face Fi can only intersect
ry pr;, ;along (n-2) dimensional smooth manifolds L £i+1 respectively.

In this paper, we restrict ourselves to the case m = 2. Analogous resulis can be
easily selended to the general case.

We can assume, wilhout loss of generality that 9G consists of two smooth
£aces I, I'y whose intersection is l; denete by T(po), (0 < Y(po) < 27, v(Ppo) £ )

the angle heiween r; and Iy ata pomt Do € Lo,

The mixed boundary value problem for equaiion (i.1} must satisfy the
following initial conditions and boundary condmoas B '

ul£=0 = €ix) N {1.2)
ul’ !,=0 = "p(m) * (1'3)
u]31 -0 . | S (1.4)
ou .
il = 0 . 1.9)
ol 82 (

where S; = I, X [0, T], 8, = Iy X [0, T].
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Before staiing the exislence of a weak solution of the above proi)lem, fet Gs
inlroduce some notations which will be used throughout the paper.

whks ’(QT): the space of functions having generalized derivatives of variables
z, 1, up to order k, I, respectively, such that

2 ‘ a'*tin
bullyhlg,, = z “l ——
’ i+Jk+] J | oat 8t

2
dr di << 4 o (1.6)

T
“?.k,l(QT) : the closure of C::(QT) in W!c,l(QT)

W '(0,, 5;) : the closure of the set of all infinite smooth functions vanish-
ing nearly 5.

ﬁ\,:’:,l (Qp) ¢ the subspace of all funciions belonging to Wf’l(QT, Sj) and
vanishing when ¢ =7
We shall denote, in parlicular, w* (QT) for the case &k = L

- WK(G): the space of functions having generalized derivatives up to order
k such that
9 k
Nallyke = SGS z

m=o0

amu 2

axm

dz < + oo (1.7)

vﬁg (G): the space of functions such that

o5u |2

i

k
¥ SS p¢+23 -2k

ran .
WE(G) s=0 G

dw < + e (1.8)

oz’
where p () is a infinitely differentiable function such that p (x) is positive
outside of IO and equal to r (x, [ ) in some neighbourhood of {_ (r(x, [ ) being

the distance from a point z to lo)'

The function ua(x, ) ¢ Wl (QT) is called a weak solution of problem
(1.1 — (1.5) if u(x, ) e Wi (QT’ S.I)’ u(x,0) = @(x), and if the following inte-
gral identity is satisfied:

§§ (—um+ a;; U, M, +au N an) dedt — {§ yn (@, 0)de = {§ fndadi
Cr s ! G 2y
(1.87
wt
for allm & W (Q. S))
THEOREM 1.1+ Suppose that the coefficients of the operator L salisfy the
conditions
oa,

.
max 7 I
o | T % e < H (1.9)
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and suppose that = LQI (QT), ¢ E Wi (G, I‘})', P& L2 (G) _leen the problem

(1.1) — (1.5) has a weak solulion belonging to w7 (QT) such that

<c(T)(1el '
fuj c(T)(NCh g +IV0 o+ IFD o

1
. Wi Tr 2 2,1°T
where C(T ) = const > 0 and C{T) does not depend on the funciions u, ¢,y and f.
Preof. Choose an increasing sequence of the domains

. .o 1
G, = r e G: dist (z, 11‘1)>--HT

)) (1.10)

such that their boundaries are infinitely smooth and this sequence approaches

to . We shall set Q;l = G [0, T], S;n =I‘;n x [0, T}, aGm:r’l“u T, It is clear

that I‘;n-»I‘I 48 m — oo,
Pat
flx, )i (= 1) & Qp,
0 if (z, f) € @\ Q7
Then f, (2, 1) = f(z, 1) in Ly (QF) as m —» oo and |
Nf,. Ly 4(Qp) <7l Ly 4(Qp)

gmn=§

Pat
oz it zeCG, ,
P (@) '“':% 0 if x &« G\G_,

Plx) if v e Gm
PP =] 0 if v € G\G,.
Then ¢, € ‘[V;(Gm,l";'), v & LG )

We consider the following problem in the domain Q;’

L (L1m)
() ![=O =€, ' (1:2m)
("m)zl =1 _, (1.31mm)

t=0
(u.m)l m- 0, (1.4m)
Sy
aum | )

The Galerkin method will be used here to prove the theorem,
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" Suppose that {cp'k(:é)'}' is.a fundamental system in W;(Gm, I‘f:’} ape
I .
([Pkﬁ te ) - 6 .
Let ( » be the scalar product in the space L (QT) and set

N—z CN(i)'ﬁ(:v)
k=1

. wheye the Cf(i)’ salisfy the following system of equations

«ﬂmw>+«<u)mawmw>ﬂg,wpe»—

= ( fm’ ‘61 )’ I == 1’ 2,'"9 - (1-11)
—_— i = .y . ’ o . ' 1. 2
N N T . -
o (i)[:=o —al. @
N . . - Lo
Observe that ¢M(z):= = iz'f ¢, (), converges in norm of: wi (Gm) to a function

k=1
¢(@) as N — oo, |
We shall prove that u satiéfies the iﬁeqﬂ‘ality (1.10)

Muliiplying both sides of equatlon (1. 11) by —;I—— CN(t)and summing up with

respect to { from 0 fo N and integrating with respect to ¢ from 0 to ¢ both sides
of the obtained equalily, We get

R O S e

m
Q! _
mggf (uN) dxdi, e T aady
m\ /i . :
Q_t
where
SS(&N) (HN\ dedi=-L K (uN ) r =lag,
mfy\ m/ 2 I\ m/i] li=
n GIH
t !
N N 1 N N 1= g
G o I A G :
m m
Qt Gt
--lg a;.(uN) (&N) dx dt
2 U\ mj*\ m J
. m .
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Ccm sequently,

§(1) = 5(0) -+ Sg[ t(ug )x!(uﬁ )xj; 2a1(uﬁ )xl(uﬁ)‘-— ”

H2a(uﬁ)( —)K+ of ( )]dxdt, - (115)
where o - e
act) = \\[(Ca) J' + el ), (), |2

Applying the Cauchy inequality, we obtain 7
o t t .
) < pO+C; S y(tdt+ b, Sg(u yrdadt 4 2& 1 g gomiy * (dl. (116)

.o o

Qt
We have

1
= (e + (e

o

Then ;
SS )%z <2 S‘ [uﬁ (i‘,O)ra‘:r + 2tSy(t - I

m m [+)

Gy Gy

From (L.16) and (L17) it follows that
- ‘ | t t >
Z(t) < 2 2(0) + (er 42t - o) L z(1)dt + 28 H o U ey # (DdL (118
0o

o
where

gty = SS { (a¥)% 4 ¢ HI;.) ¥ alj ()2 5 i) xj]‘ dp, (1.19)

m
Gy

Put

A(t) maxZ(E), ey =cC + U
05 Bt
It Tollows that

2

Ty <2 o)+ (s, +2:)t.4(:)+2"f 2

(1) (1.20)
1(@, ko
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As t < min (&, T) and #, > 0 satisfies the ideniity 41’]'J + 20,8 — 1=0, we
have from (1.20) '

o /\1
Z(t) < 2Z0)+ 2 fm 1]L2 1(9’“) ZE(t)
s 1M

ho |-

which implies
Py 1 B
Z2) ezt (0) + 4 fm I LE,‘]_(Q;H) . 21)

If t, > T, then the inequality (1.20) holds forall ¢ € [0, T].
If i, =< T, then by choosing t = t1 as the initial moment, it followsfromthe

previous arguments that

ZH) < Cy(1) 22O+ C0 1 i ) Ly, (0™) - @ar)

where C,(t)and G, (t) are defined by the coastants v, |1; and &

Consequently

ZHo < 6m)| 2O + 1,0, om | (L.22)

From (1.19) and (1.22) it follows that
Ny2 N2 N2 3
m( u,) + (i) + (g, )w] dedt < C(T)[ 25O +1f 1y, (om ].(1.23)
or
We now estimate Z (0) :

20 = {{[cal, @ 0]as +{g§ @ o] +
3

m

G

(), (s 0) (@) (@ 0 {ds, (1. 20
where |

Sg[ (ug) (@ 0 ]2 = Sg[kli (B » Pp) @ () ]2 dz =

m m
G, Go :

N
IEI (s 01 < |0, 1] Ly@™ * (1. 25)
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E

gg “(um) (x, 0)"} +a, @y @0y wy@ 0l <

G
< CSS[ O @ + 02 @ ] dz = Cle, Twie,) (1.-26).
el - Lo . L :
0
From (1.24), (1.25), (1.26) we get : ' '
Z©) < C[ KPR I ] (1.27)

where C is'a consiant not dependmo on N and m,
From (1. 23) and (1.27) it follows that

. N..
Moreover
<€ T T a2
I m ?Wi(ggf) . (1.29)

‘Hence, by passing to a subséquence if neceésary, we miay assume that fhe’
sequence {uN b weakly converges lo some element z & W é(Q;‘, 5;) in w (Q;?)'p
This convercence is umform with réspect to { in the sense of norm in L ((r ) .

From (1 28) it follows that

1iu 1m S CLi o, 1 w;(Gm)+ I3 It_LQ(.Gﬁ)f[—,izlf

e W(Qr) m L.?:,‘I(QI?)'. (1;30).

Next, we shall prove that the function z_(z,{) is a weak solulion of the

problem (1.1 ) — (157 ) in-ihe domain QT

Indeed we put

N = z d NG % (:1:), where d, () € W1 ([0 T}) d; (T) =0
From (1 14) we ohtam | A

= (em) (o),

e (7). el ezi)”v_lexef

- m j oo
4‘ - QT : Ve - : e Ty t . :‘ o A " : T C e
Dolg-froe
— il m - T aa tl
Sg( Pl de=o D MO L s
- Gm L QT A Sl L 2 ' Tk
- N e . . .. . - A N o .
foralln= Z dk { q>k(-:c)'--' Lo Y N L

k=1
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Pu:

+ N .‘ V "
My =§n 1= 2 0@ GO eWi(o, 7)), d,(T) =0
;=1

But 7 =Nu My =W}, (Q;’.‘ S;") so the function i) (x,!) satisfies the

integral identity (1. 31) for ailq e W2 0 Q)

Passing to limit under the sign of intesral as N — oo we have -

ff {— (Um) 1, + afj (um)‘rj ﬂ:ri —+ ai( m N4 a (u y 1) dadt —
e =i up ) ‘ dz = ff =fm n dxdt : o . | (1.32)
© - i i =0 o Qm 4 - . , .
T

-~ The initial condition i = g {x) is satlsfled because u - in

=0

L,(G_) and u_N (::;,0) - O (a:) in . L (Gm). Moreover,‘since ::1":;‘(3:,0) =
N

= Z “k cpk(g;) - ¢, @) in W (G 3, we get u 0@ O~ o, (x) in Lo(G -
k=1

This shows that u (T, f)is a weak ‘solution of the problem (1 lm) — (1.5m).

We - have thus proved that - the 1nequallty 1. 30) holds for. the soluhon
u (a; t) .

Extend u_ = 0 out of QT Then from (1.30) it:follows that. .

il I—Im f 1( T) [ el 1( 4+ i Y f Ly (¢} + | fl LZ 1(QT)] o (1.533)

Becanse the sequence {u } is bounded in WI (QT), here exlsts a subse—
quence {u, } whlcn weakly converges to some function u(:c.t) in (QT > Sy
k . .

Therefore (1. 33) 1mplles that

il J,(QTfeC[Il'{’,ll 16) +!|‘¥||L(G)+!lf|1L2 s (1.34)

Now. we shall prove that u(x,t) is a weak solution of “problem (1.1) = (1.5)
in the domain Q. Indeed, since 4, (:E. 0) - u(z, 0)in L,(G) and a__ (x, 0) =

= q)mk (z) - o(z) in L2 (&)s we obtaln (@, |, = cp(;n).
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Becd ise L is a weak solution of problem (1.1mk) ——('1.."5"1}c ), the following

iniegral identity
fl{ [—(umk)t 'n, + aij (Hmk)Ij T]a:i'l' aij (umk)a:iﬂ -} a_(um-k) Ti] dxdf —
Qpk '

- i b, U Oy do = [f f, n dxdt, (1.35)
B Q’T“k k

holds for all n ¢ 'f‘?; (Q?k, S;nk). In addition, since u, = 0 and fm =0 out
i k. k

of Q;Ik, we have

- é'; [_(umkﬂt + (_!U' (nmk )xjﬂxi+ .aif (Umk)m-_ﬂ + a-(‘u.mk )] dzdt —

= IJ Vo, 0) = é; Fr,

forallm e Wf"‘ (Q,if,1 Iy ST k). Now take an arbitrary funclion 1 € Wg (Qps Sy ). The
set {u(x,t) e G~ (QT), u =0 nearly Sj} being dense in ﬁ\”; (QT, S4), there exists
a subsequence {7_} belonging to C"(Q—T). 7, = 0 nearly S, and convergiﬁg to
the function 7 in Wg (Qps S;). It follows that there exists a suificiently large m,
such thatn e W‘z) (Qq k» S7'k). Consequently, we have (1.36) for m, € ﬁ/\; (Qrt, S;“k).

In this equality, passipg to limit under the sign of integral as Iy —»o0,

we obtain . .
SS[ T8 g T Gy Me, Ty e, T “"“s} dzdt —
Qr '
— SS o1, (x, 0) dx = SS fn, dedt. (1.37)

G Qr )
In equality (1.37), passing to limit under the sign ol integral as s —»oo,
we oblain '

SS[ — Uy N+ 4y, e, + q;; Uy, M+ am ]da:df -—SS P1 (¥.0) dz = SS Fudzdt,
QT | G QT

" B : . L
forallne W1Qp 5y, (1.38)

We have thus proved that, the fupction. v(x, {) is a weak solution of the
problem (1.1) — (1.5). Moreover, it satisfies the inequality (1.10).

+*-The Theorem 1.1 is tkus proved



-2 SNOOTHNESS OF A'SDLUIMON IN A- NEIGHEUURHOOD OF AN EDGE

We consider the followirng probiem

Cga=flmp) o @)

“Jimo=0 J @22

utz=:;;f_-0"‘ ) 2.3)

s, =9 @
M‘f;d-ﬁﬂn”:. .

W 1s, e

in the domain. Q,T','.W_here-{aif = .{11'-;';} YE? < ,P"s;,-'-fé,-’ijs<\ IJE;?, v>0 . . (26)

. THEOREM 2.1. Suppose that the following é'ondiiicjns are satisfied

i) max ak“u‘ 6["—1aijx ok “Iai ok—1g | ‘< i )
U stk ,"a;kui-' ‘el k=T aik -1 ! SHp RS AL T
‘ : ak‘f L (Q ) L 1 d cf . . .
.s € —1 an
B U 21 T ' T =0,'I\'-\-l. H
@) _ gt \t=0 =0 kS @2.7).

Then the weak solution of the problem (2,1)— (2.5) has generalized deriva-

tives up to order L with respect {o I. In addtt:on t]u.s- solutzon belongs to W1 (Q )

and saizsfzes the followmg mequahtg "

where Lhe conslanl.C does ‘not depend on udnd f (s ).

Proof. From Inequahty (1. 30) it follows that Lo
N

e, WI(Q”‘) <SClfp ’I(Q;") . o (2.9}
We shall prove the fOHOW”:"*g inequality by induction with rerpect to L
o(u 3 .
———(I—) SCZz ];’“. L (2.10).
-att - Wl(Qm) : RS ot - (Qm) g

Indeed, forl = 0, this follows from (2.9). Observe now from (2.11) that

(u e @ )+ SS a, __‘(:um)m_(um)x_ o F (um).qu;s + a(a) g, e =

UI .

—<f €ys =12 N oy

1Mo

ar’ (Qr) k<t || otk Q,I(QT) , e



Differentiating both sides of (2.11) with respect to ¢ up to . order I, muit&-

. dl+lcN . . .
plying the obtained equalityby ____°_ apd summing up with respect to the
) dtl H1 Lo . . )

index'l, we obtain B

N G o, ® i a
( e )+ 0§ (et ) (i) a4 ()7 e +
: t T

ailt2 at"""f i P : ily
. Gm ) W Gm%_ -
(l) (1"']' ) I Oy o ‘“ ,
Sg au® ) (u N) " dx ((f )() N(“), - (212)
t S -
Gm N , ) R e \. -:_.

Observe that

("’m"ﬁ, am"f??):,.f_i wl L e
atft? gt 2 d._f: Ll L2(G§'n y
() () e L o) () ]+
gl ()] = S b))
)] 22y S
~ e ) (e =
_kgzld%(:\“)(‘a .)(l k)((u ), ):H-I)((u 8 )r(’)' '. (1-14;
Y . . . ) . [
R W
_ Sﬁ‘“i‘“ﬁ‘x,’f’“’ dx _ki l (:‘ )(a,.j):[ ;k) (guﬁ)xi)r:k)((ufm): 1 (2.15)‘
Gm . .
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Integrating both sides of (2.12) with respect to f from 0 to ¢ and using ihe Cauchy
inequality together with the induction hypothesis, we obtain

] t, N AN
o | _aftema],
ST Ly (Gp) + Sty S2 T | 2C,
| arit? s (“m) ail 2(G,,) at m
N 41, N
- 1 ‘ 0! (B D B o4 1 Aa "o
4‘1'1 ail Ly(Qm) - AT N artt Ly (QF)
t 1? 1\1
+C S al(u;1 )i iy t | al]‘m ot g ol 4
1 - _a t[ .'_' L (Gt 2 § ail LQ(G:‘H) atl+1 LQ(G;,!)
k
+C " m (216)
3psoll otk |L21(QF)
LBtA‘[]g put
-~ . 1
a(um) N 3t f,, .
Bil m ail m
By the same argument as in the proof of Theorem 1.1 we have
5 . o i . k
2, <C(T)[ II 1| ek
m m. = g\ + Z m s {2.17)
W (Qr) T NiLodQp) il Tk (Cr/
or .
N k
ol (u) akf
‘ Z m (2.18
-, C 2 m .
‘ arl | WD) T < <] otk Lo (O

Extend =0 out of Qm f_ =O0out of Q™. 1t follows from (2.20) that

! .
B o <o |2
ol |W(Q) T G| stk
and then,
ol u S ‘ ‘akf
e 2
o ‘W (QT) k<t || otk

The proof of the theorem is thus complete.

Ly (Qr) "

L 2,1(QT )

(2.19)

(2.20)

For the asymlclic property of the solition, we shall use the functlon v¥{Po)k:
introduced in section 1 where Po €lo Ny N I’ = I,

119
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We transform the main part of the operator'L at ihe. point py€ [ into
canonical form. Consequently, y(p,)is transformed into another angle which is
denoted by (pe). It:is always required that ;é e

- THEOREM 2:2.- Suppose that Lhe following cond.zitons are sat:sfled

f eng(QT)’ l<l ‘f = 0, l l-—-l w;af j;O,I,...I,"
at! ai! l 0 ’ . J+ 1 .
0 < w << 2n. For the dszerenilal pazrs (mI, I)’ (mg, So)  such  thal
m;, ' my R
—-——+ s;< U+ 1, (1 = 1,2), it is always reqmred Hzat + s, ;é +s2

where m; and s:’ are mtegml numbers. ml. > 0, st. >'0, (l = 1,2),

Then the weak solution bf p.r"oblérﬁ'(?..:;") ;"(2.5) has the form

Fis

u(r, 1) = C(1)r¢ ?'+' i{j (z, 1)y

where  C(t) e W1 (10, T)),

of! .
Q(t)—{(:ri,x ,t) & QT}
The function ¢ (g, t) does not depend on solution. I £ is aninfiniiely dszerenfmble

function of polar angle in the 2-dimensional coordinafes system having cenier al
the poini p & p, X [0, T] and dispesing in the plane orthogonul to [0, T)

y s :_

- Proof. We shall prove the theorem by i‘nduc_tio;",v&ith respe.t to [,
For I =1, we shall prove that A

T

‘ u(z, 1) = C@) r s @, D+ wia, n o (2.21)
where C(t) € Lo, T, (. ©) « WO(Q(t)) D o

3

Take a denumerably dense set {cp (:r) } in W (Q(t;. I‘l) a "fptr;ction

\P(f)eC ([0, T]) and put w(z, f) = ¢ (r)w(f)e“o(QT sy

We derive from (1.8) for ¢y = 0 that ~ i AR
S S(a‘ ; xjrp,mi +a; 8, 0 + augy + Fo,)y (dedt = SSzz; by @y dvdt. - (2.22)

a . S
By Theorem 2.1, € L, (Q;). Therefore | . SR

Su, v, 0, dedi ="— §lu, 9, vdxdt - ST (2, 23)
Qr Qp S
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Il'. fohows from (2. 24) and (2, 25) that-

S‘i’(t)df { “) (“u Pp t+ U, =;r:-‘-(‘Q]c'a¢-*+ u q’k+ all(pk-}-f(pk)d:c} =0 (2 2'()
M Qe
Sinee (2. 26) holds for all ) & C°°([O T} being dense in Ly([0, T]), then =

SS(uucpk»{-aJu cp‘,mc -}-aI u cpk—l—aucpk—}-f(pk)dm::o o ; (2 25)

for all € E(cpk) where mes [O T]\L‘(qak) = 0.

Because {(pk-} is a denumerably dense set in W1 Qs ry )
SS(HM + a0 =%z, [ ¢+ﬂﬂq>+fcp)dr—0 |
()
tor all ¢ & W (Q(T, I;)), mes G,lofi‘J._\E(wk) =0.Te () F(g,)

Consequently, u(z, f) is a weak solution of the followmg problem in the Q(f)

for almoest of-all 7 & [0, T]
2 i}

Sz (a; u,)+ 2. a; uzl + = u, — f = F(x, t), (2. 26)
=1 4 A :

gl =0 . o N (2: 27)

‘ I‘T L oo LN

:; =0 @)

o

where I'— =S, r\Q(t),I‘— =S, f\Q(t)-r
Stace £, f, € Lt (@), 1, & LZ(QT) “Consequently, F(z, ) & L:(Q (0
ue W(QT, S1). From {4, Theorem 3. 1] it follows that u € W(Q(t)) o

Usmd the know results [2] for the boundary value’ problems for the elliptie

equations, we have
™

uz, t) = COI® &g, 1) + u,(x, 1) o | (2.29)
where C(1) ¢ Ly([0, T, ux(=, 1) € WAQE), #(p 0 = sin 221,

Using the same argument as in the proof of [3, Theorem 2. 1] and takin"g
account of (2, 31), we obtain the desired conclesions-of Theorem 2. 2.

i+ ;I would like to express my gratitnde to Dr. Doan Van Ngoc for his
suggeslions. S S
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