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A NOTE ON MIXED HYPERGEOMETRiC SERIES

M. A, KHAN AND A.H. KHAN

1. INTRODUCTION

In the present paper a new type of hypergeometric series, called « mixed
hypergeometric series» will be introduced involving parameters of which some
are ordinary and others are on the base ¢. It will also be shown how  naturally
such series arise while attempting to find g-analogues of certain results of
ordinary hypergeometric series.

The basic number [«] defined by

[e) =

tends to « as ¢ — 1. Thus ordinary hypergeometric series is a limiling case of
the ¢g-hypergeometric series. In 1967, Agrawal and Verma {1] introduced general-
ized basic hypergeomelric series with unconnected bases. If one ofthe two bases
tends to 1 the resulting series contains both types of paramelers i.e, ordinary as
well as those which are on the base gq.

v In this paper such a mixed hypergeometric series has been introduced and
an attempt has been made to show how Raturally they occur while establishing
g-ana’ogues of certain results involving ordinary hypergeometric series.
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2. DEFINITIONS AND NOTATIONS
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The generalized a bibasic » hypergeomeiric series is then defined as
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in the numerator and the denominpator the terms before the colon are on
the base ¢ and those after it are on the base g,. As usual (ay ) stands for the

sequence of N parameters Qyslyyers By "when N = A it will be dropped out,

Also, the g-fractional derivative Dz,m is defined as (cf. Agarwal [2]).
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where Tg [E] stands for % and [«] _for [1— ag” ]
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We shall also need the following results;
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(cf, Jackson [7]).

Lastly, we introduce mixed hypergeometric series defined as follows:
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where A >0, ¢ | =< landfor A =0, | x| = 1. Also, [(a)] stands for (a)
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(@), -+ (a,), and [q(b) ], stands for (qbi)n (q‘_"z)“1 (qu)H, where (a)nl is given

by (2. 1) and (g% ), 18 given by (2.2).

3. MAIN RESULTS

In this section, we shall consider our main results. Consider the identi'ty
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Applying D;,_.: and D:’_"S, we get
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If we continue this process of performing g-derivative operators u limes
with respect tox and [ {imes withrespect {o y and then suppress some parame-
ters, we arrived at
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In a subsequent paper, we propose to obtain more such resulls con-'
cerning mixed hypergeometric series. These results are expected to be of great
importance in the siudy of the produact of an ordinary polynomial and a
g-polynomial.

REFERENCES

[1] R.P. Agarwal, and A. Verma, Generalized basic hypergeomeiric serles with unconnected
basess Proce Camb. Phil. Soc. 63 (1967)s 727 —734.

[2] B.P. Agarwal, Fraciional g-derivalives and g=inlegrals and certain hypergeomelric func-
tions, Ganita, 27 (1976), 25-32.

{3] W.A. Al—Salam, Some fractiona! q-integrals and q-derivalives. Proc.Edinburgh Math.
Soc, 15 (1966), 135—140.

[4] W. Hahn, Beitrage zur theorie der Heimeschen Reihen. Math. Nachr. 2(1949), 340379’

{5} MeA. Khan, An algebraie study of ceriain g-fraclional integrals and q-derivatives, The
Mathematics Student Vol. XL, No« (1972) 442—446.



[6] M.A. Khan, Ceriain fractional g-infegrals and g-derivativess Nanta Mathematica, 7 (1974)
52— 60 - ~ T

[7] F. H. Jacksons On basic double hypergeometric functions, Quart Jo BMath. (Oxford)
{1942), 70— 80. ' -

[3] H.L. Manccha and B. L. Sharma, Som: formulae by means of fractional derivatives,
Composition Math. 18 (3) (1967), 22— 234. : ’

[9] L. Jo Staters Generalized tiypergeometric functions» Cambridge University Press (1566}.

L | -  Received May 12, 1987

MATHEMATICS SECTION. Z.- H. COLLEGE OF ENG. AND TECH,
A«M. U. ALIGARH-— 202001, U.P., INDIA.

fal]



