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§1 — INTRODUCTION
In recent years, convergence results for the multivalued integral have been
developed and used in several areas of applied mathemalics: mathematical

economics, optimal control, mechanics, eic.

Convergence theorems for the integrals of a sequence of random sets
(measurable multifunctions or corres pondences, multivalued random variables,...}
were studied by Aumann 4], Schmeidler {15], Hildenbrand and Mertens {10},
" and Artstein [1], These authors obtained Fatou’s lemma and Lebesgue domi-
nated convergence theorem, in the sense of. Kuaratowski ‘convergence, for closed

valued random sets in RY ,

More recently, in [12], Pucei and Vitillaro proved similar results for inte-
grably bounded random sets in a separable reflexive Banach space, in the sense
of support functions convergence. In (8], Hiaf proved two kinds of multi~
valued Fatou's lemmas for conditional expeclations: one for the strong
lower limit of a sequence of random sets with, possibly unbounded, closed
values in a separable Banach space; another for the weak (sequential) upper
limit of a sequence of weakly compact valued random sets in a separable re-
flexive Banach space; from these two multivalued versions of Eatou’s lemma,
Hiaf deduced a version of Lebesgue’s dominated convergence theorem for con-
ditional expectations of random sets with weakly compact values, in the sense
of Mosc¢o convergence, )

- The main purpose of our paper is to provide multivalued versions of Fatou’s
lemma and Lebesgue’s dominated convergence theorem for the conditional
expectations and, as a special case, for the integrals, of possibly unbounded
random sets; this unboundedness allows us to treat the case of epigraph
convergeace of normal integrands and, at last to provide an application to the
convergence of certain integral functionals. ‘ '

In a closely related field, a recent preprint of Artstain and Wets [2), deals
with the convergence of- the integrals of a fixed multifunction whose values are
possibly unbounded, with respect to a weakly convergent sequence of probabi.
lity measures, ' :



fn §2, we give definitions and preliminaries on random sets, Mosco’s con-
vergence and on a class of sels which plays an important role in this work : the
class £, of weakly locally compact closed convex sets which contains no

(whole) line, §3 is concerned with Fatou's lemma for the weak upper limit of
a sequence of unbounded random sets. Before staling it, some new tools con-
cerning the class £, and multifunctions whose values are in £, are provided.

In § 4, using the previous resnlts and a theorem of Hial, we deduce a version
of Lebesgue’s dominated convergence theorem for conditional expectations and
integrals of random sets; in this section, we also prove a monotone convergence
theorem for a nonincreasing sequence of random sels. In§5, we ireat the special
case where the random sets are epigraphic multifunctions associated to normal
integrands and we give an application to the convergence of ceriain sequences
of integral functionals.

§2 — DEFINITIONS AND PREL!MINARY RESULTS

Throuchout this paper, (ﬂ o4, P) denotes an ahstraclp robability space, X a
separable Banach space with the dual space X* For each C X, ¢l C, w-¢cl C

and co C denote the norm-closure, the weak-closure and the closed convex bull
of C, the distance function d(.,C) of C and the support funciion s(, C) of C are
deflned by

dz,C) = inf[| X—gli/yeC] = zeX
s(x*,C) = sup [(z*.x)/x & C] r*e X*.
Moreover, we define
m(C) =inf [y /y ¢ C) = d(0,C),
- M(C) = sup [lgll/yeC]. ‘
Let B(X) be the Borel o-field of X,C(resp. C,,) the family of all non empty, clo-
sed (non empty, closed convex) sets, K, the family of non empty weakly
éompact convex sets and £ the family of non empty, weakly locally compact
convex sels which contain no (whole) line.

The__ following lemma recall how the elements of ﬁc are characterized in

C(see corollary 1.15 of [5]).

LEMMA 2. 1. If C is a nonempty element of C then the three following state-

ments are equiualpnt
a) C belongs to £,

b) there exists x¢* in X* such that s (. , C) is finite and continuous at xy* for the
Mackey topology.

c) there exisis x,* m X* such that, for any B e R, the set.
{:v & C/{wo*,-x) > B} is weakly compact in X.

The next lemma will be usefnl, it is an eagy extension of lemma 111, 33
of [5].
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LEMMA 2.2. Lel Y be a locally conver lopological vector space and f a convex
funclion defined on Y, finite and conlinuous at one point. If C is a convex subset
of Y which inlersects the interior of the domain of f (deroted int dom f) and D
is a dense subsel of C, llien the following equality holds.

inf {f(yijy € C} = inf {f(y)/y € D ~ int dom. f}.
We denote by J~ the s-field on C generated by the sets
CU={CeC/CNnUs¢}

taken for all open subsets U of X. A mullifunction FF: & — Cis said to be mea-
surable if it is (o4, J~)-measurable, l.e., F7U = F71{4— /) € C for every open
set U of X. A measurable multifunction is also called a random sef (r.s.).

A [unction f : Q — X is said fo be a selection of F if F(w) € F(w), for any
we A Castaing representation of I' is a sequence (fﬂ)n.:_1 of measurable selec-
tions of F such that ‘

Flw) = ¢l {fn (»)7n > 1},
Let us recall the following basic fact about measurability of multifunctions
(theorem 111.9 of [5]).

PROPOSITION 2.3. If F isa mulizfunctzon, defmed on £ wzth closed values inX
then the three following slatements are equivalent.
a) F is measurable
b) there exists a Castaing represenialion of F
¢) for every x € X, the funclion d(z, F (.)) is measurable.

Another type of measurability is also useful and is weaker than the prevlous
one. A multifunction F : Q — C is said to be scalarly measurable if the iunctlon

- s(x*, F(.)) is measurable, for every a* ¢ X*.

For 1= p < o, let L?(Q, 4, P, X) = LP(©, X) denote the Banach space of (eqm-
valence classes of) measurable functions f : @ — X such that the norm

VF 1= ECLF DT = (o 1 fw) IPdp)tie

is finite; LP(Q, R) is denoted by L7, For any A-measurable r.s. F we put
' SUF, A) = {f € LI(Q, X)/f(») € F(w) a.s.)
which is a closed set of LY(Q, X) and is nonempty if and only if the function
m(() =inf {||z|| /x ¢ F(.)}
is in L1,

In this case, we shall say lhat the r.s. F is infegrable. Oa the other hand, the
r.s, F is said sirongly infegrable or integrably bounded if the function

MFNW=sup{lz| /z F()}isin L%
The inlegral I(F) of an integrable r.s. F is defined by
I(F) = {E(f)/F € S(F, A)}
where E(f)== { f dp is the usual Bochner 1ntegral since I(F) is not always
closed, we also put

-

E(Fy = cl AF).
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Given a sub-o-field B of C, and a 4- measutable integrable r.s. F. Hiai and
. megaki [8] showed the existence of a B- me:xaurable integrable 5. G
“such that

§1(G, B) = ¢l {E ¢ | B)/f ¢ st (F, _c.)}'.
the closure being taken in LI (€2, X). G is the (multivalued) eondiiional expec-
tation of F relative to B and is denoted by E (F[B).

© We recall some basic properties of multivalued conditional expectations,
they can be found in (71.1£C;, €, € C we putC, + CQ: C,+ Cz'

PROPOSITION 2.4. If F and G are two integrable r.s, with closed values inX,

and B a sub-s-field of C, then we have the following properties :
Q) EF+GC|B=LEF|IB+EGIB as.

by if r is 1 real B-measurable funcrlan such that rF is inlegrable, then E(r F|B)=
=rE (F|B) Q.S :

¢)rif .f* is a bounded scalarly B-measurable = funciion. from Q o X* then
s (f*, E(F|B) =BG, F)|B)  as. |
d)-E(co F|B) ="co E(F|B) aus.
e) Let F be B-measurable, with values inC,; and r a .4-measurable positive function
such that rF is inlegrable, then
E(GF |B)= E(r|BF  as.
_In particular, E (F| B) =
In this paper, we use a  notion of convergence, for sequences of subsets,

which has been introduced by Mosco [11} and which is related to the onme of
. Kuratowski. Let £ be a topology on X and (C ) = ,asequence in C. We put.

tiC = {zeX/x =tlim 'xn, x, €C,¥n =1} - - and

t-ls C ={:ciéX/:t:-—-t-lima: r,eC (k) ¥ k=1} -
where (G, (k)) r =7isa subsequeuce of (C o)+ The subsets t-1i C and #-Is €
are the lower limit and the upper limit of (F ), relative to the topolo y L W
obviously have t-li C C I-la C .

A sequence (C ) is sazd to converge to C in.the sense of Kuratcwski relatlvely

to the topology {, if the two following equalities are sat:shed
C=tiC =&sC, -

In this case we denote { = t-lim G ,
This is true if and only if we have the next two inclusions
i.-_is Cﬂ C Cctl Cn. -_
Let us denote by w (by s) the weak (the strong) topology of X. A subset C is
said to be the Mosco limit M-lim Cof the sequence (C ) = ,if
n nin =1
€ = w-lim C,. = s-lim Cn.
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which is true if and only if .
w-1s C —CcC sl

Concerning Mosco's convergence, we refer to Wl]sman [18, 19] Mosco [11], Wets
[17], and Attou.h [2] : .

§3 — FATOU'S LEMMA FOR THE WEAK UPPER LIMIT .
' OF A SEQUENCE OF RAMDOM SETS |

Before giving the Fatous lemma, we need some additional propertles of
the elements of £, and.of multifunctions with values in ﬁc Throughout

this section, X* is assumed to be endowed with the Mackey to pology and D’
(D *) denoles a countable dense subset of X* (of the closed um! ball B*

of X*).

LEMMA 3.1. Let C € C, Lesg, and M*= dom s(. , L)- The lwo following
stalements are equivalent: B - -
a) C is contained in L
b) s(z*, C) = s(z*, L) for every x* € D* n int M*

(where inl denote the interior in the M ackey’s topology)
Proof. Since a) => b) is obvious, we prove b= a). For each zin C and each
z* in D* A int M* we have
) (@, ) << s(a*, C) =< s(x L)
in order to get a), it suffices to show that for each z* in X* 3
(x*, ) = s(X*, L). = TR 6 % )
The support fanctionbeing lower semicontinuous we have for any z*
s(z* L) = lim inf s(y*, L) = sup inf [s(y*, L) / y* € V]
yr -z Ved . - SRR B
where U . is a neighborhood basis of z* of which elements are closed axgd
convex, If x° ¢ ¢l /" then s(x*, L} = -~ and (3.1) is trivially satisfied, else each
V of % . meets M* and also int M* because M* is convex. Thanks to lemma 2.2
applied to the functior s(., L), we have
@, L) =supint [s(y*, L)/ g* e VA D nint M*] - (3.2)
- Ve CLQ":. . '
Thus, if the following inequality _
(Y, @y = sy~ L)
is satisfied for every y* ¢ D* n int M*, we can deduce from (3.2) that
{x*, ) — lim (g*, ) = s(x*, L)
where the limit is taken for y* —z* and y° € D* Aint M, Whmh is the desn'ed

conclusion.
Q E.D.
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The next lemma will be uscful in the first part of the proof of Fafou's
lemma for unbounded r.s; the part b) extends lemma 1.1(1) of {8] to the case
of unbounded sets.

LEMMA 3.2. a)If €, n =1 is a sequence in C then
s (a:*, w-ls G )= limsup s(:c*, C,) foreach & e
n-+—[—on
b) Moreover, if L is an element of gc which contains all the Cn, we have
lim sups (x* , CH)E s{a:* s co (w-Is Cu N for each T e int dom 5(.s L),

Proof.a) If x ¢ w-Is Cn then £ = w — lim T, where z, & Cn(k) and
©€ . . 5 sa subsequence of (Cn ). Thus *

(", x)= lim (:c*, z, )< lim sup s(:n*, Cﬁ(k)) == lim sup s(m*, G )
k—>-}co k—>-1-oo ~ p=>-}oe _
b) Take 2" & int dom s(, , L). There exists a subséngq&g (Cn(k)) of Cn such
that lim s(x* , Cn(k)) = lim sup s(:r.* s Cn )} For any k=1 it is possible to
findz, e Cn(k) satisfying

$ (a:* . Cn(k)) — 1k i:(m* ' Ty y = S(x’ s Cn(k))' '
1t follows that - o .

lim ¢ x,x ) = lim sup s(z " C ). ' (3.3)
Since all the C_ are included in Land ¢ ¢ int dom s{. , L) we see that
lim sups (z , C_ ) is finite. Furthef, by lemma 2.1, there exists § € R verifying

{xk/k>1}c{meL/<x*,x>_>g} . - 3.4)
and such that the right hand side of (3.4} is weakly compact. Now, leg
@ (i) ) ;=1 & subsequence of (x, ) such that x = w-lim T, for some z € X.
becauser.r belongs to w—1s C_, relation (3.4) shows '

| lim sup s(x*, C) = (=" z) = s(z, co (w-is C )
Q.E.D
The following definition will be useful. Iet C e C, and z_ . e C. Recall that

the asymptolic (or recession) cone of C is the greatest convex cone I' such that
x + T C C. This cone which does not depend on x is denoted by As(C).

‘We also have
As(C)=N{(C—a )
» 1>
and As(C) is the polar cone of dom s(., C)

The following simple lem na will be useful in the second part of the proof of
Fatou’s lemma for unbounded r.s.
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LEMMA 8.3. Let D € C_and ( C,'n) a sequence in C_. Denote w-ls Cn by C and
assume the two following condilions hold
i) C]1 C D forevery n > 1.
ii) As(D) = w-li As(C ).
Then As(co C) = As(D).
Proof. From i) it trivially follows As(co C) ¢ As(D). Conversely, let h be

a non nul element of As(D) and x & C. Thanks to ii), there exists a sequence
{h,) = in X verifying h=uw-lim f and & e 4s(C)), for every n = 1, By

the def nition of C, there also exisls a sequence (z;) in X such that z =

= w-lim z, and z, € Cn(k) where (Cn(k)) is a subsequence of (C ). Thus for

;
any ! > 0, we have

z 4+ th = w-lim (:ck - fhn(k))'
Since a:k+ t_hn(k) € Cn(k) for every k=1, we see that = 4+ th e €, which

shows h € As(co C)

Q. E. D.
The next proposition will enable us to stale Fafou’s lemma for conditional
expectation of the weak upper limif, in a wider generalt . It can be v ewed
as a measurable parametrization of lemma 3.1 and prov.des a tool which may
be useful in other situations.

PROPOSITION 3.4. Recall that X* is endowed with Lhe Mackey topology and that

D * is a dense subset of the closed unit ball B* of x*, Let F be an -4-measurable

and infegrable r.s. with values in £ and denote M¥(w) = dom s(., F(w)).
Then, there exists asequence (g,*),=, of measurable funciions from Q to D *
verifying : :

i) {g,*(w)ik = 1} is @ dense subset of B* n int M*(w)s

4] ) for every k = 1, the real measurable function (g *()s Fl))eld,

Proof. It will be achieved in three steps.
Sfep'one. We begin by constructing a measurable function f*: Q - Dy* such
that f*(w) € int H*(w) , for all w € Q, and s(f*(.), F(;)) is integrable. We [lirst
note that o
~ m(I(0)) = inf [s(z*, F(w))/x* & B¥}
and by lemma 2.2,

—m(F(w)) = inf [s(z*, Fle)/a* € Di* A int M*(w)]. (3.5)
If the function 7{.) € Lt and is > 0, we define the multifunction Y* on Q2 by
Y#*(w) =-{m'.':‘ € Di* A int M¥(w)/s(z®, F(w)) = —m(F(o)) + r(w‘p} (3.6)

By (3.5) and the greatest lower bound’ property, Y*(w) is non empty. If
we put
Dy = {z;, / n= 1}and 4, ={oel x% € V¥(w)} for all =1, we can write |

’ 1 2
An-——-Anf\An



where

= {we R /x:; g int M*(w)} and

2 = {weQ / mFW) — rw) + s@*, F())= 0}

We have A ¢ o4, for any n, because, on one hand, propesition 5.1.7 of [6]
shows that- 4 € -4, for each n, and on the other hand, the measurabuu) of F
implies that the real funclion

m(F() = () + s@*, F()
is measurable anfi, therefore, that Ai belongs to 4. Moreover, we have
Q=y,4, '
Indeed, F(w) € £ for all w, thus it follows from lemma 2 1 that lne subset of
M* (w) '
{;‘C* € Xf“/\ s{x¥*, Flw)) = — m(F(w)) + r(w) }
is.convex aud that its non emply interior meets B¥, and also D} Next, we define

inductively a measurable partition of £ by putting
B, =A4,, B, =4,\4;,, w, B = Aﬂ\. _(Aiu VAn—I)""

At last, the desired function is obtained by putting
fr = Z a:""'X,B
where XB_ ‘denote the 1ndxcator function of B, .

Slep two. Now, we define a sequence of measurable selections of Y* by

f -—m"‘x’;m'n + oA,

n
where Al =Qa\ AH Firstly, we note that the real function s(fn,»,(.), F(y) is
integrable because, by thé definition of y*, f¥ satisfies )

--m(F(w)) = s(f"‘ (w) F(w)) = m(F(m)) + r(o).

Secondly, we observe that Y* () = {f (w),/ 1 21} These two  facts will
be used in the third step. .

Siep three. For every integer j == 1, re'pl'ace" the strietly positivé integrable
function r(.), introduced in the first step of the proof, by the function jr(.).

if we denote by Y; the corresponding multifunction defined in the first step,

we have.

¥i(w) = {=* & D A int M) / s(", F() < — m(F(w) + jr(w)}
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The resuits of the second step shew that, for each j, there cxists sequence

(fJ“) T of measuruble selections of }J verifying
Yfw) = {f  Jalw)/ n =1}

and such that each function s ,(fj* (-)» F (.)) is integrable, for j, n =1, Thus,
2 3
the ralations o
Dy* nint M* (0) = {J; ¥,* (o) = {f I (o) 1 jy n = 1}
show that the right hand side is dense in 53* A int M {w). At last, the functions

g, of thestatement are obtained by reindexing the fn J* with a suitable bijec-
tion from N* X N* onto N*.

Q.E.D.

‘We are now in position to state Fatouslemma for the conditional expec-
‘ation of the weak upper limit of a sequence of unbounded r.s.

THEOREM 3,50 Let B be a sub-6-field of oA, (F_) = , a sequence of integrable
r.s with values in £, and define F = w-is F,. Suppose the following hypotheses
(1) and (H2) kold

(Hf) the function Iim inf m (F.)e I

(H2) there exist

a) an A-measurable and infegrably bounded r. s G, with values in K.»
b) an A-measurable bounded function r (.)
¢) a B-measurable integrable r.s. H, with values in ,gc ,» verifying
) F (0) CG(w0) +r(w)H(w) Loas, for every n =1
c2) As (H (»)) = w-li As ( p(wym) (@) as. - where < is funclion
from Q@ X N* to N* such that @ (w,.) is strictly increusing, a,s. in w,
- Then, under the foregoing hypotheses, we have
“i) the muliifunction F is measurable and integrable
i) w-is E(F, | B)(w) C £(coF | B) (@) as
Proof of i), The multifunctions F = w-lsF_ and w-ls E (F 1 B) are 4-me-

asurable and B-measurable,. respechvelv ih_ls can be seen by proposition
6.3.9 of [8] where the measurability of multifunctions defined on an abatract
measurable space and with values in ﬁc » is discussed. We also note that by

lemmas 6.1.7 and 6.3.8 of [8], these two multifunctions have nonempiy, weakly
closed values. In order to prove that F is an mteorable r.s, we use (HI) and
lemma 6,4.7 of [8] which asserts the mequahty

lim inf m (F GOy = m(FGY) . (37)

Proof of if) We proceéd in lwo sieps.
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Step one: Consider the B-mcasurable r.s. H: by Proposition 3.4 we know
that there exists a sequence (g, ), = ; ©f B-measurable functions verifying the
properties i) and ii) of this proposition. It will be convenient to put

u, (@) =95 (9," (w), wls E(F_ | B) () for k=1and v € Q.
By using prop, 2. 4c) and lemma 3.2 a) we get '
u(w) = lmsups(g,’ (w) £ (F [ B)v)) (3.8)
=lim sup E (s(g, “, Fn) | B) (w) a.s. for each k=1
From (H1) it follows, for all %, n = 1 and a.s.
59" (@) £ (@) = 5 (g, * (0}, G (w)) + I () 5(g,* (0), Hw)) (3.9)

Thanks to the properties of the functions g, " and to the hypotheses on G, d, r,

we can see that the right hand side of (3.9) defines a real integrable function,
for every k > 1. Therefore, it i3 possible to apply the elassical Falou's lemma
to the sequence (s(g,. *,Fn N p»1 Which allows us lo rewrite (3.8) in the following
form -

I (@)= E(lim sup s (g, *F )| B)X») as. for each k=1,
Then lemma 3.2b) and prop. 2.4¢) give, for every k=1 and a.s.,
u,(w)=E(s(g, % co F) | B)w)=s(g," (), E(co F | B)(w))

and, expliciting the u k

$(9, ")y wHIsF(F | BY() =5(g, *(w), E(coF [ B)(w)) (3.10)
Step Iwo : By prop 3.4 i), we know that {gk*(m)/k = 1} is a demse subset of
int dom s{. H(w)) a.s. Moreover it is clear that

int dom s(. , Hw)) = int dom s(., G{w) + r(w)H w)).
In order to prove that relations (3.10) imply the desired conclusion, it suffices
in view of lJemma 3, 1 applied with L = E(coF | B)(») and C = w-Is EE,,

B)(w): to show the following equality

int dom s(. , H{w)) = int dom s(. , E(coF | B)(»)) a, 8.
which, by polarity, is equivalent to .
As(H(w)) = As(E(coF | B)(w)) a s (311

If we define the multifunctions 7" and Tn, for n>1, by
Tn.(m) =VF¢(w,n)(m) and T ZW‘lsTn
it is clear, by (H2) ¢} that T(w) C X(w) a.s.

Now, consider thé multifunction As(H). Like the multifunction H, it is
B-measurable, This fact can be proved by using the equalily

As(H(w)) = (1 ;1/][H(w) — k()]
where j € N* and h isa fixed element of SH1(B) » and by invoking theorem

5.2.10. of [8] which is a result about preservation of measurability of mullifunc-
tions by countable interseclion. By (H2). we have for each n>1

AS(G(0) + r(w) H(»)) = As(H(w)) = w-li AXT, () a.s.
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Therefore, lemma 3.3 applied to the sequence (Tn(w)')‘1>1 shows
As(co T(w)) = As(H(w)) a.s. (3.12)
Moreover, the inclusions
T{») C F(w) C G(w) + r(w)H(w) a.s.
imply
co T'(w(Ceo Fo) ¢ Glo) + r(w) H(w)  a.s.
Hence, using (3. 12) we get
As(co) F(w) = As (H(w))  as. (3. 13)
Finally, noting that the operations As () and E( | B) are monotons we c¢an
wrile '
As(ll) = E(As(H) | B) = E(4s(coF) | B)

 AsE(coF)1B)
C AsE (G 4 rH | B)

= AsE(H | B)
= As(II) 4.5, .

These relationships show that
As(H(w))= As(E(co F | B)(w)) .8
which is nothing else than (3. 11) and gives the desired conclusion.
Q.E.D,

The next theorem concerns the particular case B = {Q, @}; here, condi-
tional expectation relative to B, reduces to integral. Using a result of Truffert
{16), it is possible to weaken (H1) and the first part of (H2).

THEOREM 3.6, Assume B = {Q, @}, Let (F ) =, sequence of integrabler. s.
with values in £ and define ¥ = w-ls F_, Suppose the following hypotheses

(HY) and (H2) hold

(H1*) the sequence (m(F ) >, s uniformly integrable
(H2) there exist
a) a sequence (G )rai of A-measurable and miegrabiy bounded r.s. wzth
values in 9” and such that [he sequence ( M(G ) =1 is uniformly mtegrable
b) an umforml_) integrable sequence () =, of oA-measurable posilive
functions
¢) an clement L of £ , verifying
cl) F_ (w) C G (m)+r (w) L as. for everyn = 1.
¢2) As(L) = w -1l As(Fq)(w )(m)) a.s. where ® is furction from AXxN*
fo N* such that & (w, .) s strictly increasing, a.s. in w. Under the foregoing Aypo-
theses, we have
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t) the r.e. F is inlegrable
if) w-ls E(F ) C BlecoF ) as,
Proof. 1) By (3.7) and classical Fatou’s lemma we get
lim inf E(m(F 1)) = £ (lim st m(F W) = E(m(F))
hence (H{) imply that m(F) is mteorable
ii) We first note that the B- measurable mulhfuuctlon H is constant and
equal to L, thus the sequence (9, *)!\-%1 can be replaced by ithe countable set
D* N int dom s(., L). Here, inequality becomes ,
s(x%, F (0) = (&%, G (w)) + r_(w) s(*, L) (3.14)
= Nl | MG () + r,(w) sz, L)
This last inequality shows that if x* e dom s(, L), the sequence
(s(x*) F_ (w)*) =; is uniformly integrable because the right hand side of (3,14)

define a uniformly integrable sequence of real functions,for n =1 (for any real
function u we set ut = max (u, 1)), Therefore, lemma 1.5 of [16] which pereit
us to apply classical Fatou Lemma, gives

limn sup Ls(x*, F ) =< =< E(lim sup s(z*, F )X
Hence, inequality (3.10) hecomes here
s(x", w-ls L(F ) =< s(x%, E(co I*)) for each 2* ¢ dom s (. L),

We finish the proof as in the second step of the proof of theorem 3.5
paltlculauzmg to the case B= {Q b}

Q.E.D.

Remark 3.7. In theorem 3.6. the part 02) of hypothesis (H2%) cannot be
omitted as the following example shows. Let Q = [0, 1}, oA, = B(Q) and P =

Lebesgue’s measure on (Q, A), X =R and L= R,, Moreover, for every n =1,
we define A = {0, 1/r] and, for every w ¢ Q,

F (0)= Lifw e A F (w) = {0} if o €4 .
Foreach n = 1, we see that E(F‘n ) = L, hence is E(Fn) = L. All the

hypothests of theorem 36 are satisfied except ¢2) since, by the definition of the
r.s,.F , we have for any w =0

o As(F L0 =F L) = {0} f.or‘ea'.ch n=1fe
At last, since ls F L(0) = : {0} a.s., we deduce E(co Is F )——{O} which contradxcis
conclusion ii) of theorem 3.6,

Remark 3.8. An inspection of the proof of theorem 3.6shows that is possible
to give a «.non convex » version of Fatows lemma for the weak upper lmit,
For this purpose, it sulfices to consider a sequence (E ) of r.s. with closed

(poss1bly non comex) vaiues in X, satlsfymg the two followmg bypotheses
(@) E(co F) e JZ '
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(B) for each X* e int dom s (., E(co F)), the sequence (s(x", Fn)Jrn"é’-I is
uniformly integrable.
Moreover, it is not difficult {o show that
T As (co I (w)) = As'I{co FY) a.s.

and, in particular, that hypothesis (a) in":p ies co F(w) g £, a.8,

§ 4 — DOMINATED CONVERGENCE AND MONOTONE CONVERGENCE THEOREMS FOR
' UNBOUNDED KANDOM SETS

Before giving the dominated convergence theorem, a simple lemma is nseful.
The proof is similar lo that of lemma 3.3.

LEMMA 4. 1. Let D, C e C, and (Cn) ¢t seguence in Co Assume the three fol.
{owing conditions hold

e = W-ls C,

i) C_ C D for every n= 1.

ity As(D) = w-ls As(C‘I1 )o

Then As(C) == As(D)

THEOREM 4. 2. (Dominafed convez'genéé theorem)

Let (F )uizy @ Sequence of integrable r. s, with values in L, and a r.s. such
that . 7

Flw) = lim F_(w) L LS. : (%.1)

Suppose the following iy potheses hold |

(K1) the fuz’ctzon sup [m(I‘ J/n=E1] e

(K2) there exist

a) an A-measurable and integrably bounded r.s. G, with values in X .,

b) an A-measurable bounded positive function r(.)

¢) a B-measurable inlegrable r.s. H, with values.in £, verif ying

¢1) F (0) C Go) + r(w)lH(w) a.s. for every n = 1

c2) As(H(w)} = w-ls As(F (w)) a.s.
‘“ Under the foregoing hypot heses, we have

i) the r.s. F is integrable _
i) E(E | B w) = lUm E(F | B)fw) as.
Proof i) By proposition 6. 4. 8. of [6] we have
m(F(w))=1lim m(F (w)) a.s8.

From this equality and from (K1), we deduce that the r.s. is integrable,
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ii) Hypothesis (K1j also aliows us to apply theorem 5.2 of Hiai [8] which
gives bere
E(F | B{w)C s-li E(F | B)(w)  as.
This multivalued version of Fatou’s lemma for strong lower limit is valid for
closed (possibly non convex) valued r.s. Now, we shall prove
w-ls E(F | Bw) C E(F | B)(w) a.s.
To this end, we first proceed as in the first step of the proof of theorem 3.5.

Next, we note that relations (4.1.), ¢l) and c¢2) permit us to apply lemma 4.1
with D = H(w), C = F(w) and € = E_(w) for all n = 1, which gives

As(F(w)) = As(H(w)) 2.5.

This is the relation (3.13) of the second step of the proof of theorem 3. 5
The end of the proof is similar to that of theorem 3.5.

Q.E.D.

At this point, it would be easy to give a version of dominated covergence theo«
rem for integrals, i.e. in the case where B = {Q, @}. We leave it to the reader

and we pass on to monotone convergence theorem. First, iwo simple remarks
will be usefal.

Remark 4.3,a) If (Cn)nél is a sequence in Cr and it C=1{) C is non
void, then we bhave the equality ds(C)= N 4s(C ).

b) It is easy to check that a closed convex set € is the Mosco Iu:mt of a non
increasing sequence (C ) of closed convex sels if and only if C =[] Cn '

In [8] Hiai. proved a monotone convergence theorem for the conditional
expectations of a non decreasing sequence of r.s. The next result concerns the
case of a non increasing sequence. _ s

THEOREM 4.4 Lel (F, ) = a non increasing seque.nce of z"n!egrab[g r.s. with
values in £ and define the r. s, F by F(w) = [} F (w) Suppose the following

hypotheses:- Itold
( K1) the function sup [m(F )/n =1] is in 14,

(L2) there exist
¢) an A-measurable and integrably bounded r.s. G With values in K.,

b) an ¢-measurable bounded function r (.)

¢) a B-measuradle infegrable r.s, I, with palues in £ . ve.rzfymg

, F (o) C Glo)+ r(w) H(w) 'a.s.r ' o >
Then, the r.s. F s integrable and we have : '
B(FIBYo)=0 E(F, |BYe)  as (2

Proof. Hypothesis (K1) and equahty
m{F({w)) = sup [m(F (w))/ n=1j a.s.
show the mtecrablhty of F.
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in order to prove relation (4.2), we first noté that by remark 4.3 b). ﬁ(m) is thé
limit of the sequence (F (w)), for each w. Considering. again remark 4.3, b)

and theorem 4.2. it only remains to verify that the part ¢2) of hypothesis (K2)
is satisfied, namely

AS(H(w)) = w-1s -As(F () as.
But this equality is easily obtained by remark 4.3 a) and b).
Q.E.D.

§5. THE CASE UF INTEGRANDS

The results of the two previous sections being valid for unbounded random-
sets, they apply in the special case where the r.s, are epigraphs of integrands.
In this section, we shall reformulale theorem 4.2 and 4.4 in term of m‘egrands )
First, we recall some definitions and known facts. '

If z isa numerical function, i.e. with values in g = [— oo + ], defined on X,
its epigraph, denoted by epi (u) is the subset of X x B defined as 7

epi (a) = {(a,}) € X x Bju(x 7&}
- The conjugale function of u is: denoted by u* and deficed on X* by
u*(a*) = sup < 2% x> —u (@)/z eX]  ate X

The function u is said to be proper if itis not the constant J-co and if it does
not take the value —eo, If uis convex, lower semi-conlinuous and proper, the
asymplotic fzmctzon (or recessmn funchon) of u, denoted by As(u), is defined
by equality;
epi (4s (u)) = As (epl(u))

The function u is said lo be inf -weakly compact for a certain slope, if there
exists @* ¢ X* such that the fanction x — (a(x) — <.z% z >) is inl-weakly
compact, By theorem 1.14 of [5], if uis convex, Iower semi- conlinuous and pro-
per, ihis is equivalent to

epi(u) & £, (X xR).
" Let u, u, for n 31, be numerical functions defined on X. The sequence
(u.) a>1t is sald to be Mosco- convergent to u, if epi(u) is the Mosco limit of the
sequence (epl (u), > 1 inX x R, in this sectmn, this Wlll be denoted by

u= M-hm u .

This convergence may also be defmed by the equahty of the two functions
w-li u and s-Is u_ which are the weak-epi-lower limit and the strong-epi-upper

ltmu‘ of the sequence (u_ )n>1’ respectlvely, the following two formulas
hold (see [3])
epi (w-li u )= w-Is (epi(u ))
cepl (s-Is, u ) == s-Ui (epi(u,)).
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- An application R defined on & x X with vaiues in R will be called a normal-
tniegrand if it satisfies the two following properties: ‘ o
a) the function R (w,.)is convex and lower semi continuous a.s.
' b) the multifunction w—epi R(w,.), with closed convex values in X R,
is measurable. This multifunction is called the epigraphic multifunction of R.
A normal integrandﬁis saidto be infegrable if the measurable multifunction ia
b) is integrable; this is equivalent to the existence of f in ! (€2; X) such that
R(., £ ()T is integrable, Considering on X x R the norm
Il =1k -+ withz ¢ X and A € B
it is readily seen that R is integrable if and only if the positive function
w—d(0, epi R(w;.)) = inf { [z || + R(w, z)T/x  X]
is integrable (here, O denotes the null vector of X X R).

 The conditional expectalion relative to B of an integrable normal integrand
R, is the normal integrand '

Q =E(R| B)
whose epigraphic mnltifunction o — epi (Q(w,.)) is the conditional expectation
of the integrable r.s w — epi(R(w,.)) (see chapter VIII §9 of 5.
At this poinl, it would be possible to reformulate all the theorems of the secti-

ons 3 and 4 in terms of integrands. For example, we give dominated convegence
theorem for integrands. '

" THEOREM 5.1 Let R and R » for n.= 1, be normal integrands defined on QxX
and satisfying
o R(o,.) = M-lim Rp(w,.) - as,
. Assume the following two hypotheses ‘
(J1) there exists a sequence (f n )n-‘-’I in 17(Q; X) such that

s2p (1 Fo() |+ Rl f(N*/n21]e I

(J2) there exists a normal iniegrand S which is B-measurable inlegrable and
such that '

a) S(w,.) is inf .t'veakly' c&mpact"for a certain slope a,s.
b) R (v,.)> S (w,) aes., for every n > 1
c) As(S{w,.)) = w — li, As)Rn(m,.)) a.s,

Under the foregoing hypotheses we have

i) R is an integrable B-measurable normal integrand

it) E(R | B) (wn) = M-lim E(R_|B)(w.) a.s.
Proof. We define the r.s. F and £, for n > 1, by putting
F(w) = epi R(w,) and F (0) = epi R (0,.)  weQ



Thanks to ihe remarks of the béginning of this scciion, we éah séethat the r,s. F
and F , for n> 1, satisfy all the hypotheses of theorem 4.2-with
G{w) == singleton {(0, 0)} of X x R}
rw)=1
H(w) = epi 8(w,,) oeQ
Therefore we obtain
E(F | B) (w) = lim E(F_ | B) (w) a.8.
which gives the desired conclusion.
Q.E.b.
Remark. In the previous theorem we only have used a simplified, hence
less general, form of hypothesis (K2) of theorem 4.2, Let us indicale the exact
translation of hypothesis (K2) in term of integrands. Tothis end, it is sufficient
to replace the integrand § of hypothesis(J2) above, by the integrand S’ such

that, for all w, S'(w,.) is the greatest convex lower semi-continuous iunchon less
than or equal to

x | inf [A 4-rw) S(w, {(x — y)/r(e)N/(y, ») & G(w)]

where r{.) is a strictly positive, bounded measurable function and G an integra-
bly bounded r.s with convex weakly compact values in x¥ X R.
In the particular case of a non decreasing sequence of normal integrands, we
have the following result which is a direct application of theorem 4.4.

THEOREM 5.2, Let (R ) -, a non decreasing sequence of mtegrable normal'
integrands and let the normal integrand R defined by

R(w,.)=sup [R (w,.)Jn>1] o0el

If we assume hypothesls (J1) of theorem 5.1 and that the function R, (w,e) s

inf-weakly compact for a cerlain slope a.s., then R is an integrable B - measur able
normal integrand and

E(R | B)(w, ) = sup [E(R, | B)(w., )/n > 1] Sele
Proof. We define the r.s. F and F , forn>> 1, by '
F(w) = epi Rlw,.) and F {(w) = epi R _(v,) w € £
Since the sequence (Rn(w"))n>1 is non increasing, we have
Fw) = N,F (o)
and theorem 4.4 gives the desired conclusion. 7
Q.ED.

We end this section with an application to the convergence of certain integral
functionals. Before, we need a more general definition.of Mosco convergence,

Let Y be a set and suppose that" iwo topologies s and { are given on Y. A
sequence ( Cn )n.21 of subsets of Y is said to be Mosco convergeni, with respect

lo s and f to the subset C if the two following equalities hold
€= slim €, = {-lim ¢,

a2



wiich. we shall denote by -
Ci= M(s, t)-lim C
In the special case where s'is f1ne1 than / this is equivalent to
tisC CCcC sl c,

S . ) .o
A sequence (u_ J =1 of functivns from Y to R is said to be Mosco convergent

to, the, function u if
epz(u)-—M(s t) -lim ep1 (u, ) _
If ¥ is a Banach space, let us recall thats stands for the strong topology and
w for. the weak topology; in V*the symbol w* denotes the weak-star topology,

When ¥ = L°°(Q, X*), the space of bounded strongly Q-measurable (class of)
funclions defined on Q with values in X¥, we also consider the Mackeytopology

T(Lm(ﬂ x4, L1 (9, X)) which Wlll be denoted by .
§ Ilesamntearable normalmtegrand themiegr‘alf:mctzonaif 13 the function

defined forall fin Z7(Q, X)by : - .
s R (f) = §oR(e) f(w) dP i R(,f()) e )% . + o= otherwise
) Similarly,_ if R* is normal integrand conjugate to R, i.e. - ~ :
‘ " R¥(w, x*) = .v.'up [{x*, a:) R w, ;t:)/'cr: g X] e X*
iis poss1ble lo deﬁne the integral functional /. on L*(Q; A*) By a resnlt of

Rockafeller [13], it'is known that if X is a separable reflexive Banach space and
if the functionals In and / R*aTe proper, then they are conjugate to each other:

Now, we recall ‘a “result of A.. Salvadori (theorem 3.1 of [14]) on the conver-
gence of integral functionals. '
THEORI:M 5. 3 Let X be- a separable-reflexive Banach space and. (R )
seqnence of normal mtegrands on X X salisfying

1) R(w,.) = M(s, w)-lzm R (m,) as.

1’2]

ii) there exisls a, sequence (f, ) .y m L (O, X) such that ) “ ‘
Sup( M ()4 Ry (- Fo( D I n 1) & I .
iii) there exisis a sequence (f °) n%il'fh"L"“(Q; X*) such that

sup [N *(IN+HR o f 5+ in=1]e L=,
Then I M(s, w) —lim 1, and fpw = M('r,, )-— {im I

Usmg con]omtly thls result and theorem 4.2 we easxly get the following
theorem on the convergence of the integral functionals assoc1ated with the
integrands§ ;where § = E(R /. B) forn =1,

THEOREM 54. Let:X be a separable.reflexive Banach'* space; B a-sub-6-field of
Cand ( Rn ) =y @ 9equence of normal integrands,on Q X X salisfying
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1) Rlwi.) = M(s, w)lim R_(w,.) 5.
ii) there exists a sequence (fn Jpz=y In LY (Q, B, P, X) such that
sup' [Wf (I +R (o f ())F/n=1elt

iii) there exists a sequence (f* ) = in L™(%Q, B, P, X¥) such that

sup [N F3(.) i+ Ry(, fr(J))% /n=1]e L™, |
M oreover, assume that there exisisa nérmai’_ inlegrand T which is B-measurcble
inlegrable and such that L - -

a) T(w» ) isinf weakly compact for a certain slope asws.
b) R (o,.) = T(w,.) ds., for every n = 1.
¢) As(T(w,.)) = wli, As(R (w,.)) as.

Then, if S = E(R /B)and §, = E(R, /B) for n =1 then we have
Ig = M(s, w)iim Ig and Ig = M(t, ¥ )lim g
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