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SOME APPLICATIONS OF P-ADIC NEVALINNA THEORY

MY VINH QUANG
INTRODUCTION

Classical Nevanlinna theory is so beauiiful tbat one would naturally be
interested in determining how such a theory would look in the p-adic case.
There are two « fundamental theorems » which occupy a central place in Neva-
linna theory. In [2] Ha Huy Khoai proved an analogue of the first theorem.
However in the general case he did not obtain the same type of theorem as in
Nevalinna theory, In [3] using 2 minor modification of the definition of the
characteristic function in {2] we proved p-adic analogues of the two «funda-
mental theorems» of Nevalinna theory. In the present paper we show some
applications of the results of [3] in the study of p-adic meromo;phxc funetions.
We first recall some facts from [3].

Let p be a prime number, let Q be the field of p-adic numbers, and let
C be the p-adic completion of the algebxam closure of Q . Let D be the uait
dlSC in CP : D = {~ g C ;121 <1} The absolate value m C lS normalized so

that | p|= p *. We Eurther use the notion v(z) for the addmve valuation on
Cp which extends ordp :

Let f(z) be a p-adic analytic function on D represented by a convergent
power series :

f(z) = 2 a 2.
n—=o )
For each n we draw the graph I, which depicts (g, z") as a function of
v(z). This graph is a straight line with slope n. Since we have

lim v(an) - nf = oo

nn—>oco

for all t > 0, it follows that for every ¢ there exists an n for which v(an Y+ mt

is minimal. Let o(f, {) denote the boundary of the intersection of all half-planes
lying under the lines [ . Then in any finite segment [r, s}, 0 <7 <5< oo there

arc only [initely many Fn which appear in v(_f, f). Thus, v{f,!)is a polygon line.
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In [3] the following resulis are proved
. 1
Lilog, | @)+ 1T { - t)= T(p, b). (. 1)

II. A p-adic analogue of Nevanlinna’s {irst fundamenial Theorem:
T(p, a, t) = T(p, {) + 0(1) (0. 2)
III. The basic 1nequallty ' ’

Let ¢(z) be a non-constant meromorphlc function on {zeC‘ slzl<r},
1', ooy a be distinct numbers of G o’ N a —a, > 5> 0 for sz i—_—ulog r.
Then we have :

Iﬁ(q), )+ § m (——-1—, i) < 2T((p, ) — Nl(i) + 0{1) (0. 3)
il ¢ — &

where Ny(f)yis a non-nerfatwe function given by the formala
- 1 . .
N = N(=vt) + W ) = N ).

1V. A p-adic analogue of Nevanlinna’'s second fundamental Thecrem.
Let ¢(z) be.a meromorphic function on D. Then the set of values a € Cp

such that © (a, @) >> O is finite or countable and we have X @ (a, ¢) < 2
a€C _‘\Joo
P

)

§ 1. OX MEROMORPHIC FUNCTIONS

1.1 — Determining a meromorphic function from its distribution of values.

We now consider the problem of determining a p-adic meromorphic func-
tion from knowledde of the sets on which if takes certain values, In the classical
case, there is a well-known theorem of Nevanlinna which states that, if f (2)

and f,(z) are two meromorphic functions on the complex plane, and if the two
cquations fl (z) = a and f,(2) = a have the same set of roots for five different
values of g, then the functions f, (z) and f, (2) coincide, We shall obtain an
analogous result for p-adic meromorphic function ca the dise D.

For esch a € C let E (9) denoie ihe set of points ze D for which @(z)=aq,
where each point 1s laken &s many times as its multiplicity as a root of the

equation () — a = 0.
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T(9, a, t).—::ﬁm(qia, t)J,-N( 1 t)

O (a, CP)"I—Im—_TW

—0
In [3] the foliowing results are proved

L log, | 0(0) [ + T {% z): T(q, L), . 1)

Ii. A p-adic analogue of Nevanlinna’s first fundamental Theorem:
T(p, a, t) = T(qp, l) + o(1) (0. 2)
111, The basic inequality: '

Let ¢(z) be a non-constant meromorphic function on {ze Cp, | z1 =< ri,
al','.'. . a be distinct numbers of C . | a —q, 1 >»d> 0 for 1.,!=k t-_n—log r.
Then we have - '

. g 1 ‘ '
- —, tj , 1) - + . 3
m(g, t) +i21 m( a; ) < 2T(p, 1) Nl(” 0(1) (0. 3)

where Ny(f) is a non-n'egative function given by the formula

Ny(t) = N(?E;,-t) + 2N(g, ) ~ N(g™ D).

AN

IV. A p-adic analogue of Nevanlinna’s second fundamental Theorem.
Let ¢(z) be.a meromorphic function on . Then the set of values a € CP

such that @ (a, @) > 0 is finite or couniable and we have X O (g, ¢) <2
. aECP Ve

u

§ 1. ON MEROMORPHIC FUNCTIONS

1.1 — Determining a meromorphic function from its distribulion of values.

We now consider the problem of determining a p-adic meromorphic func«
tion {from knowledoe of the sets on which it takes certain values, In the classical
case, there is a well-known theorem of Nevanlinna which states that, if f (z)

and fc, (z) are two meromiorphic functions on the complex plane, and if the two
equations f (z} == ¢ and f2 (2) = a have the same set of roots for flvc different
values of g, then the functions f, (z) and f,(z) coincide. We shall obtain an
analogous result for p-adic meromorphm 1unct on cn the disc D.

For each a € C let E (p) denote lhe set of pmnls ze D for which @(2)=q,
where each point 1s laken ds many times as its muliiplicity as a root of the

equation ¢(z) — a = 0,
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THEOREM 1.1. Suppose thal P, (2) and ¢, (z) are Lwo meromor phic f unctions cn
D) for which there exist three dislinct values ay, ay, s & C‘,j such that E_ (g9, )==
1

=E“ A9,) i =1, 2, 3. Further, suppose thal at least one of them is nol a ratio of
P .

two bounded analytic functions. Then ¢ =g,

f (" fg (Z)
Proof. Assume that ¢, (z) = oK ¢, (2) = NGk where f;./, .9, »9;
99

are analytic functions on D. For every a Cp » we have

i1 1 1 1
N{——=,t]=§N — = ] — - T =
Lt(pj"—a.t) \(f1_‘ag:[ ’t) I‘(fj'“'agj ’t) m(f}"a.h 't)

-—fk,}_ag )+ 0) = T (f;— ag,. 0 4 01) = m(F ,— ag,, 1) + 0(1)
1

IIence, N ( 9, —a )is bounded if and only if m(fI——- qgj, 1) is boundcd

or, equivalently, if and only if ff — ag, is a bounded analytic function,
Now let there exist two distinct a, ({ = 1,2) such that N, h=
_ i

1 1 : |
=N (‘91 4, t')= N '(‘P_g—““ a i)ls bounded, Then, as has heenprevi_ou_sly
indicated, f:f —a, g, and f2— a; gy ({ =1, 2) are bounded, consequently, f1
f 9> 91> g, are bounded funclions, i.e. each of ¢, () and g,(z) is a ratio of two
bounded analytic functions. In view of the preceding remark and the assumption

= t
Py —a,’ )=

of the theorem this implies that there is a, such that N, (t) = N(
i

1
Py— a4

=N ( | ) is unbounded.

Without loss generality we may assume that N“I (I) is unbhounded, a, =0,

a; = w Then consider the functions

f1 (Z) . gj (Z} :
I=FHm 1@=5E
Since E_(94) = E_(9,), E (cp1) E_, (<p2 ), We see that p(z) and ¢(z) are two

analytlc functions whmh have mo zero in D. Therefore p(2) and g(z) are
bounded in D,

Now, if 'p(z) # g(z), then we have .
T(p — ¢, ) < T(p.b) + T(g> 1) =
m{p,t) + m(g,f) == 0(1)
On the other haxd, 9,(2) =9, (z) and consequently, pz) = (=) f01 all
e E, (<p1) Ea (P, )
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Hence:
1 .
fp—a0=T{ —.t)+001) >
' P—q ‘
N (L ,t)+ 0(1) >N_ (1) — oo when £ 0,
pP—q 41 _
This shows that p(z) = ¢(2), and consequently, P (2) = P, (). Theorem
is proved. : '
Consequtence { p-adic analogue of Picard’s theorem),
If a meromorpkhic function ¢ is not a ratio of two analytic bounded func-
tions on D, then ¢ (z) takes all values a ¢ CJD » except possibly one,
Proof. If ¢ has two excluded values, then there exist two valaes a. & Cp
(i ==1, 2), such that N (-———1————
¢ — ai

¢ is a ratio of lwo bounded analytic functions, as was shown ahove,

1 ) is bounded. From this it follows that

Remark. The follewing example shows that in theorem 1.1. the words ¢ three
values » can not be replaced by ¢two values». Let

_2log(1 + 2} 4~ dare sin z
log (1+2z)+ are sin z
_ 2log (1 4+ z) + 2arc sin z

log (1 4 z) + 2arc sin z
a1 =1, az = 2. Then we have

Bq, (90) = Eq (9 = {5 log (1 -+ 2) = 0} =

P1l2) =

P212)

—_—{a—I;opnzf,n:j,z,.,.

Eaz (1) = E'a2 (p2) = { z; are sin z = g}

1

- 0 —8-". 7. .

= 3 6P — _l, n = 1, 2..-
{ 20 _ '

However Py FE Py

1. 2. Rational and iranscendent meromorphic funciions.

We note that the results established for mefomél'phic functions om D are
true for meromorphic functions on the disc { | z | < R; R < s}

THEOREM 1. 2. Lel R(u) be a rational function of degree d, f(z) be a meromor.
phic function on{ z e Cp ;2 R}, R << oo, Then '

T (R(f), )= d T(f, 1) + 0 (1) when { — — z'ogp-R
Proof. First of all we prove that if P is a polynomial of degree k, then

N(p(fn b= kN (f 1), | - (1. 1)
mpf) ) =km(f,H+0m, - (L. 2)
T (p(fit) =kT(f,)fo0@). (L. 3)
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Indeed (1.1) follows from the fact that if f (z) bas a pole of order A (» > 0)

at a point z,, then p(f) has a pole of order Ak at z, . If M(f,f) = max [f(z)|
' v{z) 2t

is buunded when { — = long then the equality (1.2) is trivial, because both

sides are bounded. Suppose that M(f, ) is unbounded,
Let p(z) = a P23 e oL
Then for every f sufficiently close to — Iogp R,

o(p(f), 1) = v(a, ¥,

Consequently, m(p(f), 1) = km(f, 1)+ 0(1). Relation (1.3) follows from (1.1)
and (1. 2), Turning to the case of ‘Rational function R(u) of degree d:

R(u) = —%G-I)S; max {deg P, deg Q} = d. Since T (6, i}: (% )—‘,— 0(H. We

can assume thatdeg P < degQ.1f deg P=deg Qthenfora suitable constant c, deg

(P — Q)< deg Q and T(— ) - T(w—qc, ) + 0(1) == T(—————-Q—, )+ 0(1).
Q ¢ . Q

Hence one can assume that deg P < d. In ihis case the sets of poles of the

functions R(f) and

coincide, In fact, if the function f(z) tas a pole at a

point z; , then since ﬂeg Q > deg P, the order of pole of Q(ﬂ at z,is greater than
that of P(f) at z, and then R(f(z )) = 0.This implies that the function R(/) bas

poles at the zeros of the function Q(f) only (but not at the poles of the function
f(z)). On the other hand, Q(f)=0 at the points at which f(2) is equal o one of
the zeros of Q(u). Since P(u) =+ 0 where Qu) = 0, .it fellows that

NR (f(i)=N (5!(?) i).

From the properties of the Newmn polygon it follows that

m (R(f), = m( 3 t}+0(1)

because deg P <« deg Q.
Thus we have ‘
TR, 1) = (ﬁ%ﬂ 1)+ 0
= T(Q(F), 1) + 0(1) = dT(f,1) + 0(1).
~ This proves Theorem 1.2.

Consequence 1. If R(2) is a ralional function of degree d, then
T(R, ty = — di + 0(1)
Indeed T(z, 1) = —{.
.Consequence 2. A meromorphic function fi2) is iranscendent if and only if
lim M =
(=00 —1
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T¢ b

Proof. Suppose that [im = k < co. Then the number of poles of

f(z) is not greater than [k].
Indeed, otherwise, for sufficiently large we would have

N{f, t) = 5 I ;) — ) > — (k] + Dt + 01)

: poles
v(b,) >1
and then 7(f, 1) > — ([k]+ 1)t + 0(1)
 lim ﬂﬁ%}[k}-{—l:-k
™ —oc0 -

Similarly, the number of poles of %is not greater than {k}. Thus f(z) is

a ratlonal funection. Combmmg this fact and consequence 1 ylelds the result.

1.3 — Fized points of analytic functions.
Let f(z) be a analytic function on Cp. We set f1 (z2) = f(2); f’k”‘-(z)' ==
= f(f,.(2)) ter k > 1. A root of the equation f, () = z in called a fixed point

of order k of the function f(z). If a is a fized point of order k, but is not a
fixed point of order less than Ic then « is‘called a fixed p"oint of exact
order k. , '

THEOREM 1.3. A franscendent analytic function on ( has mflmtely many fized
points of exact order n, ea:cept possibly for one va!uen. '
To prove this itheorem, we need {wo lemmas. o
- LEMMA 1. Let f(z) be a meromorphic function on {zeCP‘ ; 1z] < R} and
let a,(z) (=1, 2, 3) be distinct meromorphic-functions such that
T{a,, t) = o(T(f, ©)) when t — -—-logp. R

3 1 X P
Then T(f, 1) < £ N| S o t) 0@, ) (1.4)
Feni(f )gi—l . \_f—ai(z) . o . o
Proof 1, Let ¢(z) be a meromorphic function on C -
Addizig N(p, t) 4+ N (——»1—--- t } to both sides of the basu: mequality_
¢ —q;

(0.3) we obtain

@+1) T D < 51 {2 1) + N, 0 — Bt 2T 0 + 00,

Since N(gp',f) — N(g,l) = N(rp,t), we have:

@=T@n < £ N5 ) + Wb - N (£.1) o).
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Since a root of multiplicity k of ke equation ¢(z) = a is a root of mulh-

plicity k—1 of the equation ¢'(z) = 0, w* obtain

q 1 1 1
EN( ,z)—\r( ) z ( ',t).
- P—a, .‘i P!’ < N o—a; .

i=1 i=

Consequently, for every ¢ < — long

q 1 -
(¢ — 1) T(e.h) < EII\‘?( o ,t) -+ N(o,t) +.0(1) (1.5)

i= i

Now, we set
‘ )‘(z)'-—-ai(z) - dg(z) — aq (7)
9(2) = fz)y — ag(s) = az(z) — a,(z) °
Using the inequality (1.5} for a ;= 0, a, =1, we obtain
Uy A =/ 1 -
Tt) SFOD+N (-0 4 F (=210 1) + 0. (1.6)

P —

From the construction of ¢(z) it follows that:

{

» ]
o —1 )\

+ o = 2 N( e ,z)+0_(T(f,r))'.

f\?(cp,i)—i—ﬁ(%,f)-l—ﬁ(

The inequahty (1.4) follows from (1.6).

. LEMMA 2. Let f(z) and g(z) be analytic functions on C » 9(2) = g(/ () . Ther

1) If g(z) is a polynomial of degree N, then

tim - XD 1
T(p,1) N

I - — oo

9 If g(2) is a transcendence analytic function, then

lim g:._(_th_) =
l—s—co T((P: i)
The firat statement being a direct consequence of Theorem 1.2, it suffices

to prove the second one.

Suppose that g(z) = a_+ a,z + ... - a z® —}— .
.For every N, gN(z) =a,+a,02) + dy zN

is 2 polynomial of degree N We have

46
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=0 T (9, f) f. — — oo T (g;\ly (f)’ i N
Hence, lim T (f, O)

= 0, because N is an arbitrary large number.



Proof of Theorem 1.3. Lel k be the smallest positive integer such that fz)
has only finifely many fixed points of exact ordel kiog, o, , . It is sufficient

to prove that for e\erj n > k, f(c) has in fmltely many flxcd points of
exact order n, ,

If z is a root of the equatlonf @y = f, _ (#) then a= fn () is a
fized pomt of order k ol f (#), and hence a = @, or o is a fixed point of exact
order j > k. We have fn-k'l'j (z )= fn —p (2,). It follows from Lemma
2 that '

1 k=1 1
et Eh
fn_fn—k h J=1 fn—k+J—fn—~lc

~~

o1 Aeo(rTiT ) = 0.(7
I N , z 1 T A0
i=1 (fn——k_‘“f ) (z=1

Using Lemma 1 for a; () =2, a,(%) = o, az(z) =f_ __, (), we have

— 1
A+00NT (f,, f)ilV(?’ l)

n—1
Hence, = T( f —z ) Z T{fj’ )=
i=1 . 1_1

=0 (T (f )—O(N(—fi-;__.n)
. n ,
Thus, the equation fn'(z) = z has infinitely many roots which are not
roots of the equationsf, (z) = z where i==1, 2, .., n — 1, Theorem 4

is proved.

§ 2 ~—~ RELATIONSHIP BETWEEN THE CEARACTERISTIC FUNCTION OF A MEROMORPYIC
FUNCTION AND THAT OF ITS DERIVATIVE

In this section we use the symbol f“) to denote the 1-th, derivative of a
meromorphic function f.

“We set
N t) = 20,9 (=

where no(f’, o, s) is the number of zeros z of f'(z) with p(z) = t which are
not zeros of mulhphc}ty of f(z) — 1.

THEOREM 2.1, FFor a meromorphic function f(z) on D, we have

- ' I
S gl fY<1+ ——
asC, [+1
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"has a

Praof If f(z) has ‘a pole of order plp > 1) at a pomt zo, thenf

role of p t at Zo. IIence
1 (7P i () :
A\(f N(f — (f t).
[+1 _ t+1 |
Consequently, - N
(1)
B( oo,
B(os, f'¥) > e e} + T

The theorem now follows from the second fundamental Theorem,
-l .
(U 2y where a, ()

THREOREM 2.2. Let [ be a natural number and ¥(z)= % a, (2)f
i=0

are meromorphic functions on D, "su.ch ‘that T(a,, t) =0 (T(f, 1)) whent ~ 0

Then we have
| (3, t) = O(T (£, )t

(F, ) = (l + 1) T(f, ) -+ O(T(f, )

Proof. For every meromorphic function f(2)

t—QmMUWMM+&Hmw

w
f r) — o(1),

ol 1) < E ol

. 1

Consequently, . | : -
m(—j:—, H & éi ( m{ai s 1)} + m(f%{, t)) =

> o(Tef, 1) oy = oT(F, D)
i=1

Hence, m(¥, ) < m (_1{ . t)’"—i— m(f, 8y . )
= m(f, ) + o(T(f, D). 2D
On the other hand, if f(z) has a pole of order p at a point 2, and the orders
f

of poles of a (D=1, 2,..., 1) at z; are not greoter than ¢, then the order of
U+np+q :

pole of ¥ (z) at z, is not greater than p + [ 4 ¢ <

Therefore,

=0 . ’ ’
(2.2)

= (I + DN 1) + C’(T(f, f))-
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it follows frem (2.1) and (2.2) that
T = m(¥, 1) + N, D) <
m(f, ) + (i + ) N(f.0) + o (T(f,1) <
(I 1) T, ©) + o(T(f,1)).
Theorers 2.7 i3 proved,

THEOREM 2.3. Lel f (2) Le anon-constant meromorphic function on D, ¥(z) bé
given as in Theorem 2.2. Then we have

T(f, ) <TG, )+ N (% )+ ¥ (ﬁ t) = N (% t) + o (TG0).

i

Proof. Applying the basic inequality (0.3) for ¥ (), thh g=2,a,=0,
a; =1 we oblain

m(¥, t) +m(% t)-:-m(lpl

~ )< 2TW, 1) — N (t) + 0). (2.3)
Now we have
2T(¥, 1) — Ns(l) = m(¥, 1) + m (LI t)+ N(P, 8

+ N (ty_f t) N ( 1117 , z)_ 2;\-'(11:, ) + N(¥", 1) 4 0(1). 2.4)

On the other hand, if ¥(z) has a pole of order I at a point 2, then ¥'(z
has a pole of order I 4~ 1 at zp and the poles of W(z) must be either the polea
of f(z) or g, (z), hence

NV, OH - NW, 1 =N ¥, ) < i\f(f, ) + E N a; o)
i=1

= N(f, ) 4 o(T(f, 1)).
Since a root of multiplicity ! of the equalion (2) =1 is 2 root of mullipli.
city [ — 1 of lhe equation ¢'(¢) = 0, we oblain

N (w_lfi t)—-N (_i- ): ¥ (13'}-_1 t) — N, (tpi. t)
It follows from (2.3), (2.4) that
m(-j-[; A<F @0+ F (5 1)-¥, (wl ) H0TE, . @)

In view of Theorem 2. 2, we have

T, t)y = m (._ -]}— t)—l- N (-if t)-}— 0()<
<m (?1,‘ t)+ m (l;_. t) N(%- i)—[— 0(l) =
m (_;_ , t)+ N (TI t)+ 0 (7(f, ). ' (2.6)
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Now theorem follows from (2.5) and (2 6J.
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