SOME APPLICATIONS OF P-ADIC NEVALINNA THEORY

MY VINH QUANG

INTRODUCTION

Classical Nevanlinna theory is so beautiful that one would naturally be interested in determining how such a theory would look in the p-adic case. There are two «fundamental theorems» which occupy a central place in Nevalinna theory. In [2] Ha Huy Khoai proved an analogue of the first theorem. However in the general case he did not obtain the same type of theorem as in Nevalinna theory. In [3] using a minor modification of the definition of the characteristic function in [2] we proved p-adic analogues of the two «fundamental theorems» of Nevalinna theory. In the present paper we show some applications of the results of [3] in the study of p-adic meromorphic functions. We first recall some facts from [3].

Let p be a prime number, let Q_p be the field of p-adic numbers, and let C_p be the p-adic completion of the algebraic closure of Q_p . Let D be the unit disc in C_p : $D = \{z \in C_p \; ; \; |z| < 1\}$. The absolute value in C_p is normalized so that $|p| = p^{-1}$. We further use the notion v(z) for the additive valuation on C_p which extends ord p.

Let f(z) be a p-adic analytic function on D represented by a convergent power series:

$$f(z) = \sum_{n=0}^{\infty} a_n z^n .$$

For each n we draw the graph Γ_n which depicts $v(a_n z^n)$ as a function of v(z). This graph is a straight line with slope n. Since we have

$$\lim_{n \to \infty} v(a_n) + nt = \infty$$

for all t > 0, it follows that for every t there exists an n for which $v(a_n) + nt$ is minimal. Let v(f, t) denote the boundary of the intersection of all half-planes lying under the lines Γ_n . Then in any finite segment [r, s], $0 < r < s < \infty$ there are only finitely many Γ_n which appear in v(f, t). Thus, v(f, t) is a polygon line.

$$T(\varphi, \mathbf{a}, t) = m\left(\frac{1}{\varphi - a}, t\right) + N\left(\frac{1}{\varphi - a}, t\right)$$

$$\Theta(a, \varphi) = 1 - \overline{\lim_{t \to 0} \frac{\overline{N}\left(\frac{1}{\varphi - a}, t\right)}{T(\varphi, t)}$$

In [3] the following results are proved

$$I. \log_p |\varphi(0)| + T\left(\frac{1}{\varphi}, t\right) = T(\varphi, t). \tag{0.1}$$

II. A p-adic analogue of Nevanlinna's first fundamental Theorem:

$$T(\varphi, a, t) = T(\varphi, t) + O(1)$$
 (0.2)

III. The basic inequality:

Let $\varphi(z)$ be a non-constant meromorphic function on $\{z \in C_p; |z| < r\}$, $a_1,...,a_q$ be distinct numbers of $C_p, |a_i - a_k| > \delta > 0$ for $i \neq k$, $i = -\log_p r$. Then we have

$$m(\varphi, t) + \sum_{i=1}^{q} m\left(\frac{1}{\varphi - a_i}, t\right) \le 2T(\varphi, t) - N_1(t) + O(1)$$
 (0. 3)

where $N_1(t)$ is a non-negative function given by the formula

$$N_1(t) = N\left(\frac{1}{\varphi'}, t\right) + 2N(\varphi, t) - N(\varphi', t).$$

IV. A p-adic analogue of Nevanlinna's second fundamental Theorem.

Let $\varphi(z)$ be a meromorphic function on D. Then the set of values $a \in C_p$ such that Θ $(a, \varphi) > 0$ is finite or countable and we have $\sum_{a \in C_p} \Theta(a, \varphi) \leqslant 2$.

§ I. ON MEROMORPHIC FUNCTIONS

1.1 - Determining a meromorphic function from its distribution of values.

We now consider the problem of determining a p-adic meromorphic function from knowledge of the sets on which it takes certain values. In the classical case, there is a well-known theorem of Nevanlinna which states that, if $f_1(z)$ and $f_2(z)$ are two meromorphic functions on the complex plane, and if the two equations $f_1(z) = a$ and $f_2(z) = a$ have the same set of roots for five different values of a, then the functions $f_1(z)$ and $f_2(z)$ coincide. We shall obtain an analogous result for p-adic meromorphic function on the disc p.

For each $a \in C_p$ let $E_a(\varphi)$ denote the set of points $z \in D$ for which $\varphi(z) = a$, where each point is taken as many times as its multiplicity as a root of the equation $\varphi(z) - a = 0$.

$$T(\varphi, \mathbf{a}, t) = m\left(\frac{1}{\varphi - a}, t\right) + N\left(\frac{1}{\varphi - a}, t\right)$$

$$\Theta(a, \varphi) = 1 - \overline{\lim_{t \to 0} \frac{\overline{N}\left(\frac{1}{\varphi - a}, t\right)}{T(\varphi, t)}$$

In [3] the following results are proved

I.
$$\log_p |\varphi(0)| + T\left(\frac{1}{\varphi}, t\right) = T(\varphi, t).$$
 (0. 1)

II. A p-adic analogue of Nevanlinna's first fundamental Theorem:

$$T(\varphi, a, t) = T(\varphi, t) + O(1)$$
 (0.2)

III. The basic inequality:

Let $\varphi(z)$ be a non-constant meromorphic function on $\{z \in C_p; |z| < r\}$, $a_1,...,a_q$ be distinct numbers of $C_p, |a_i - a_k| > \delta > 0$ for $i \neq k$, $t = -\log_p r$. Then we have

$$m(\varphi, t) + \sum_{i \neq 1}^{q} m\left(\frac{1}{\varphi - a_i}, t\right) \leq 2T(\varphi, t) - N_1(t) + O(1)$$
 (0. 3)

where $N_1(t)$ is a non-negative function given by the formula

$$N_{\mathbf{i}}(t) = N\left(\frac{1}{\varphi'}, t\right) + 2N(\varphi, t) - N(\varphi', t).$$

IV. A p-adic analogue of Nevanlinna's second fundamental Theorem.

Let $\varphi(z)$ be a meromorphic function on D. Then the set of values $a \in C_p$ such that Θ $(a, \varphi) > 0$ is finite or countable and we have $\sum_{a \in C_p} \Theta(a, \varphi) \leqslant 2$.

§ 1. ON MEROMORPHIC FUNCTIONS

1.1 - Determining a meromorphic function from its distribution of values.

We now consider the problem of determining a p-adic meromorphic function from knowledge of the sets on which it takes certain values. In the classical case, there is a well-known theorem of Nevanlinna which states that, if $f_1(z)$ and $f_2(z)$ are two meromorphic functions on the complex plane, and if the two equations $f_1(z) = a$ and $f_2(z) = a$ have the same set of roots for five different values of a, then the functions $f_1(z)$ and $f_2(z)$ coincide. We shall obtain an analogous result for p-adic meromorphic function on the disc p.

For each $a \in C_p$ let $E_a(\varphi)$ denote the set of points $z \in D$ for which $\varphi(z) = a$, where each point is taken as many times as its multiplicity as a root of the equation $\varphi(z) - a = 0$.

THEOREM 1.1. Suppose that $\varphi_1(z)$ and $\varphi_2(z)$ are two meromorphic functions on D for which there exist three distinct values a_1 , a_2 , $a_3 \in C_p$ such that $E_{a_i}(\varphi_1) = E_{a_i}(\varphi_2)$ i = 1, 2, 3. Further, suppose that at least one of them is not a ratio of two bounded analytic functions. Then $\varphi_1 = \varphi_2$.

Proof. Assume that $\varphi_1(z) = \frac{f_1(z)}{g_1(z)}$, $\varphi_2(z) = \frac{f_2(z)}{g_2(z)}$, where f_1, f_2, g_1, g_2 are analytic functions on D. For every $a \in C_p$, we have

$$N\left(\frac{1}{\varphi_{1}-a}, t\right) = N\left(\frac{1}{f_{1}-ag_{1}}, t\right) = T\left(\frac{1}{f_{1}-ag_{1}}, t\right) - m\left(\frac{1}{f_{1}-aJ_{1}}, t\right) = T\left(\frac{1}{f_{1}-ag_{1}}, t\right) + O(1) = T\left(f_{1}-ag_{1}, t\right) + O(1) = m(f_{1}-ag_{1}, t) + O(1)$$

Hence, $N\left(\frac{1}{\varphi_1-a}, t\right)$ is bounded if and only if $m(f_1-ag_1, t)$ is bounded or, equivalently, if and only if f_1-ag_1 is a bounded analytic function.

Now let there exist two distinct a_i (i = 1,2) such that $N_{a_i}(t) =$

 $= N\left(\frac{1}{\varphi_1 - a_i}, t\right) = N\left(\frac{1}{\varphi_2 - a_i}, t\right) \text{ is bounded. Then, as has been previously indicated, } f_1 - a_i \ g_1 \ \text{and} \ f_2 - a_i \ g_2 \ (i = 1, 2) \ \text{are bounded, consequently, } f_1 \ , f_2, g_1, g_2 \ \text{are bounded functions, i.e. each of } \varphi_1(z) \ \text{and } \varphi_2(z) \ \text{is a ratio of two bounded analytic functions. In view of the preceding remark and the assumption of the theorem this implies that there is } a_i \ \text{such that } N_{a_i}(t) = N\left(\frac{1}{\varphi_2 - a_i}, t\right) = N\left(\frac{1}{\varphi_2 - a_i}, t\right) \text{ is unbounded.}$

Without loss generality we may assume that $N_{a_{1}}(l)$ is unbounded, $a_{2}=0$, $a_{3}=\omega$. Then consider the functions

$$p(z) = \frac{f_1(z)}{f_2(z)}; \quad q(z) = \frac{g_1(z)}{g_2(z)}$$

Since $E_o(\varphi_1) = E_o(\varphi_2)$, $E_\infty(\varphi_1) = E_\infty(\varphi_2)$, we see that p(z) and q(z) are two analytic functions which have no zero in D. Therefore p(z) and q(z) are bounded in D.

Now, if $p(z) \neq q(z)$, then we have

$$T(p-q, t) \leqslant T(p,t) + T(q, t) = m(p,t) + m(q,t) = 0(1)$$

On the other hand, $\varphi_1(z)=\varphi_2(z)$, and consequently, p(z)=q(z) for all $z\in E_{a_1}(\varphi_1)=E_{a_1}(\varphi_2)$.

Hence:

$$\begin{split} T(p-q,t) &= T\left(\frac{1}{p-q}, t\right) + O(1) \geqslant \\ N\left(\frac{1}{p-q}, t\right) &+ O(1) \geqslant N_{a_1}(t) \to \infty \text{ when } t \to 0. \end{split}$$

This shows that $p(z) \equiv q(z)$, and consequently, $\varphi_1(z) \equiv \varphi_2(z)$. Theorem is proved.

Consequence (p-adic analogue of Picard's theorem).

If a meromorphic function φ is not a ratio of two analytic bounded functions on D, then φ (z) takes all values $a \in C_p$, except possibly one.

Proof. If φ has two excluded values, then there exist two values $a_i \in C_p$ (i = 1, 2), such that $N\left(\frac{1}{\varphi - a_i}, t\right)$ is bounded. From this it follows that φ is a ratio of two bounded analytic functions, as was shown above.

Remark. The following example shows that in theorem 1.1. the words three values » can not be replaced by two values ». Let

$$\varphi_{1}(z) = \frac{2 \log(1+z) + \arcsin z}{\log (1+z) + \arcsin z}$$

$$\varphi_{2}(z) = \frac{2 \log(1+z) + 2 \arcsin z}{\log (1+z) + 2 \arcsin z}$$

$$a_{1} = 1, \ a_{2} = 2. \ \text{Then we have}$$

$$E_{a_{1}}(\varphi_{1}) = E_{a_{1}}(\varphi_{2}) = \{ z; \log (1+z) = 0 \} = \{ \theta - 1; \theta^{p^{n}} = 1, n = 1, 2, \dots$$

$$E_{a_{2}}(\varphi_{1}) = E_{a_{2}}(\varphi_{2}) = \{ z; \arcsin z = 0 \}$$

$$= \{ \frac{\theta - \theta^{-1}}{2i}; \theta^{p^{n}} = 1, n = 1, 2, \dots \}$$

However $\varphi_1 \not\equiv \varphi_2$.

1. 2. Rational and transcendent meromorphic functions.

We note that the results established for meromorphic functions on D are true for meromorphic functions on the disc $\{ |z| < R; R \leq \infty \}$.

THEOREM 1. 2. Let R(u) be a rational function of degree d, f(z) be a meromorphic function on $\{z \in C_p : z < R\}$, $R \leq \infty$. Then

$$T(R(f), t) = d T(f, t) + 0 (1) when t \rightarrow -\log_{n} R$$

Proof. First of all we prove that if p is a polynomial of degree k, then

$$N(p(f), t) = k N(f, t),$$
 (1.1)

$$m(p(f), t) = k m(f, t) + 0 (1),$$
 (1. 2)

$$T(p(f, t) = k T(f, t) + 0 (1).$$
 (1.3)

Indeed (1.1) follows from the fact that if f(z) has a pole of order λ ($\lambda > 0$) at a point z_0 , then p(f) has a pole of order λk at z_0 . If $M(f,t) = \max_{v(z) \geqslant t} |f(z)|$ is bounded when $t \to = \log_p R$ then the equality (1.2) is trivial, because both sides are bounded. Suppose that M(f,t) is unbounded.

Let
$$p(z) = a_k z^k + ... + a_0$$
.

Then for every t sufficiently close to $-\log_p R$,

$$v(p(f), t) = v(a_k^{k}, t).$$

Consequently, m(p(f), t) = km(f, t) + 0(1). Relation (1.3) follows from (1.1) and (1.2), Turning to the case of Rational function R(u) of degree $d: R(u) = \frac{P(u)}{Q(u)}$; max $\{\deg P, \deg Q\} = d$. Since $T\left(\frac{P}{Q}, t\right) = T\left(\frac{Q}{P}, t\right) + 0(1)$. We can assume that $\deg P \leqslant \deg Q$. If $\deg P = \deg Q$ then for a suitable constant c, $\deg Q = Q = Q$ and G(P) = Q = Q. The following G(P) = Q = Q and G(P) = Q.

Hence one can assume that $\deg P < d$. In this case the sets of poles of the functions R(f) and $\frac{1}{Q(f)}$ coincide. In fact, if the function f(z) has a pole at a point z_0 , then since $\deg Q > \deg P$, the order of pole of Q(f) at z_0 is greater than that of P(f) at z_0 , and then $R(f(z_0)) = 0$. This implies that the function R(f) has poles at the zeros of the function Q(f) only (but not at the poles of the function f(z)). On the other hand, Q(f) = 0 at the points at which f(z) is equal to one of the zeros of Q(u). Since $P(u) \neq 0$ where Q(u) = 0, it follows that $N(R(f(t))) = N\left(\frac{1}{Q(f)}, t\right)$.

From the properties of the Newton polygon it follows that

$$m(R(f), t) = m\left(\frac{1}{O(f)}, t\right) + O(1)$$

because deg $P < \deg Q$.

Thus we have

$$T(R(f), t) = T\left(\frac{1}{Q(f)}, t\right) + 0(1)$$

$$= T(Q(f), t) + 0(1) = dT(f, t) + 0(1).$$

This proves Theorem 1.2.

Consequence 1. If R(z) is a rational function of degree d, then T(R, t) = -dt + 0(1)

Indeed T(z, t) = -t.

Consequence 2. A meromorphic function f(z) is transcendent if and only if

$$\lim_{t\to\infty}\frac{T(f,\,t)}{-t}\,=\,\infty$$

Proof. Suppose that $\lim_{t\to\infty}\frac{T(f,t)}{-t}=k<\infty$. Then the number of poles of f(z) is not greater than [k].

Indeed, otherwise, for sufficiently large we would have

$$\begin{split} N(f,\,t) &= \sum\limits_{b_i \text{ : poles}} (v(b_i^-) - t) \geqslant - ([k] + 1)t \, + \, 0(1) \\ v(b_i^-) &> t \end{split}$$

and then
$$T(f, t) \ge -([k] + 1)t + 0(1)$$

,
$$\lim_{t \to -\infty} \frac{T(f, t)}{-t} \ge [k] + 1 > k$$

Similarly, the number of poles of $\frac{1}{f}$ is not greater than [k]. Thus f(z) is a rational function. Combining this fact and consequence 1 yields the result.

1.3 — Fixed points of analytic functions.

Let f(z) be a analytic function on C_p . We set $f_1(z) = f(z)$; $f_{k+1}(z) = f(f_k(z))$ for $k \ge 1$. A root of the equation $f_k(z) = z$ in called a fixed point of order k of the function f(z). If α is a fixed point of order k, but is not a fixed point of order less than k, then α is called a fixed point of exact order k.

THEOREM 1.3. A transcendent analytic function on C_p has infinitely many fixed points of exact order n, except possibly for one value n.

To prove this theorem, we need two lemmas.

LEMMA 1. Let f(z) be a meromorphic function on $\{z \in C_p; |z| < R\}$ and let $a_i(z)$ (i = 1, 2, 3) be distinct meromorphic functions such that

$$T(a_i, t) = o(T(f, t)) \text{ when } t \rightarrow -\log_p R$$

Then
$$T(f, t) \leqslant \sum_{i=1}^{3} \overline{N}\left(\frac{1}{f - a_i(z)}, t\right) + 0 (T(f, t))$$
 (1.4)

Proof 1. Let $\varphi(z)$ be a meromorphic function on C_{p^*}

Adding $N(\varphi, t) + N\left(\frac{1}{\varphi - a_i}, t\right)$ to both sides of the basic inequality

(0.3) we obtain

$$(q+1) T(\varphi, t) \leqslant \sum_{i=1}^{q} N\left(\frac{1}{\varphi - a_i}, t\right) + N(\varphi, t) - N_1(t) + 2T(\varphi, t) + O(1).$$

Since $N(\varphi',t) - N(\varphi,t) = \overline{N}(\varphi,t)$, we have

$$(q-1) T(\varphi,t) \leqslant \sum_{i=1}^{q} N\left(\frac{1}{\varphi-a_i}, t\right) + \overline{N}(\varphi,t) - N\left(\frac{1}{\varphi'}, t\right) + O(1).$$

Since a root of multiplicity k of the equation $\varphi(z) = a$ is a root of multiplicity k-1 of the equation $\varphi(z) = 0$, we obtain

$$\sum_{i=1}^{q} N\left(\frac{1}{\varphi - a_{i}}, t\right) - N\left(\frac{1}{\varphi}, t\right) \leqslant \sum_{i=1}^{q} \overline{N}\left(\frac{1}{\varphi - a_{i}}, t\right).$$

Consequently, for every $t \leqslant -\log_{p} R$

$$(q-1) T(\varphi,t) \leqslant \sum_{i=1}^{q} \overline{N}\left(\frac{1}{\varphi-a_i}, t\right) + \overline{N}(\varphi,t) + O(1)$$
 (1.5)

Now, we set

$$\varphi(z) = \frac{f(z) - a_{1}(z)}{f(z) - a_{2}(s)} \cdot \frac{a_{3}(z) - a_{2}(z)}{a_{3}(z) - a_{1}(z)} ,$$

Using the inequality (1.5) for $a_1 = 0$, $a_2 = 1$, we obtain

$$T(\varphi,t) \leqslant \overline{N}(\varphi,t) + \overline{N}\left(\frac{1}{\varphi},t\right) + \overline{N}\left(\frac{1}{\varphi-1},t\right) + 0(1).$$
 (1.6)

From the construction of $\varphi(z)$ it follows that:

$$\overline{N}(\varphi,t) + \overline{N}\left(\frac{1}{\varphi},t\right) + \overline{N}\left(\frac{1}{\varphi-1},t\right) \leqslant$$

$$\frac{3}{\Sigma} \overline{N} \frac{1}{f-a_i(z)}, t + \overline{N}\left(\frac{1}{a_1-a_2},t\right) + \overline{N}\left(\frac{1}{a_1-a_3},t\right) + \overline{N}\left(\frac{1}{a_2-a_3},t\right) + \overline{N}\left(\frac{1}{a_2-a_3},t\right) + O(1) = \sum_{i=1}^{3} \overline{N}\left(\frac{1}{f-a_i(z)},t\right) + O(T(f,t)),$$

The inequality (1.4) follows from (1.6).

LEMMA 2. Let f(z) and g(z) be analytic functions on C_p , $\varphi(z)=g(f(z))$. Then 1) If g(z) is a polynomial of degree N, then

$$\lim_{t \to -\infty} \frac{T(f,t)}{T(\varphi,t)} = \frac{1}{N}$$

2) If g(z) is a transcendence analytic function, then

$$\lim_{t\to-\infty}\frac{T(f,t)}{T(\varphi,t)}=0$$

The first statement being a direct consequence of Theorem 1.2, it suffices to prove the second one.

Suppose that $g(z) = a_0 + a_1 z + ... + a_n z^n + ...$

For every N, $g_N(z) = a_0 + a_1(z) + ... + a_N z^N$

is a polynomial of degree N. We have

$$\lim_{t \to -\infty} \frac{T(f, t)}{T(\varphi, t)} \leqslant \lim_{t \to -\infty} \frac{T(f, t)}{T(g_N(f), t)} = \frac{1}{N}$$

Hence, $\lim_{t\to -\infty} \frac{T(f,t)}{T(\varphi,t)} = 0$, because N is an arbitrary large number.

Proof of Theorem 1.3. Let k be the smallest positive integer such that f(z) has only finitely many fixed points of exact order k; α_1 , ..., α_p . It is sufficient to prove that for every n > k, f(z) has in finitely many fixed points of exact order n.

If z_o is a root of the equation $f_n(z) = f_{n-k}(z)$ then $\alpha = f_{n-k}(z_o)$ is a fixed point of order k of f(z), and hence $\alpha = \alpha_i$ or α is a fixed point of exact order j > k. We have $f_{n-k+j}(z_o) = f_{n-k}(z_o)$. It follows from Lemma 2 that

$$\overline{N}\left(\frac{1}{f_n - f_{n-k}}, t\right) \leqslant \sum_{J=1}^{k-1} \left(\frac{1}{f_{n-k+J} - f_{n-k}}, t\right) + \sum_{J=1}^{p} N\left(\frac{1}{f_{n-k-a_j}}, t\right) = 0 \left(\sum_{J=1}^{n-1} T(f_J, t)\right) = 0 \cdot \left(T(f_n, t)\right)$$

Using Lemma 1 for $a_1(z) \equiv z$, $a_2(z) \equiv \infty$, $a_3(z) \equiv f_{n-k}(z)$, we have

$$(1+0(1)) T (f_n, t) \leqslant \overline{N} \left(\frac{1}{f_n - z}, t \right)$$
Hence,
$$\sum_{t=1}^{n-1} \overline{N} \left(\frac{1}{f_1 - z}, t \right) = 0 \left(\sum_{t=1}^{n-1} T (f_1, t) \right) = 0$$

$$= 0 (T (f_n, t)) = 0 (\overline{N} \left(\frac{1}{f_n - z}, t \right))$$

Thus, the equation $f_n(z) = z$ has infinitely many roots which are not roots of the equations $f_i(z) = z$ where i = 1, 2, ..., n - 1. Theorem 4 is proved.

§ 2 — RELATIONSHIP BETWEEN THE CHARACTERISTIC FUNCTION OF A MEROMORPHIC FUNCTION AND THAT OF ITS DERIVATIVE

In this section we use the symbol $f^{(1)}$ to denote the 1-th, derivative of a meromorphic function f.

We set

$$N_0\left(\frac{1}{f}, t\right) = \sum_{s>t} n_0(f, o, s) (s-t)$$

where $n_0(f', o, s)$ is the number of zeros z of f'(z) with v(z) = t which are not zeros of multiplicity of f(z) - 1.

THEOREM 2.1. For a meromorphic function f(z) on D, we have

$$\sum_{a \in C_p} \Theta(a, f^{(l)}) \leq 1 + \frac{1}{l+1}$$

Proof. If f(z) has a pole of order p(p > 1) at a point z_0 , then $f^{(i)}$ has a pole of p + i at z_0 . Hence:

$$\overline{N}(f^{(l)}, t) \leqslant \frac{1}{l+1} N(f^{(l)}, t) \leqslant \frac{1}{l+1} T(f^{(l)}, t),$$

Consequently,

$$\Theta(\infty, f^{(l)}) \geqslant \frac{1}{l+1}.$$

The theorem now follows from the second fundamental Theorem.

THEOREM 2.2. Let l be a natural number and $\Psi(z) = \sum_{i=0}^{l} a_i(z) f^{(i)}(z)$ where $a_l(z)$ are meromorphic functions on D, such that $T(a_i, t) = 0$ (T(f, t)) when $t \to 0$. Then we have

$$m\left(\frac{\Psi}{f}, t\right) = \theta(T(f, t))$$

$$T(\Psi, t) = (l+1) T(f, t) + \theta(T(f, t))$$

Proof. For every meromorphic function f(z),

$$m\left(\frac{f'}{f}, t\right) = \theta(1)$$
 when $t \to 0$. Hence

$$m\left(\frac{f^{(l)}}{f}, t\right) \leqslant \sum_{i=1}^{l} m\left(\frac{f^{(l)}}{f^{(i-1)}}, t\right) = 0(1),$$

Consequently,

$$m\left(\frac{\Psi}{f}, t\right) \leqslant \sum_{i=1}^{l} \left(m(a_i, t) + m\left(\frac{f(i)}{f}, t\right) \right) =$$

$$\sum_{t=1}^{l} o(T(f, t)) + O(1)) = o(T(f, t)).$$

Hence,
$$m(\Psi, t) \leq m\left(\frac{\Psi}{f}, t\right) + m(f, t)$$

= $m(f, t) + o(T(f, t))$. (2.1)

On the other hand, if f(z) has a pole of order p at a point z_0 and the orders of poles of $a_i(z)$ (i = 1, 2, ..., 1) at z_0 are not greater than q, then the order of pole of $\Psi(z)$ at z_0 is not greater than $p + l + q \leq (l + 1)$ p + q.

Therefore,

$$N(\Psi, t) \leq (l+1) N(f, t) + \sum_{i=0}^{1} N(a_i, t)$$

$$= (l+1)N(f, t) + o(T(f, t)). \tag{2.2}$$

It follows from (2.1) and (2.2) that

$$T(\Psi, t) = m(\Psi, t) + N(\Psi, t) \leqslant$$

 $m(f, t) + (i + 1) N(f, t) + o(T(f, t)) \leqslant$
 $(l+1) T(f, t) + o(T(f, t)).$

Theorem 2.7 is proved.

THEOREM 2.3. Let f(z) be a non-constant meromorphic function on D, $\Psi(z)$ be given as in Theorem 2.2. Then we have

$$T(f,t) \leqslant \overline{N}(f,t) + N\left(\frac{1}{f},t\right) + \overline{N}\left(\frac{1}{\Psi-1},t\right) - N_0\left(\frac{1}{\Psi},t\right) + o\left(T(f,t)\right).$$

Proof. Applying the basic inequality (0.3) for $\Psi(z)$, with q=2, $a_0=0$, $a_1=1$ we obtain

$$m(\Psi, t) + m\left(\frac{1}{\Psi}, t\right) + m\left(\frac{1}{\Psi-1}, t\right) \leqslant 2 T(\Psi, t) - N_1(t) + 0(1).$$
 (2.3)

Now we have

$$2 T(\Psi, t) - N_1(t) = m(\Psi, t) + m \left(\frac{1}{\Psi - 1}, t\right) + N(\Psi, t) + N\left(\frac{1}{\Psi - 1}, t\right) - N\left(\frac{1}{\Psi}, t\right) - 2N(\Psi, t) + N(\Psi, t) + 0(1).$$
(2.4)

On the other hand, if $\Psi(z)$ has a pole of order l at a point z_0 , then $\Psi'(z)$ has a pole of order l+1 at z_0 and the poles of $\Psi(z)$ must be either the poles of f(z) or $a_i(z)$, hence

$$N(\Psi', t) - N(\Psi, t) = \overline{N} (\Psi, t) \leqslant \overline{N}(f, t) + \sum_{i=1}^{1} \overline{N} a_i, t$$

$$= N(f, t) + o(T(f, t)).$$

Since a root of multiplicity l of the equation $\psi(z) = 1$ is a root of multiplicity l - 1 of the equation $\psi'(z) = 0$, we obtain

$$N\left(\frac{1}{\psi-1},\,t\right)-N\left(\frac{1}{\psi},\,t\right)=\overline{N}\left(\frac{1}{\psi-1},\,t\right)-N_0\left(\frac{1}{\psi},\,t\right)$$

It follows from (2.3), (2.4) that

$$m\left(\frac{1}{\psi},t\right)\leqslant \overline{N}\left(\mathbf{f},t\right)+\overline{N}\left(\frac{1}{\psi-1},t\right)-N_{0}\left(\frac{1}{\psi'},t\right)+0\left(T(\mathbf{f},t)\right). \tag{2.5}$$

In view of Theorem 2. 2, we have

$$T(f, t) = m\left(-\frac{1}{f}, t\right) + N\left(-\frac{1}{f}, t\right) + 0 \quad (1) \le$$

$$\le m\left(\frac{1}{\psi}, t\right) + m\left(\frac{\psi}{f}, t\right) N\left(\frac{1}{f}, t\right) + 0 \quad (1) =$$

$$m\left(\frac{1}{\psi}, t\right) + N\left(\frac{1}{f}, t\right) + 0 \quad (T(f, t)). \quad (2.6)$$

Now theorem follows from (2.5) and (2.6).

Acknowledgement. I wish to express my deep gratitude to Prof. Ha Huy Khoai for his generous inspiring guidance.

REFERENCES

- [1] D. Barsky: Théorie de Nevanlinna p-adique d'après Ha Huy Khoai. Broupe d'étude d'analyse ultramétrique Paris, Mars 1984.
- [2] Ha Huy Khoái. On p-adic meromorphic functions. Duke Math J., Vol 50, 1983, 695-711.
- [3] Ha Huy Khoai and My Vinh Quang On p-adic Nevanlinna theory. Proceedings of the 13th Nevanlinna. Colloqium. Joensuu, 1987.
- [4] W. K. Hayman. Meromorphic functions Oxford at the Clarenden Press, 1964.
- [5] Ju. I. Manin. P-adic automorphic functions Current Problems in Mathematics 3 (1974) (in Russian)
- [6] R. Nevanlinna. Le théorème de Picard-Borel et la théorie des fonctions meromorphes, Paris, 1929.

Received December 26, 1987

INSTITUTE OF MATHEMATICS, P.O. BOX 631, BOHO HANOI

man neck effectively below a non