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IMBEDDING THEOREMS OF SOBOLEV SPACES OF
INFINITE ORDER

. HA HUY BANG
INTRODUCTION

Let {a.}, {b.} be arbitrary sequences of nonnegative numbers, G be an
arbitrary domain in B? or-torus T% and 1 < p < o5, 1’ r < o, Then

Ww {au! ps I'} (G) = {f ”lf [Ii _(Zau ” Dﬁf H L (G})Ilr < o"}

iz called the Sobolev space of 1nf1n1te order in G.-

Analogously we define the space W= {b., p, r} (G} and consider the follow-

ing imbedding ‘ ‘ J ,

W= {a,, p, 1} (G) \ W™= {b,, p, 1} (G) ()

which frequently arises from the study of nonhneal dxfferennal equations of
infinite order.

In [4] the necessary and sufficient conditions for imbedding and compactly
imbedding (0) as a special case of imbedding of the abstract limit spaces were
established. These conditions were given in terms of the asymptotic behaviour
of the norms of the imbedding operators Lhom® Xy~ Y . Hence, the study

of the imbedding (0) is led to the difficult and unknown (at this moment)
problem of the exact estimates of the norms of the imbedding of anisolropic
Sobolev spaces of finite order, as their orders tend to infinity. Thus, together
with the generalfunctional criteria, the imbedding conditions which are express-
ed in «¢algebraic» terms, become very important, In- pariicular, it is useful
to give conditions in terms of the parameters’ a,, b,, p, r of the spaces
W= {a,, p, r} (G) and W= {b,, p, r} (G), of the characteristicfunctions of these
spaces etc. Most of these conditions are only sufficient, but they can be easily
verified. The problem of the algebraic imbedding conditions of Sobolev spaces
of infinite order ‘was studied mamly in the one- -dimensional case (n== 1) (see

1 [7], (18], [14))

In this paper we also consuier the case n==1, Qur aim is to establish some"

algebraic imbedding conditions of Soholev spaces of iufinite order for the.case -  .. .
G = R by using a method different from that of Dubinsky and Balasova. Some - - -

of these results are belfer than the corresponding ones in {4], [6), (7], [14). The
cases G=T, 6 = (¢, =), G = (¢, d) were considered in [7], [13], [141. :
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it should be noted that the theory of Sobolev spaces of infinite order and
related problems such as the nontriviality, the boundary value problems, the
imbedding theory, the irace theory, the géomelrical characteristics etc have been
studied by Dubinsky and others (see, for example, [1]—[14])

Imbeddz'n}f condilions.

We shall assume that @y > 0, by > 0 because in the contrary case,
W {a_ . P r} () aad W= { b, p. r'} (R) become factor-spaces. Eurther, il is

well known that W= {an s p» I} () is nontrivial if and only if R > 0, where

Ra is the radius of convergence of the series Z a z? (see [2]}. Hence, we
n=go

shall study tke imbedding
W= {a, p, 1} () W= {b,, p 1} (R) (10
with the assumplion Ra = 0.
For simplicity of nolalion we put : _
0. ” = Jlell L (R),W:o = W= {“R-P 1‘,} (R).

It is clear that tLe 1nequaht1es : : -

where K is some constant, gu'\rantee the 1mbedding (1). Of course, the condi-
tion (2) may be a crilerion for imbedding (1) only in the case when the power

of functions of W is 1ich enouoh We kave the fo lowxnﬁ theorem {({5]).

THEOBE\I 1 Let aﬂ+1 a < 1;n >0 Then the imbedding (1) is valid if

and only if (2) is sahsfzea‘

However, in gereral, this conditionis TerYIiniited Atleastsince the equalities
a, = 0 unmedmtely imply b == 0 for the corresponding n, This shortcomma

will he dlsappeared in the thememe proved below.
e have the following lemma ({15]).

LEwoia 1. Let 1< p<omand Function (@) C* (R) suh that D'f(z) e L, (R),
n >» 0, Then there exists Lhe limil

qf tim || brf [W",

7 . n—roe
moreover ‘
dfch =sup{|§|:§esuppf(§)}.
whqre-?(!.) — Ff(x) is the Fourier Iransform of the function f(z),
LEMMA 2. The following equalily is valid:
{de: FeW L =10, R;/’"l.
Proof By Lemma 1it follows that .
{d:f W] } <10, B/, '- ®



To prove the inverse inclusion, assume that 9(x) e W™, d < piir and
. a g . u

ga) # consl. The exisltence of such a furnction follows from tbe inclusiop
- i/r 1fr - s -
okt Cr(— Ra , Ra ’) c Wa which is valid by the well-known Paley-Wienep-

» - Sclwarlz theorem and the Bernstein-i\'ikolsky— incquality (see [16], p. 115). Then
gix) dilfers from polynomials. Therefore, from (3) and Lemma 1. we get

! . . Y .
0 < o, = dg < Ha/r . Consequenily, all f{ke" fcnclions f@) = gix)
0 <C }\.dg < Ri/r belong to W;’a because d“r = ?Ldg . This means

Ifr co
(o, -Ra jC {d’f : fe Wa }

) t
TLerefore, we can cheose funclions f (x) e WZ" solbate <= o < szr'

: fa fn-i—I
= R;/r and supp fH(C) N supp fm ({) ere enpiy if m = n.

Im ¢
¥ pereo In
Put

"1~(nf,1(x)’ E wg LF N, < om

n=I

flz) =

nﬂ

oo 7 .

Then f(z) € W, and o =Ralr = df- . '1_‘ins completes the proof.
From Lemma 2 and tke Bernstein-Nikclsky inéjuali’y we derive
THEOREM 2. We have : '

> LIf R, =R, then W, C]=W} ;

o

2 If Ra < Rb then W

a

LW, s

3 IFR, =R,anl £ b R, <o then Wo" 4 W,
n=0

LEMMA 3. Let A = 0, Then Ty (f) = l“ffpf\?\"'i.r) Is an aone-fo-one {somelric
mapping of W= {a,., p, r} (R) onto W= {a A", p, r}‘ (R). |
Proof, Since
I DPTo ()l , = A~y Dof a0,
the proof is straight-forward. o

THEOREM 3. Let Ru < oo and suppose thal there exisls ¢ nu'mber'Raw L E<len
so that T S ' ' ‘ B

-M:sup(%bk_gk) (§ a,gff)-f<'m, _ t : A%
T om0 k=0 k=g " .

ey
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Then the imbedding (1) holds,

Proof. Put A = /", Then by Lewma 3 one can see that lhe 1mneddmg(1)
holds if and only if the followmo 1mbeddmg L .
W {a,_ 2", p, (B W {b_ &, b o} (B) N G)
is valid. , ‘
- To prove (5), let fm:) e W™ {a g" » P r} (R).

o " . . -
We notice that the radius of convergence of the series X a £%2" is not "
n={
more than one. Hence,by Lemmas 1 and 2 we get °f“<ﬂ~ 1. Therefore, applying

the Bernstein—Nikolsky inequality we have
T DI <o IDMF I, <UD, n> 0, O ®

Further, let N > 1 be fixzed. Taking account of (4), (6) and the: Abel )
transform

N N N—1 n ,
Emyn Exn—l—E Lyﬂ—yn_H)Ea:k

=0 . n=0: - n=0 . - A=0
we get ‘ '

N n n r.
z b,,a 1 D" R

n=0

=DV, 2 b, tn 4 5 (LELH D““.f._n;,)% btk <

n=0

<M DYFY 2 a 8" + 2 <||D"fn nD"”fn )Ea a’f]—

n=0

—Mz a &1 D2y
=0

Consequently, by lettmg Ar — oo we oblain

b " Dy N <M = a " [R20 & AN
n=0 . . =0
The imbedding (5) has bean proved The proof is complete.

COROLLARY 1. Let R, < oo and. )
. : 1_: o e
sup (2 b, R“)( z a, R ) = oo D
n20 k=10 ' oo T
co-Then the imbedding (1) holds - .~ - ... .. S ST
LEMMA 4. Letf fiz)e W= {an, P, It (R). Thenfor n > 0 we get

1 Drf | < (-gf-) R® (kz a R*") '3 A ;;_D"_fn o i Ry < oo
- geo K0 E

-



24D < 2(%\’-“@' [&“.a‘-’(&\] WFQ,, if R = o, )

!ty
where a(§) = Z a, §
: k=0
The next theorems are direct coroilaries of Lemmasa 4,
THEOREM 4. Let R <o and .. . .. -
oo n PRt S ‘ S T
= bnﬁz( z akRa) -t oo (8)
n=o k=0 :
Then the embedding (1) holds . .
THEOREM 5. Lel Rﬂ = oo and .

DEO bn sup [§"a_1(§)} ~< oo, R ‘ R e D)

n=o = E>o
Then the imbedding (1) holds. _
Remark 1. Lemma 4 and Theorems 4,5 were proved in [4] under the assum-

ptlon p = r, The case when p, r are arb1trar3 can be estabhshed by argumenln
similar to those of [4].

Let o > 0. Denote by M _the_ space of all functions f(x_ﬂ)_of- exponential type

o such that f(z)e L (R) Then by the density of v M ‘in W: and from the

o0
proof of Theorem 3 we get the followma theorem. .

THEQOREM 6. Lel R = oo and the:e are numbersg f-]- oo such t}zal

—1
sup sup ( Z bkE \( fn) oo,
- mz20 nzzo ‘k=o Ip=g ' :
Then the zmbeddmg (1) is valid. , _ _
LEMMA 5 Let 0 < o /] g x, {_ sy B > 0 be arbztrarg sequences of nume-
bers. Then the fol[owmg identity is ualtd '
zaz = T,5, + & 1= Tp) S ) (10)
n=¢ ~ . k=0 . o ;
a oo
where ¢, = Zaj,k>0.
j=k

" Proof. Let these be gwenr-tga Tiaen

Zyep + 2(*'“"k+1 - ."‘clr) EZ+.1= _
'___x {s —e)+:c (ﬂ_eﬂ)+ —I-x (e“-;s“'l)+$n+1kiez+’1=
ot T, e+ a + @ “n+1; (115

non

= aox
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Indeed, if 2 a,z = e, then (10) isan immediate consequence of (11).

n=0
oo
Now let E‘..oan.vn < o=, Becawse of (11) it is enough to shovw that lim :ens::'aﬂ
n—+oe

which follows from

0<:ce =Tttt S
. ah’cn_l"' an+1 ﬂ+1.+“ ‘.I )
(e proof is thus complele, I N
THEOREM 7. Suppose that there exists a number 0 = & < R < os such that
JI-— Sup (Zb E )(2 ﬂ, )_ <°°. S T .
n>0 k=n k k=n ]“ o B (1-}

Then the imbedding (1) holds

Proof. Put & = gV, Then by Lemma 3 we have to show the validity of the
ollowing imbedding

WS R L W an®  ay

vhere cu = nE‘n’ dn = bn En » -ﬂ > 0. o - :.
‘Indeed putf = D"f| o o > 0. We denote by fe the conves fe__:liiari-

ation of lhe seqnence f , by means of logarithms. Then (see [17]) .7 ¢

f f f —inf {f f(m ﬂ)/ "']-) f(n L)/(m }‘) 0 .g k=<n <m} >l

nd D . .

oy fk)(m n)/(m k) (f )(n n/(m k) LO< &k < n,\‘ m. _ (14)

n 1he otber hand, it follows from lhe Kolmocorov—Stem mequahty (see[IS})
1at

A 6 R L s i o<k <n<m
'herefore, S - y
. B < <f,< S fc o a>0 N 15)

‘ence, the Imbedding (13) holds if and only if there is a constant M1<o-
ach that

Zod (FoF < M1 z < (fC) ey, N | (15)

It is enough to show the validity of (16) for all f ¢ W . f""__ Te
Fix f € ‘«V .f = 1 of > 1 The exlstence of lhe funct:on f(x) followx

SRE _
om R_= -3—— > 1 and Lemma 2,

e



Put n, = inf { n: f; = 1}, Then by (14) and f;_—_-; 1

we have
7 1 .
1< ey < )"™ ma n,.
HO A )
Tkerefore,
1 C 1
1 <" <™ n <n<m
n m :
Henea,

: afntl - fe _
fo< (o) <Tia Pon,

Cozsequently, taking account of Lemma 5 and (12), we get

-]

e r r o . r . o .
2d (S =¢°y 2 A+ T ()~ z 4. <
n=ng " " "0 n=ng N a=n, " " gt
< M ey ; ¢ oi ((f° )r (f‘)r)- 02? c,] =
4 T . - =
o n=1y " n=ng, ik m k=n+1 &

oo r.
=M T c(f]) <eoo

n=ny _
which shows that f s WT . Therelore, since f & W: »Gp > 1 is arbilrarily

( .
chosen, we get from Lemma 2 _ '
[0, R¥r) ¢ 10, RI7)

¢ . d

i. e, Rc 4 Rd . Hence, taking the definilion of n, into account, we obtlain

n —1

& ody .(f;-;) = Z 4, (fn) + 2 d (fu) =
n=0 &=0 a=ng
n,—1 6o - - T CE
< Zd,+M T e (f)) <M, T e (', an
n==0 n=n, n=0 SR
. . ‘ L : 1 cg ' : S
where M, = M + —~ X d = «
0 n=0

At last, let f e W, f°e=1¢
¢ -0

Lemma 1 we get

; < L Then by (14), (15), f; = 1 and

afm ' a

l—»oa



Therefore,

oo ‘ r oo =
Zd (fy) < Td <M e <M Z (f) (18)
r=0 =y n-——O
Combining (17) and (18) we have ‘

L= o
c T e\
2 dn (fn) gMi 2 Cﬂ (fn)
n=0
forall fe W » f; =1. This completes the proof of (16) and the theorem follows.
COROLLARY 2 Let R = oo and

b a
. supe® (%) <o=- _ (19)
e oopzo R R :
Then the imbedding (1) holds. -
Remark 2. Condition (7) is essentially weaker than (8) Indeed let (8) be
Sahsfxed Then there exists a constant (. < o= such that .

‘sz"(zaR) Cm_-.OI,.

n=0 k=0

For fixed m, we have 2
) L

R, - | n, 2 ke '
b, R, iinak Rﬂ) <b R“l(czoak Ra) ,Ogngm. (20)
On adding inequalities (20) we find :
N T n, 3 k
(ZbR)(ZaR) ?‘bRa(ZakRa) gC
oR=p - H=0 k=0 ’

for any m > 0, which 1mn:1etf[1atelyr implies (7).
Further, put qy=1,a_=1/k, k > 1 and

In2, k=97 n>0

: 0, k=2, 10>0 T
Then R -‘_1 and it is easy to veniyed that (7) kolds but (8) does not.

b _

Remark 3. It is easy to glve an exampie for which (19) holds but (9) does
not.

.. Example, Puta —(n!)—l n>0; bo=1 b a=e" (27tn“+1) » n>> 1 Then
R ==oceand

sup (2" a T ()] = sup gre 5——~n"e 2 > 1

>0 E=0 W
Therefore ' R
2o n ] E 1
Z b sup £'d @] =2 o = o
=1 " E=0 a=1 270

-1
At the same time, we have s (s ) <Laxl because

o 1 T )
b, a;1= efnl (2nn"tly << 1,n=x1, 2,...



Remark 4. Let p=r=2, Then

sup (E b ENE a8 < ‘ e
0<E<R, n=0 n=0 ' S
is a criterion for imbedding (1) (see-{4]). The main tooi for this proof was the
Parseval equality which is not suitable when p = 2,
THEOREM 8. If the imbedding (1) holds then we have (21). .
Proof. We have to show that (21) is deduced from the following condition

z_'bn(fn) <M 2 'an(fn) L feWa, o : ©(22)
n=o n=o
where M is some constant.
Let 0 < & << RI/I be given, Then, by Lemmas I and 2 there is a function

fe W;" such that o, = g; It follows from (14) that

f
(f¢ ) f_, fn+1 ,n3> L
Hence

£, < s il . (23)

where g = f.;/ fo_ >l Therefore, by Lemma 1 and (15), we get
o o |

n fgsl we €40 > 1, lim s, = 3

n—rce

Hence, in view of (23) we have

Fo = 8°f8,8,m 8,0, =85,,0<8, <8 0> lm 8 =1 @4

1> 0O

Denote by N = N(f) the number such that

N 1 1
b -t" — = — b &, _
nfo R 2.b(E) . E. o (25)

Since o, < o and from the Bernstein-Nikolsky inequality we get D?‘f éWZ‘f
for any k > 0. Therefore, by (22) and (24) we obtain

SEEINC GRS 8 SONE SN R NI Cans o4 DIVE S 9 S )

n=o n=o

Hence,

nr r nr &1 r L~
nzobg 6k+1 8;.-;-;!;<1‘f[nz‘“oaE 6k+1 6n+1:’k>0°

Therefore, we deduce from (24) and (25)’ that

(2 b Enr)arNI 2 bE“" & L& <

=0 i " n=o . ]\‘l"f n+k
<M 2‘. a, nr v OF < M Z a BV, {26
o 7 Yt -"*k\?\‘n‘—:ong.,, 0w
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Now, we choose a number % >» 1 such that 6’N > -é- Then, combining

k+1
(25) and (26) yields

3 b REE 2 a_ B,
n=o "o
The proof is thus complete L
It is natural to ask whether the imbedding (1) is compact?
Theorem 9, Let W', a. # {0}« Then imbedding (1) is ‘nol compacel,
Proof. It is enough to show that the following imbedding”
Wi LB

1

is not compact, Fix a function f(z) € W such that cf 1 and f(x) # const.
Then lim f(x)=0 (see [16], p. 117). '

Put
E= {gn () = f(a:—{—n), n> 0}
Then E is bounded in 1V°° because [jg, [, = ]]] f H R >0 On the other hand,
the Nikolsky inequality (see [16] p.123) shows that :

D" p .. < 20”1’ D" oy, a0

Therefore, all we have to prove is that we cannot find a. subsequcnce of E which
converges in L_, (R). Fcr this purpose, choose a pomt T & R 50 f.hat [f(:L Y =

'=Hfll_,.Thenhy - oot

g, @ g, @0 >1f(z, )—f(:c ~+m) 1, m,n >1
we get o o .
o lim ) g~ gy Ve > lm () — F(@,4m) | ,=lf(xo)1 > 0
m—rco m—rc= ’

for any n> 1, from which the desired conclusion .follows. The proot of the
theorem is thus complete. : : :
Concluding remark. It shonld be noted that 1 < Fe=ooand r=oo are'quite

different cases. That is why in the paper we did- not con31der the limllmg case

I' = o in the paper and shall discuss it elsewhere:
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