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ON A FIXED POINT THEOREM OF KRASNOSELSKII
AND ITS APPLICATIONS

LE HOAN HOA

INTRODUCTION

Let X be a Banach space and let K be a bounded closed convex subset of X.
A well-known theorem of Krasnoselskii [8] states that if I/ is a contraction on
Kid.e. Uz —Ugl|< kilz —yll for 0<k-<1)and F is a compact operator
on K such that

Uz 4 Fy € K tor every x, y in K C*y

then U 4~ F has a fixed point. Krasnoselskii’s theorem has been extended by
Nashed and Wong [9] to the case U is either a g—contraction or a bounded

linear operator such that UP is a p—contraction for some p,

Our aim in this paper is to present another variant to Krasnoselskii’s theo-
rem and its applications to the existence of periodic solutions of differential
equations on a Banach space. In our version, K is the closure of an unbounded
open convex subset of X, F is a bounded-compact operator and the condition
(*) is to be replaced by the following weaker one

Uzx 4 Fzx e K for every x in K **)
We shall consider operators that are quasibounded in the following sense
(Gramas [3])
limsup | Tx |/l x| < o
2] — o

It T is a quasibounded operator, we put
IT|=Imsup [Tz /fz].
|zl o
Then | T | is called the quasinorm of 7. If T is bounded linear then T is pre-
cisely equal to the norm of T as a bounded linear operator.

The remainder of the paper is divided into two sections. Section 1 is devo-
ted to a fixed point theorem of the Krasnoselskii type. Section 2 is devoled to
its applications to the existence of periodic solutions of differential equations
in Banach spaces,



1. A FIXED $OINT THEOREM OF -KRASNOSELSEI TYPE

:Through‘o‘ut this~ paper:—X --‘denotés -a real -Banack space, ¢ dendted an
unbcunded convex open set in X and Cl(G) its closure.

DEFINITION 1. 1. Let p be a continuous real-valued function on the positive
real number such that

O=<o(ry<r for r=0.
An operator U : CK{G) -~ X is said to be a g-coniraction (Boyd and Wong [2]) if
NUx — Uy i < e(flz —yil ) for every x, y in GI(G).
DEFINITION 1.2. A continunous operator F : Cl(G) -» X is said lo be bounded-

compact if subset F{1) is relatuely compact for each bounded subset A of CY&)
such that F(A} is bounded.

We have the following theorem
THEOREM 1. Lel G be an unbounded convex open set in X and lel O € G. Lel
U:CHGy -~ X
be ezther a g-conlraction ar the restriction io CI{G) of « bounded linear operator U*

on X such that (U Y is a @-contraction Tor some p > 1. Let

; . oo B DI C!(J) X
be a bozmr’ed-co,npact operalor. Pul T'==U -+ F and suppose that T maps Ci(G;
mio itself If | T\ < 1 then T has o fizea poinl.

Remarks. 1) Nofe that if in addition G is bounded and T maps ClE) into
i'self then F is.compact. This case has been studied by Ang-Hoa (see
Theorem 1 [1}). N | o

2. This theorem isto be compared with Theorem 4 of Browder —Nussbaum [3]
and with Corollary 6 of Hale and Lopes {6], and it is a genera lization of Theo-
rem 1 part (ii) of Ang-Hoa {loec. mt) '

For the -jroof of Theorem 1. we shall need some properties of the
Browder-Nussbaum degree {3]. Let G be a domain in X and H F be mappmas
- of Cl(G) into X salisfying the following conditions: ' :

“‘a) For each fized v in CI(&), the mapping
L Ll §, 1 ClG)—» X AR
defined by S u=Hu+ Fois a homeomorphism G. onto an open eubset G
of X, mapping Cl{&) bomeomorphm lly onto CRG ).
b) The mapping v —» S is alocally compact mappingof CI(G)into the space

of homeomorphisms of CI{G) info X mth the topolo v of uniform convergence
on Ci(G.

- Let Tu == Hu -~ Fu for u in CKG), Suppose T 1(0) is a compact ‘subset of
G Then deg(T, G, O)yis defined. (In fact, the Browder — Nussbaum degree is
defined for more general operalors, but. this simpiified version is all that we
shall need).

- The fohowma prop{)smon is 1mp11c1t1y contamed in the Browder — Nuss-
baum paper (loc, cl.t)
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PROPOSITION 1. (1) Jf df’giT G, 0) =2 0, then fhere exisls an x in G such
f.hﬂf i x == 0 . X

(ify Let A B be contzmmus mappngs of CZ((‘) X [0 1] in'o Xsuch zhaf A( t)
and B(.,1) are cortinuous uriformly with respect fot in (0, 1], and for each
0 <<t 1, the map A () = A(., I} isa homeomorphism of G onlo an open sel

G of X, taking Cl(G) Izomeomozphzcaz’ly onlo Clits, ) and the map B, () == 8.0

Is a locally compact operator of CI-’(: into X {i, e. each point x of CLG) has a
nez_c_,hborhood N such that B (N) is .relaiivelg compacl), Suppose lhal for.each

0 <t 1, the pair 4,, B, sa[zsfzes condilion (&) above, Suppose furiher that for
each t, Lhe set (A —i— B, )“'1(0) is compact and N

4,4+ 30 n aG—-¢
where G denotes the boundary of G. Then
deg( Ay + By, G, 0 = deg( A; + B;, G, O).
- We shail also need the following lemmas:

- LEMMA 1. 1. LetU, F satisfy the condilions of Thecrem 1. Then for ‘each
0 <t < 11he map H = I — {U is a homeomorphism of G onfo open subsel of X,

taking Cl (&) homeomorphzcal’y onfo Cl (H (G)s
Proof. We have _ o
e —yl —o(lz—yH<I H (x) - H, )} \<\‘” x — gl '"i-,-(P(E]x"_“ y [ which
show that H is a homeomorphism of Cl(G) onto a closed subset ¢f X, We shall
show that H (G) is an open subset of X. Let xp € G, and let r >0 be such that

- the closed ball B(zo; r) is contained in G. Put p = snp{cp(s) OLs T Then

p < r, Forv with [|v || < r — p define the map V on the closed ball B (O r)
as follows. :

Vh =AUlme + h)y — gy, + v - -
where Uy = (U(z,). We shall show that V maps B°(0, r) into 1tself Indeed
N Van<<| 0z + J’?) — W) | +nvl-Hte{TRY) +ilvll Sp-+F —p=r.

Since, it is ciear that V is a ¢- contraclion, V has a fixed point I by a theorem
of Boyd and Wong (loc, cit.) i.e.

o h= Uy A B) - g +0 -
or

Zo + b — WW(xo + k) = 20 — o + s
We have proved that the open ball B(xy — yoo r — p} is contained in the
image of B'(x,, r) under fi, . It followslhat G has am open image under H,

as claimed, .
The case 7 is the resiriction to Cl(G) of a bounded linear operator U’ such

that (U')Pis a g-conlraction for some p < 1is handled in a similar way.
LEMMA 1. 2. Let U, F T satzsfg the condilions of ’_IheOI em 1. Then for each
0 <1 << 1, the sel (I — tT)~X(0) is compact. '—
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Remark. Note that T'cen map some bounded sets onto unhounded sets.

Proof. Since | T | < 1, there exists for each & with | T | < k <= 1 an r such
that [Tz | <k ||z || forall z in CHG) with |z | >» r. This follows that for all a
satisfying ' : '

z=1T(x) with 0 I 1
we must have [J x| << r. Put
A = (I —1T)71(0)
then Ai is closed and bonnded. We have [urthermore
‘ iF(AI Y= — tU)At
which shows that F(4,) is bounded for each 0 <t <1 and 4, = {0}. it follows
from the bounded-compactness of F that F(4, ) is relatively compact,

Since I—iU is homeomorphism for each 0 <t < 1, 'hy Lemma 1,1, and since
A = (I —1)-? tF(4, )
the set A, is compact. ~ -

Proof of Theorem 1. Since F is bounded-compact, F is Iocally compact, If
I-T does not vanish on the boundary 8G of G, then, sinece Oc & and since G is
convex, [—{T' does not vanish on 8G for 0 < t<{'1. Consider the homotopy [—(T,
0<i< 1. From Lemmas 1.1, 1.2 and Proposition 1.1 it follows that

deg (I-T, G, O)=deg (I, G, 0)= 1.
Hence T has a fixed point in G, The proof is complete.
" COROLLARY 1. Lel U be either a w-contraclion on X or a bounded linear

‘operator on X such that some iteraie UP, p>>1, is a g-coniraction. Let F be a
bounded—compact operalor on X. Put T =U -+ F.
If |-'T 1 <1 then R(I—T) =X, where R denoies the range of a map.

Proof. This follows from Theorem 1'for G = X. Indeed, if y is any point
of X, then the operator 7 4 y satisfies | T-+y | <1 Hence, by Theorem 1,
T -y has a fixed point, say z, which clearly satisfies

x —Tx =y,

2. APPLICATIONS

As an application of the previous result, we shall consider the w-periodic
equation
dx

— =AWz + f(h, @), 1>0 , M

where the unknown z is a funection on [0, <=] to a real Banach space X and A(f)
and f satisfy the conditions:

(A) {A(i)} is a family of bounded linear operators .on X, continueus and
periodi¢ with period w in t, )
(A2) The map f: [0, =) X X -» X is continuousin (¢, x), periodic with period

int and f is compact, ie, f maps bounded subsets of [0, =) X X into relatively
compact subsets of X, ‘ . '
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(A;) For any given ¢ in X, the equation (I) has a unique solulion x(p)(f) on
10, o) satisfying
w(p)0) = ¢
We shall begin with tbe following
THEOREM 2. Let X be a real Banach space with norm |.[. Let:
(f) { At} be a family of bounded linear operators on X and confinuous (n f.
(i) f : [0,») X X — X be compact,

(i) im | (1, ) / frl= 0 uniformly in ¢ on each bounded interval of (0 ,ocj. -
x
Consider the initial value problem

%A(l) X+ )tz

a0)=9. | | an
Then:
(@) The Problem (II3 has a soluiion ¢n {0. a] fora=> 0 arbrirarq.

(b) If we suppose in addition that
(iv) For any given ¢ in X, the Problem (II) has a anzque solation x(cp) on [0,al,
Then, the map o — z(p) Is continuous, and furfhermore, the map
T:[0,a XxXx—X
defined by T(t, @) = z(@){¥) is conlinuous in {t, ).
Proof. The Problem (II) is equivalent to the integral equation

t
o) = ¢ + Sﬂ[A(S) o(s) + F s,z (s)) ds, (>0

Let E be the Banach space of continuous functions on [0, a] to & with norm

] =sup {|a®), t [0, al}.
We define the operators U, F: E — E by

U)t) = .';' A(s)x(s)ds,

i | @
F)(ty = § f(s,x(s))ds + g, for all { & [0, al.
(#]
Then [/ is a bounded linear operator and .
07| < (ma)?/n!forallne N (5)
where
m=sup {[AD],te[0,a]} G

For the proof of Theorem 2, we need some lemmas
LEMMA 2.1. Let E be a Banach space with norm | .| and let U be a bounded
linear operafor on E such that , . '

limsup (U Y2 =a < 1.

T—> oo
Then there exists an equivalent norm | .|, on E such that
MUy, <t



Proof. For k sueh that « = k < 1, there isino

(1 U YR < kor jUL| < k"
We put
lzl,= 2|z, z ek
G . : ‘
It is clear that 1.] ¢ is a normon £ and there is K => 1 such that
lrl<lz, | <&jx] for all e L,
Furthermore, for x = 0, we have
fel,;=l=z| + Uz},
o1 [U.v|1=_l:v{1_.|m]=§;(1-——-1/1{)1:n]1.
Heace U 4= 1. The proof is.complete.
Let L' be defined by (4), thea from (5) we have
o lim sup ()] I'® fj ¥a < lim ma
n—» o0 ' n—>ea (1)
Hence there exists an equivalent norm on E such that

Lo,

Ifn=(,

-such that for all n».n

)

(6)

@)

LEMMA 2.2. Let F be defined by (4). Then F is compact and, | F | 1= = () where
| Fy 4 is the quasmo.rm of F correspondmg to the norm’ [ .1 on Edefinedin(6).

Proof. - We - first prcwe that F is continuous. Le! lim T, = x in . We

.'B---s- oo
claim that:

(2) For any & > 0, there exist n and & > 0 such that for all t te [0 aj,

]t—il <8andn>n0,wcna\e
te, ) — =, 1 =23

Indeed, since z is umfmmly conlinuous on [0,a], there is 6 = 0 such thzt

forall ,{ €0, a], |t —~1] < §,
B |z (t) — & (")} _<'3/3,

i i = i s1e] i [ )
Sinee lim x = z, there is ny such that for all n > n,

|z, () —=x (l) i <: ¢/3 _fdx_' all t ¢ [Ga]
Foralrﬁna and]i-i’i <8wegnt '

lz, O —z,MMI<I] x, (t)—-x(t)+m(z)--x(t)|+; :t:(i)n-a:

(b) The set B= | % /5 (0] -
{ ne N
is relatively compact in X, _

-8
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Indeed, consider a sequence (x {(s,.)) in B. We can assume tha!
nyp VK EEN

lim _ . N
oo Sk = 5 We prove that

kimm :cnk (s,) = z(s).

For any given ¢ > 0, by (a), there are n and 8 > 0 such that for all [{—1]<C
<< & and n, >n

n

lwnk (O)—= « () |< E-;/3- :

Since lim
b—>oo

k> ki, ]‘ék —8 |< b and !a:n (1) -a:(l)l <Z¢/3 for all t € [0,a]. Consequently, for
k

Hm =

s, =— & and
k a koo

n, = there exists ko > n “such that for eall

k >k ,wehavelr (s)—z) i< oz (5)—x. (s)]+ lx S)—x(s) | <«
: [P, 809 [< @, G)=2, O [+ 2, 9=
This implies lim @ (s;) = z(s) and hence the set B is relalively compact.
oo &

(¢) lim F(z_)=F(a)

N
Let B be the set defined by (b). Put
A=Cl B v z([0,a]).

Then lhe set 4 is compact and f is uniformly continuous on {0,a) X A. For any
given ¢ >> 0, there exists & >> 0 such that for all [r—y| <&

if (s, ) = f(s,y)l < ¢/(1+ a).

Since lim %, = &, there exists n such that for all n >n,
n—sco

[z, (5)—z(s)| <= & for all 5 & [O,al.
Consequently

' t
Flx WD—F@)() l <[ [ f(s,2(s)—F(s,x(s)) | ds

< 1z/(14-a) < ¢ for all ¢ & [0,a]

which implies that lim F(z )= F(z). Hence F is continuous on E. Now, we
1

prove that F is compact. Let Q be a bounded set in E. Put
B =co { f(s;x )/ se[0, al}
- xel

where co denotes the closed convex huil of a sel. Then by the compactness of
f. the set 73 is compact in A" It follows Lhat the family of functions {F(a:)/xen}
is equicontinuous. Farthermore, for all ¢ € [0,al, we have

{F)(D) e} C B
which implies thal the set {F(x)]) ~r<Q} is relatively compact in X for all { in
[(.a]. Hence the set FiQ) is relatively compact in B, Thus F is compact,



Finally, we prove lim {| F(x) |~ =l =0. From (iil) and the compaciness
flzll—><=
of f, for any given € > 0 there exists N such that
G 1 fipl<N+esI4a)lglforallge X and ££[0, a]
(onsequently, .

: t
N F@YD [ =1 flea)ds + ¢ |
[0}

= Natce|z||4l¢|, foralltin [0,al.

This implies that
|Fl= HmIF@ | lzl=0

llzli—>e=
Since the norms | « [and | - |4 are equivalent, we have also { F | ,=0.

Proof of Theorem 2. 2} We have, by (7) and Lemma 2.2
|U+F, <0+ 1F1,=1Ul; <L
Therefore, by Theorem 1, tbe operator U -+ F has a fixed point, say z, whlch

is precisely a solulion of (I} on [0, ale
b) We prove that the map ¢ — &{(9) is continuous.
lim ¢ =g¢, we put :

n—roce

Let (pneX,
T = x(¢n) and = x(¢).

~ This means that x and x are solutions of the intepral equations

t
2 D=0, +/ [4)z,(5) + Fls.z, (s,
A

i
() = ¢ + | [AE(s) + Flsa(s))] ds.

The remainder of the proof is split into a number of steps as follows.

Step 1. Let Q be a bounded set in X. Then the set
| B = {2(e)s) /s€ [0,0], o}
is boundel in X. Here a(p) is a solation of (II) satisfying the initial condition

(W) = ¢
Indeed, let m, N, ¢ be as in (5%) and (8), we have

] £
la(e)h) | <1 o1+ Azl | ds + J 1 Fls 2(@)s) | ds
o 4]

{ ' ¢
Lol 4§ m|aens) | ds+ [N Je/(1L+a)iz(e)s) | Jds
A

t
<ol +Nay+m4e/0 4 anf | 2ieds) | ds.
’ [¢]



By Gronwall's inequality we bave

bao)t) | <(jo!+ Nayem®*  for all tin [0, d]
K (M + Na)emat:

where M == sup { | ¢ | /¢ € Q}. Hence B is bounded in X as claimed.

Step 2. Let C= {z_ ./ ne N}. Then C is relatively compact in E.

We recall that the Kuratowskii measure of noncompactness on E is defined
as follows: for any bounded set A in E with norm .|,

a(A) = inf {d = 0 " A is covered by a finite number of
sets with diameters < d

The number a(A) satisfies:

— a{4d) = 0 < Ais relatively compact,

—If A C B, «(4) < a(B).

— (A + B) < a(4) + =(B)

For all ne N, we have

2, =+ Pe)+ (o, — o)

where U, I are defined in (4) and ¢ — ¢ are coastant functions. _

Now, since | U{, <1and F is compact hence T =U 4+ Fisa [|U|;—set

contraction, i. e.
«(T(Q) < IU ||1 a(2) for all bounded set £,

Let A = {¢, =~ 9,/ n & Nj, then, by lim ¢ = ¢, A is relatively

nreo
compact in E.
We have C < T(C) + 4
‘which implies that
o0 < «(T(O) < 11O, o(C) wilh | Uy, < 1.
It follows that o(C)= 0. Thus C is relatively compactin E.
) Ndw, we cha'im that lim T, T Indeed, from Step 2, the set C= {xn /neN}

n—rco

is relatively compact. Therefore there exists a convergent subsequence

LPut lim = =up
(xnk).kEN PRS
Since x, = U+ Fyz, + (cp — o) for all k and since limg, = ¢, we
k k k-—)oa k
have

y=U 4 F)y).

This means that y is a solution of (lI). Since the problem (D) has 2 unigne

‘solulion, we have x =y = lim z_ .
k—>oo k
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Thus, every conver_entsabsequence(z, )k of (z, Yo has the same limit z.

Since the set G is relatively compsct it fo!lo“sthat lim x = .
. . p—>oce )

Finally, we prove that T is continuous in (4, ¢). Let t €f0, allimt = t

n—»oo
and ¢ € X, 'Am ?, = . Put x, .L(Cp ) and T = .l((p} then Tlim a:'——-a:. '
n n—r<e . n—"OO .

We have ‘ o
tz (8 )~z O1< |z (i )—a )|+ () —ab ]
This implies that lim 2 ({ )= 2(f). This means that
nTroe
lim T (t,, ¢,) = T, o)
n—roca
Hence T is continuous ic (¢, ¢). The proof is complete.
Now, we consider the w-periodic equation
dz o
FTa A(f}w(t) + £, -’C(t)), by

where A(f) and f satisfy the conditions (4,), (Az) (44)

--Suppose farther that
(A)) lllm (fit,x)| ~ |« | = 0 uniformly on [0, w].

i-T 00

From Theorem 2, we know that under conditions (4 ); (A ), (4,), for any
¢ in X the equation (I)-hasa ‘solulion- x(¢) on [0, w] satisfying :c(cp) (0)=¢, and
if in addition we assume (A ), then the map ¢ — x(gp) is contlnuous.

Fort > 0, let T({): X — X be defined by T(i)((p) = 2(p}f).

From Theorem 2 and the condition {4,), since A(f) and f are periodic thh
period w, we have that the map (I, ¢) — T(\)(p) is conlmuous and T(t 4 o) =
= T(t). T(w) for all t > 0.

- Let U (t, s) be the evolution operalor assobiated with IO, i e.U (5 'is' a
family of bounded linear operators on X into itself defined for 0 < s KT <Tes,
strongly continuous in (i, ) and sausf} ing the conditions:

— U, 8)% U(s, = U(t, 1), U(s,5y = I 1lhe xdentlty map)

— LUCE . AWOUY, sz, ’

— _--———uab(‘_’ NE Ug, sy A(s):c.I

ds . '
Then we have

(@) (1) = UYL, O)p +s U, s)f G T@ s 1 >0 ®



Consequentiy

. _
(@) (w) = U{w, C)p-+ [ Ufos, 8)f (s, Ts)p) s
[

or
m r
T(w)g = U@ 09 + § Ulw. 9f(s. Tls)o)ds
Noie thai gince A(t) is perzodw with penod
Ut + w, O‘ =U(t,0). U(w, 0) for all # > 0.
Now, put T} = T(m), ('1 = U(w, 0) and

FI((P) = S U(w, S)f(s T(S)(CP))D-'S

(10)
Then we hae Iy = U, -+ F,.
, An w-periodic soluticn of the equation () will be a solutiocn x(¢p)({) for
r which ¢ is a fixed point of T
We recall that tie family {A(#)} is said to be stable if there exist constants
a »1 and b = 0 such that
_ UL 0)]| < ae™b for alii > 0.
We have the ollowma *heorer _
THEOREM 3. Lei lie equalion (1) satisfy the conditions (A,) (4,), (1), (4,)
Suppose that the family {A(1)} is stable. Then the equation (i) has an w-periodic
solution,
Proof. The proof is split into a number of steps
Step 1. The operator F, defined by (10) {s compact. Let ¢ < X, lim ¢
n-roe
Then, by Theorem 2, lim 2(p ) = a(p) in E = {=:[0, o] = X is continncus}
=>co

with norm sup. This means that the sequence (7Y )(fpn‘))n iv uniformly conver-
geat to T(.)(p) on [0, w]. From (b} in the proof of Lemma 2.2 the set

A== CL{TE) (o )sg[(} o] YU {T(s) (@}/s € [0, w]}
neN

is compaci which implies that f is uniformly continuous on {0, ] x 4. This
follows thai ithe sequence (f{., I'(.){p- ey comverges-uniformly to f(, T(.) (@)

on [0, w] and hence lim F(p = ll(tp) This shows that /; is continuous.
n-—r 0o

Let O be a bounded set in X. Then, by the proof of the part {(b) of Theo-
rem 2, the set

s BE{TO@E (0. 0) ¢ s )
is bounded in X. -

Since f is compact, the set f([0, @] x B) is relatively compact in X.
Consequently the set :

- U@y ([0, ] X 10, w] X B))
is compact. -



Since Utw, $) f(s, T(s) ¢) & D forall s & [0,w] and ¢ € Q we havé
ay

Fi(g) = § U(w, ) fis, T(s)p)dse »D for all ¢ & Q,
Qo

This shows that Fi(Q) is relatively compact and hence F; is compact.
Step 2. There exists an eguivalent norm | .11 00X suchthat [Usll, <1
Proof. Since {A(#)} is stable, there exist ¢ >> 1 and b > 0 such that
1 UG, 0) | =|| U2 < ae” ™ for all n & N.
Consequently

i/n  ~bw —bw

lim sup () U’; il )1/1l < lim a e = e =< 1,

n—rco n—>oe

This shows that, by Lemma 2. 1, there is an equivalent norm |.{; on X
defined by

oo
lzj1=Il2|+ 2 Uz
1

For thisnorm, we have | Uy fj1 << 1. -

Step 3. | Fy}1==0.

Proof. For any ¢ > 0, from (A,), there exists N > 0 such that | f({, )| <
e N+ celol forallp e X and ¢ € [0, o]
. Putm =sup { jUE 5) |, 0 s <t K v},
From (9), we have

!
Pz < migl+m{ [N 4 e(| x{o}s) | ]ds
o]

i
m[|¢l+ N]+me[|x(e)s)|ds

which implies, by Groawall’s inequality
| 2D | < m[ [ | +Nw] e™*“for all{ in [0,w].
We have ‘

—F, @) < S U @9 f (5, 7 (@) () de
0

0]

<m{IV+e)z (@) ()1
0

< mNo + o m? €[] + Noj e™®
This shows that | F | m? wee™®,
Since € > 0 is arbitrary, we have |F, | = 0.

Since the norms |.| and |.|, are equivalent, we also have |F, |, = 0.
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Proof of Theorem 3. We have - | T, 1,< 17, 1, + | F, | ; <1. Hencs,
by Theorem 1, T, has a fixed point ¢ and ihe solution z (¢) is precisely a

periodic solution of the equation I}, The proof is complete. ‘
Remark. The condition (A;) of Theorem 3 in this paper is weaker than the

condition (A,) of Theorem 2 in [7].

Remark. The referee pointed out (rightly) in the first version of the manuscript
that the uniform continuity of the solution operator with respect to the initial
data as contained in (A,) could be replaced by the weaker condition of conti-

nuity of the solution operator. In the present revised version of the paper, it is
shown in the proof of Theorem 3 that even the comtinuity condition can be
dispensed with. (The continui ty of the solutlion operator follows directly irom
the conditions of the problem.). '
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