2

ON A FIXED POINT THEOREM OF KRASNOSELSKII AND ITS APPLICATIONS

LE HOAN HOA

INTRODUCTION

Let X be a Banach space and let K be a bounded closed convex subset of X. A well-known theorem of Krasnoselskii [8] states that if U is a contraction on K (i. e. $||Ux - Uy|| \le k ||x - y||$ for 0 < k < 1) and F is a compact operator on K such that

$$Ux + Fy \in K$$
 for every x , y in K (*)

then U+F has a fixed point. Krasnoselskii's theorem has been extended by Nashed and Wong [9] to the case U is either a φ —contraction or a bounded linear operator such that U^p is a φ —contraction for some p.

Our aim in this paper is to present another variant to Krasnoselskii's theorem and its applications to the existence of periodic solutions of differential equations on a Banach space. In our version, K is the closure of an unbounded open convex subset of X, F is a bounded-compact operator and the condition (*) is to be replaced by the following weaker one

$$Ux + Fx \in K$$
 for every x in K (**)

We shall consider operators that are quasibounded in the following sense (Gramas [5])

$$\lim\sup_{\|x\|\to\infty} \|Tx\|/\|x\| < \infty.$$

If T is a quasibounded operator, we put

$$|T| = \lim \sup_{\|x\| \to \infty} ||Tx|| / ||x||.$$

Then |T| is called the quasinorm of T. If T is bounded linear then T is precisely equal to the norm of T as a bounded linear operator.

The remainder of the paper is divided into two sections. Section 1 is devoted to a fixed point theorem of the Krasnoselskii type. Section 2 is devoted to its applications to the existence of periodic solutions of differential equations in Banach spaces.

Throughout this paper. X denotes a real Banach space, G denoted an unbounded convex open set in X and Cl(G) its closure.

DEFINITION 1. 1. Let ϕ be a continuous real-valued function on the positive real number such that

$$0 < \varphi(r) < r$$
 for $r > 0$.

An operator $U: Cl(G) \to X$ is said to be a φ -contraction (Boyd and Wong [2]) if $||Ux - Uy|| \le \varphi(||x - y||)$ for every x, y in Cl(G).

DEFINITION 1.2. A continuous operator $F: Cl(G) \to X$ is said to be bounded-compact if subset F(A) is relatively compact for each bounded subset A of Cl(G) such that F(A) is bounded.

We have the following theorem

THEOREM 1. Let G be an unbounded convex open set in X and let $O \in G$. Let

$$U: Cl(G) \rightarrow X$$
restriction to $Cl(G)$ of a bounded linear

be either a φ -contraction or the restriction to Cl(G) of a bounded linear operator U^* on X such that $(U^*)^p$ is a φ -contraction for some $p \geqslant 1$. Let

$$F:Cl(G)\to X$$

be a bounded-compact operator. Put T = U + F and suppose that T maps Cl(G) into itself. If |T| < 1 then T has a fixed point.

Remarks. 1) Note that if in addition G is bounded and T maps Cl(G) into i self then F is compact. This case has been studied by Ang-Hoa (see Theorem 1 [1]).

2. This theorem is to be compared with Theorem 4 of Browder-Nussbaum [3] and with Corollary 6 of Hale and Lopes [6], and it is a generalization of Theorem 1 part (ii) of Ang-Hoa (loc. cit.).

For the proof of Theorem 1, we shall need some properties of the Browder-Nussbaum degree [3], Let G be a domain in X and H, F be mappings of Cl(G) into X satisfying the following conditions:

(a) For each fixed v in Cl(G), the mapping

$$S_v : \mathrm{Cl}(G) \to X$$

defined by $S_v u = Hu + Fv$ is a homeomorphism G onto an open subset G_v of X, mapping Cl(G) homeomorphically onto $Cl(G_v)$.

b) The mapping $v \to S_v$ is a locally compact mapping of Cl(G) into the space of homeomorphisms of Cl(G) into X with the topology of uniform convergence on Cl(G).

Let Tu = Hu + Fu for u in Cl(G). Suppose $T^{-1}(O)$ is a compact subset of G. Then deg(T, G, O) is defined. (In fact, the Browder — Nussbaum degree is defined for more general operators, but this simplified version is all that we shall need).

The following proposition is implicitly contained in the Browder - Nussbaum paper (loc. ci.t).

PROPOSITION 1.1. (1) If $deg(T, G, 0) \neq 0$, then there exists an x in G such that Tx = 0.

(ii) Let A, B be continuous mappings of $Cl(G) \times [0, 1]$ into X such that A(.,t) and B(.,t) are continuous uniformly with respect to t in [0,1], and for each $0 \le t \le 1$, the map $A_t(.) \equiv A(.,t)$ is a homeomorphism of G onto an open set G_t of X, taking Cl(G) homeomorphically onto $Cl(G_t)$ and the map $B_t(.) = B(.,t)$ is a locally compact operator of Cl(G) into X (i. e. each point x of Cl(G) has a neighborhood N such that $B_t(N)$ is relatively compact). Suppose that for each $0 \le t \le 1$, the pair A_t , B_t satisfies condition (b) above. Suppose further that for each t, the set (A, t) = B(t) is compact and

$$(A_t + B_t)^{-1}(0) \land \partial G = \emptyset$$

where G denotes the boundary of G. Then

$$deg(A_0 + B_0, G, O) = deg(A_1 + B_1, G, O).$$

We shall also need the following lemmas:

LEMMA 1. 1. Let U, F satisfy the conditions of Theorem 1. Then for each $0 \le t \le 1$ the map $H_t = I - tU$ is a homeomorphism of G onto open subset of X, taking Cl(G) homeomorphically onto $Cl(H_t(G))$.

Proof. We have

 $\|x-y\|-\varphi(\|x-y\|)\leqslant \|H_t(x)-H_t(y)\|\leqslant \|x-y\|+\varphi(\|x-y\|)$ which show that H_t is a homeomorphism of $\mathrm{Cl}(G)$ onto a closed subset of X. We shall show that $H_t(G)$ is an open subset of X. Let $x_0\in G$, and let r>0 be such that the closed ball $B'(x_0,r)$ is contained in G. Put $\rho=\sup\{\varphi(s)\colon 0\leqslant s\leqslant r\}$. Then $\rho< r$. For ν with $\|\nu\|< r-\rho$ define the map V on the closed ball B'(0,r) as follows.

$$Vh = tU(x_0 + h) - y_0 + v$$

where $y_0 = tU(x_0)$. We shall show that V maps B'(0, r) into itself. Indeed

 $||Vh|| \le ||tU(x_0 + h) - tU(x_0)|| + ||v|| + t\varphi(||h||) + ||v|| \le \rho + r - \rho = r$. Since, it is clear that V is a φ -contraction, V has a fixed point h by a theorem of Boyd and Wong (loc. cit.) i.e.

$$h = tU(x_0 + h) - y_0 + v$$

or

$$x_0 + h - tU(x_0 + h) = x_0 - y_0 + v_{\bullet}$$

We have proved that the open hall $B(x_0 - y_0, r - \rho)$ is contained in the image of $B'(x_0, r)$ under H_t . It follows that G has an open image under H_t as claimed.

The case U is the restriction to Cl(G) of a bounded linear operator U' such that $(U')^p$ is a φ -contraction for some p < 1 is handled in a similar way.

LEMMA 1. 2. Let U, F, T satisfy the conditions of Theorem 1. Then for each $0 \le t \le 1$, the set $(I - tT)^{-1}(0)$ is compact.

Remark. Note that T can map some bounded sets onto unbounded sets.

Proof. Since |T| < 1, there exists for each k with |T| < k < 1 an r such that ||Tx|| < k ||x|| for all x in Cl(G) with $||x|| \ge r$. This follows that for all x satisfying

$$x = tT(x)$$
 with $0 \le t \le 1$

we must have $||x|| \leqslant r$. Put

$$A_i = (I - iT)^{-1}(0)$$

then A, is closed and bounded. We have furthermore

$$tF(A_i) = (I - tU)A_i$$

which shows that $F(A_t)$ is bounded for each $0 \le t \le 1$ and $A_0 = \{0\}$. It follows from the bounded-compactness of F that $F(A_t)$ is relatively compact.

Since I-tU is homeomorphism for each $0 \le t \le 1$, by Lemma 1.1, and since $A_t = (I-tU)^{-1} tF(A_t)$

the set A_j is compact.

Proof of Theorem 1. Since F is bounded-compact, F is locally compact. If I-T does not vanish on the boundary ∂G of G, then, since $0 \in G$ and since G is convex, I-tT does not vanish on ∂G for $0 \le t \le 1$. Consider the homotopy I-tT, $0 \le t \le 1$. From Lemmas 1.1, 1.2 and Proposition 1.1 it follows that

$$deg(I-T, G, 0) = deg(I, G, 0) = 1.$$

Hence T has a fixed point in G. The proof is complete.

COROLLARY 1. Let U be either a φ -contraction on X or a bounded linear operator on X such that some iterate U^p , $p \geqslant 1$, is a φ -contraction. Let F be a bounded—compact operator on X. Put T = U + F.

If |T| < 1 then R(I-T) = X, where R denotes the range of a map.

Proof. This follows from Theorem 1 for G = X. Indeed, if y is any point of X, then the operator T + y satisfies |T + y| < 1. Hence, by Theorem 1, T + y has a fixed point, say x, which clearly satisfies

$$x - Tx = y$$

2. APPLICATIONS

As an application of the previous result, we shall consider the w-periodic equation

$$\frac{dx}{dt} = A(t)x + f(t, x), t \geqslant 0$$
 (1)

where the unknown x is a function on $[0, \infty]$ to a real Banach space X and A(t) and f satisfy the conditions:

 (A_1) $\{A(t)\}$ is a family of bounded linear operators on X, continuous and periodic with period ω in t.

 (A_2) The map $f:[0, \infty) \times X \to X$ is continuous in (t, x), periodic with period in t and f is compact, i.e. f maps bounded subsets of $[0, \infty) \times X$ into relatively compact subsets of X.

(A₃) For any given φ in X, the equation (I) has a unique solution $x(\varphi)(t)$ on $(0, \infty)$ satisfying

$$x(\varphi)(0) = \varphi.$$

We shall begin with the following

THEOREM 2. Let X be a real Banach space with norm |. |. Let:

(i) $\{A(l)\}$ be a family of bounded linear operators on X and continuous in t.

(ii) $f:[0,\infty)\times X\to X$ be compact,

(iii) $\lim_{x} |f(t,x)| / |x| = 0$ uniformly in t on each bounded interval of $[0,\infty)$.

Consider the initial value problem

$$\begin{cases} \frac{dx}{dt} A(t) \times (t) + f(t,x), \ t \geqslant 0 \\ x(\theta) = \varphi. \end{cases}$$
 (II)

Then:

- (a) The Problem (II) has a solution on [0, a] for a > 0 arbitrary.
- (b) If we suppose in addition that
- (iv) For any given φ in X, the Problem (II) has a unique solution $x(\varphi)$ on [0,a]. Then, the map $\varphi \to x(\varphi)$ is continuous, and furthermore, the map

$$T:[0, a]\times X\to X$$

defined by $T(t, \varphi) = x(\varphi)(t)$ is continuous in (t, φ) .

Proof. The Problem (II) is equivalent to the integral equation

$$x(t) = \varphi + \int_{0}^{t} [A(s) \ x(s) + f(s, x(s))] \ ds, \quad t \ge 0$$

Let E be the Banach space of continuous functions on [0, a] to X with norm

$$||x|| = \sup \{ |x(t)|, t \in [0, a] \}.$$

We define the operators $U, F: E \rightarrow E$ by

$$\begin{cases} U(x)(t) = \int_{0}^{t} A(s)x(s)ds, \\ F(x)(t) = \int_{0}^{t} f(s,x(s))ds + \varphi, \text{ for all } t \in [0, a]. \end{cases}$$

$$(4)$$

Then U is a bounded linear operator and

$$||U^n|| \leq (m\alpha)^n/n! \text{ for all } n \in N$$
 (5)

where

$$m = \sup \{ || A(t) ||, t \in [0, a] \},$$
 (5')

For the proof of Theorem 2, we need some lemmas

LEMMA 2.1. Let E be a Banach space with norm $\|\cdot\|$ and let U be a bounded linear operator on E such that

$$\limsup_{n\to\infty} (\|U^n\|)^{1/n} = \alpha < 1.$$

Then there exists an equivalent norm $|\cdot|_1$ on E such that

$$\|U\|_1 < 1.$$

Proof. For k such that $\alpha < k < 1$, there is n_0 such that for all $n > n_0$ $(\| U^n \|)^{1/n} < k \text{ or } \| U^n \| < k^n.$

We put

ĊΙ

$$|x|_{I} = \sum_{0} |U^{n}x|, x \in E.$$
 (6)

It is clear that $[\cdot]_1$ is a norm on E and there is K > 1 such that

$$|x| \leqslant |x_1| \leqslant K|x|$$
 for all $x \in E$.

Furthermore, for $x \neq 0$, we have

$$|x|_{1} = |x| + |Ux|_{1}$$

 $|Ux|_{1} = |x|_{1} - |x| \le (1 - 1/K) |x|_{1}$

Hence $||U||_1 < 1$. The proof is complete.

Let U be defined by (4), then from (5) we have

$$\limsup_{n \to \infty} (\| U^n \|)^{1/n} \leqslant \lim_{n \to \infty} \frac{ma}{(n!)} 1/n = 0.$$

Hence there exists an equivalent norm on E such that

$$\|U\|_1 < 1. \tag{7}$$

LEMMA 2.2. Let F be defined by (4). Then F is compact and $|F|_1 = 0$ where $|F|_1$ is the quasinorm of F corresponding to the norm $|.|_1$ on E defined in (6).

Proof. We first prove that F is continuous. Let $\lim_{x\to\infty} x_n = x$ in E. We claim that:

(a) For any $\varepsilon > 0$, there exist n_0 and $\delta > 0$ such that for all $t, t \in [0, a]$, $|t-t| < \delta$ and $n \geqslant n_0$, we have

$$|x_n(t) - x_n(t')| < \varepsilon/3.$$

Indeed, since x is uniformly continuous on [0,a], there is $\delta > 0$ such that for all $t, t \in [0, a], |t - t'| < \delta$,

$$|x(t)-x(t')|<\varepsilon/3.$$

Since $\lim x_n = x$, there is n_0 such that for all $n > n_0$

$$|x_n(t)-x(t)|<\varepsilon/3 \quad \text{ for all } t\in[0,a].$$
 For all $n\geqslant n_0$ and $|t-t'|<\delta$ we get

$$|x_n(t)-x_n(t')|\leqslant |x_n(t)-x(t)+x(t)-x(t')|+|x(t')-x_n(t')|<\varepsilon.$$

(b) The set $B = \begin{cases} x_n(s)/s \in [0,a] \\ n \in N \end{cases}$. is relatively compact in X.

Indeed, consider a sequence $(x_{n_k}(s_k))_{k \in N}$ in B. We can assume that $\lim_{k \to \infty} s_k = s$. We prove that

$$\lim_{k\to\infty} x_{n_k}(s_k) = x(s).$$

For any given $\varepsilon > 0$, by (a), there are n_0 and $\delta > 0$ such that for all $|t-t'| < \delta$ and $n_k \gg n_0$

$$\left|x_{n_{k}}(t)-x_{n_{k}}(t')\right|<\varepsilon/3.$$

Since $\lim_{k\to\infty} s_k = s$ and $\lim_{k\to\infty} x_{n_k} = x$ there exists $k_o \geqslant n_o$ such that for all $k\geqslant k_o$ $\left|s_k-s\right|<\delta$ and $\left|x_{n_k}(t)-x(t)\right|<\varepsilon/3$ for all $t\in[0,a]$. Consequently, for $k\geqslant k_o$, we have $\left|x_{n_k}(s_k)-x(s)\right|\leqslant \left|x_{n_k}(s_k)-x_{n_k}(s)\right|+\left|x_{n_k}(s)-x(s)\right|<\varepsilon$.

This implies $\lim_{k\to\infty} x_{n_k}(s_k) = x(s)$ and hence the set B is relatively compact.

(c)
$$\lim_{n\to\infty} F(x_n) = F(x)$$
.

Let B be the set defined by (b). Put

$$A = \operatorname{Cl} B \cup x([0,a]).$$

Then the set A is compact and f is uniformly continuous on $[0,a] \times A$. For any given $\epsilon > 0$, there exists $\delta > 0$ such that for all $|x-y| < \delta$

$$|f(s, x) - f(s,y)| < \varepsilon/(1+a).$$

Since $\lim_{n\to\infty} x_n = x$, there exists n_o such that for all $n \geqslant n_o$

$$|x_n(s)-x(s)| < \delta$$
 for all $s \in [0,a]$.

Consequently

≱.

$$|F(x_n)(t) - F(x)(t)| \le \int_0^t |f(s, x(s)) - f(s, x(s))| ds$$

$$< t \ge /(1+a) < \varepsilon \text{ for all } t \in [0, a]$$

which implies that $\lim_{n\to\infty} F(x_n) = F(x)$. Hence F is continuous on E. Now, we

prove that F is compact. Let Ω be a bounded set in E. Put

$$\mathcal{B} = \overline{\operatorname{co}} \left\{ f(s, x (s)) / s \in [0, a] \right\}$$

$$x \in \Omega$$

where \overline{co} denotes the closed convex hull of a set. Then by the compactness of f, the set \mathcal{B} is compact in X. It follows that the family of functions $\{F(x)/x\in\Omega\}$ is equicontinuous. Furthermore, for all $t\in[0,a]$, we have

$${F(x)(t)/x\in\Omega}\subset \mathcal{D}$$

which implies that the set $\{F(x)|I\rangle/x\in\Omega\}$ is relatively compact in X for all I in [0,a]. Hence the set $F(\Omega)$ is relatively compact in E. Thus F is compact.

Finally, we prove $\lim ||F(x)|| / ||x|| = 0$. From (iii) and the compactness $||x|| \to \infty$ of f, for any given $\varepsilon > 0$ there exists N such that $(8) |f(t,\varphi)| \leq N + \varepsilon/(1+a) |\varphi|$ for all $\varphi \in X$ and $t \in [0,a]$. Consequently,

$$|F(x)(t)| = |\int_{0}^{t} f(s,x(s))ds + \varphi|$$

$$\leq Na + \varepsilon ||x|| + |\varphi|, \text{ for all } t \text{ in } [0,a].$$

This implies that

$$|F| = \lim_{\|x\| \to \infty} |F(x)| / \|x\| = 0.$$

Since the norms $|\cdot|$ and $|\cdot|_1$ are equivalent, we have also $|F|_1 = 0$.

Proof of Theorem 2. a) We have, by (7) and Lemma 2.2

$$\mid U+F\mid_{\mathbf{1}}\leqslant \parallel U\parallel_{\mathbf{1}}+\parallel F\parallel_{\mathbf{1}}=\parallel U\parallel_{\mathbf{1}}<1.$$

Therefore, by Theorem 1, the operator U + F has a fixed point, say x, which is precisely a solution of (II) on [0,a].

b) We prove that the map $\phi \to x(\phi)$ is continuous.

Let
$$\varphi_n \in X$$
, $\lim_{n \to \infty} \varphi_n = \varphi$, we put
$$x_n = x(\varphi_n) \text{ and } x = x(\varphi).$$

This means that x_n and x are solutions of the integral equations

$$x_n(t) = \varphi_n + \int_0^t [A(s)x_n(s) + f(s,x_n(s))]ds,$$

$$x(t) = \varphi + \int_0^t [A(s)x(s) + f(s,x(s))] ds.$$

The remainder of the proof is split into a number of steps as follows.

Step 1. Let Ω be a bounded set in X. Then the set

$$B = \{x(\varphi)(s) / s \in [0,a], \varphi \in \Omega\}.$$

is bounded in X. Here $x(\varphi)$ is a solution of (II) satisfying the initial condition $x(\varphi)(0) = \varphi$.

Indeed, let m, N, ε be as in (5') and (8), we have

$$|x(\varphi)(t)| \leq |\varphi| + \int_{0}^{t} |A(s)x(\varphi)(s)| ds + \int_{0}^{t} |f(s x(\varphi)(s))| ds$$

$$\leq |\varphi| + \int_{0}^{t} m |x(\varphi)(s)| ds + \int_{0}^{t} [N + \varepsilon/(1+a) |x(\varphi)(s)|] ds$$

$$\leq (|\varphi| + Na) + (m + \varepsilon/(1+a)) \int_{0}^{t} |x(\varphi)(s)| ds.$$

By Gronwall's inequality we have

$$|x(\varphi)(t)| \le (|\varphi| + Na)e^{ma+z}$$
 for all t in $[0, a]$ $\le (M + Na)e^{ma+z}$

where $M = \sup \{ | \varphi | / \varphi \in \Omega \}$. Hence B is bounded in X as claimed. Step 2. Let $C = \{x_n / n \in N \}$. Then C is relatively compact in E.

We recall that the Kuratowskii measure of noncompactness on E is defined as follows: for any bounded set A in E with norm $|\cdot|_{\tau}$

$$\alpha(A) = \inf \left\{ d > 0 / A \text{ is covered by a finite number of sets with diameters } \leqslant d \right.$$

The number $\alpha(A)$ satisfies:

 $-\alpha(A) = 0 \Leftrightarrow A$ is relatively compact.

- If
$$A \subset B$$
, $\alpha(A) \leqslant \alpha(B)$.

$$-\alpha(A+B)\leqslant \alpha(A)+\alpha(B)$$

For all $n \in N$, we have

$$x_n = (U + F)(x_n) + (\varphi_n - \varphi)$$

where U, F are defined in (4) and $\varphi_n - \varphi$ are constant functions.

Now, since $\|U\|_1 < 1$ and F is compact, hence T = U + F is a $\|U\|_1$ —set contraction, i. e.

$$\alpha(T(\Omega)) \leqslant ||U||_{I} \alpha(\Omega)$$
 for all bounded set Ω .

Let $A = \{ \varphi_n - \varphi / n \in N \}$, then, by $\lim_{n \to \infty} \varphi_n = \varphi$, A is relatively

compact in E.

We have $C \subset T(C) + A$ which implies that

$$\alpha(C) \leqslant \alpha(T(C)) \leqslant ||U||_1 \alpha(C) \text{ with } ||U||_1 < 1.$$

It follows that $\alpha(C) = 0$. Thus C is relatively compact in E.

Now, we claim that $\lim_{n\to\infty} x_n = x$. Indeed, from Step 2, the set $C = \{x_n / n \in N\}$

is relatively compact. Therefore there exists a convergent subsequence $(x_{n_k})_{k\in\mathbb{N}}$. Put $\lim_{k\to\infty}x_{n_k}=y$.

Since $x_{n_k} = (U + F)x_{n_k} + (\varphi_{n_k} - \varphi)$ for all k and since $\lim_{k \to \infty} \varphi_{n_k} = \varphi$, we

have

$$y = (U + F)(y).$$

This means that y is a solution of (II). Since the problem (II) has a unique solution, we have $x = y = \lim_{k \to \infty} x_n$.

Thus, every conver ent subsequence $(x_{n_k})_k$ of $(x_{n_k})_n$ has the same limit x. Since the set C is relatively compact, it follows that $\lim_{n \to \infty} x_n = x$.

Finally, we prove that T is continuous in (t, φ) . Let $t_n \in [0, a]$, $\lim_{n \to \infty} t_n = t$

and $\varphi_n \in X$, $\lim_{n \to \infty} \varphi_n = \varphi$. Put $x_n = x(\varphi_n)$ and $x = x(\varphi)$: then $\lim_{n \to \infty} x_n = x$.

We have

$$\mid x_{n}(t_{n})-x\left(t\right)\mid\leqslant\mid x_{n}(t_{n})-x\left(t_{n}\right)\mid+x(t_{n})-a(t)\mid$$

This implies that $\lim_{n\to\infty} x_n(t_n) = x(t)$. This means that

$$\lim_{n\to\infty} T(t_n, \varphi_n) = T(t, \varphi).$$

Hence T is continuous in (t, φ) . The proof is complete.

Now, we consider the ω -periodic equation

$$\frac{\mathrm{d}x}{\mathrm{d}t} = A(t)x(t) + f(t,x(t)), \ t \geqslant 0 \tag{1}$$

where A(t) and f satisfy the conditions (A_1) , (A_2) (A_3) .

Suppose further that

$$(A_{\mu})$$
 $\lim_{|x|\to\infty} |f(t,x)| / |x| = 0$ uniformly on $[0, \omega]$.

From Theorem 2, we know that under conditions (A_1) , (A_2) , (A_4) , for any φ in X the equation (I) has a solution $x(\varphi)$ on $[0, \omega]$ satisfying $x(\varphi)$ $(0) = \varphi$, and if in addition we assume (A_3) , then the map $\varphi \to x(\varphi)$ is continuous.

For
$$t \geqslant 0$$
, let $T(t): X \longrightarrow X$ be defined by $T(t)(\varphi) = x(\varphi)(t)$.

From Theorem 2 and the condition (A_3) , since A(t) and f are periodic with period ω , we have that the map $(t, \varphi) \to T(t)(\varphi)$ is continuous and $T(t + \omega) = T(t)$. $T(\omega)$ for all $t \ge 0$.

Let U(t, s) be the evolution operator associated with (I), i. e. U(t, s) is a family of bounded linear operators on X into itself defined for $0 \le s \le t < \infty$, strongly continuous in (t, s) and satisfying the conditions:

$$-U(t, s), U(s, r) = U(t, r), U(s, s) = I \text{ the identity map},$$

$$-\frac{\partial U(t, s) x}{\partial t} = A(t)U(t, s)x,$$

$$-\frac{\partial U(t, s) x}{\partial s} = -U(t, s) A(s)x.$$

Then we have

$$x(\varphi)(t) = U(t, 0)\varphi + \int_{0}^{t} U(t, s) f(s, x(\varphi)(s)) ds, t \geqslant 0.$$
 (9)

Consequently

$$x(\varphi)(\omega) = U(\omega, 0)\varphi + \int_{c}^{\omega} U(\omega, s) f(s, T(s)\varphi) ds$$

or

$$T(\omega)\varphi = U(\omega, 0)\varphi + \int_{0}^{\omega} U(\omega, s)f(s, T(s)\varphi)ds$$

Note that, since A(t) is periodic with period

$$U(t + \omega, 0) = U(t, 0)$$
. $U(\omega, 0)$ for all $t \geqslant 0$.

Now, put $T_1 = T(\omega)$, $U_1 = U(\omega, 0)$ and

$$F_1(\varphi) = \int_0^{\omega} U(\omega, s) f(s, T(s)(\varphi)) ds.$$
 (10)

Then we have $T_1 = U_1 + F_1$.

An ω -periodic solution of the equation (I) will be a solution $x(\varphi)(t)$ for which φ is a fixed point of T:

We recall that the family $\{A(t)\}$ is said to be stable if there exist constants a > 1 and b > 0 such that

$$||U(t, \theta)|| \leqslant ae^{-bt}$$
 for all $t \geqslant 0$.

We have the following theorem

THEOREM 3. Let the equation (1) satisfy the conditions (A_1) (A_2) , (A_3) , (A_4) . Suppose that the family $\{A(t)\}\$ is stable. Then the equation (1) has an ω -periodic solution.

Proof. The proof is split into a number of steps:

Step 1. The operator F_1 defined by (10) is compact. Let $\varphi_n \in X$, $\lim_{n \to \infty} \varphi_n = \varphi$.

Then, by Theorem 2, $\lim x(\varphi_n) = x(\varphi)$ in $E = \{x : [0, \omega] \to X \text{ is continuous}\}$

with norm sup. This means that the sequence $(T(\cdot)(\varphi_n))_n$ is uniformly convergent to $T(.)(\varphi)$ on $[0, \omega]$. From (b) in the proof of Lemma 2.2 the set

$$A = Cl \left\{ T(s) \left(\varphi_n \right) / s \in [0, \ \omega] \right\} U \left\{ T(s) \left(\varphi \right) / s \in [0, \ \omega] \right\}$$

is compact which implies that f is uniformly continuous on $[0, \omega] x A$. This follows that the sequence $(f(., T(.)(\varphi_n))_{n \in N}$ converges uniformly to $f(., T(.)(\varphi))$ on $[0, \omega]$ and hence $\lim_{n\to\infty} F_1(\varphi_n) = F_1(\varphi)$. This shows that F_1 is continuous.

Let Ω be a bounded set in X. Then, by the proof of the part (b) of Theorem 2, the set

is bounded in X.
$$B = \{T(s)(\phi)/s \in [0, \omega], \phi \in \Omega\}$$

Since f is compact, the set $f([0, \omega] \times B)$ is relatively compact in X. Consequently the set

$$D = U(\omega, \cdot) ([0, \omega] \times f([0, \omega] \times B))$$

is compact.

Since $U(\omega, s)$ $f(s, T(s) \varphi) \in D$ for all $s \in [0, \omega]$ and $\varphi \in \Omega$ we have

$$F_1(\varphi) = \int_{0}^{\omega} U(\omega, s) f(s, T(s)\varphi) ds \in \omega D \text{ for all } \varphi \in \Omega.$$

This shows that $F_1(\Omega)$ is relatively compact and hence F_1 is compact.

Step 2. There exists an equivalent norm $|\cdot|_1$ on X such that $||U_1||_1 < 1$.

Proof. Since $\{A(t)\}$ is stable, there exist $a \ge 1$ and b > 0 such that

$$||U(n\omega, 0)|| = ||U_1^n|| \leqslant ae^{-nb}$$
 for all $n \in N$.

Consequently

$$\lim_{n\to\infty}\sup\left(\|U_1^n\|\right)^{1/n}\leqslant\lim_{n\to\infty}a^{1/n}.\,e^{-b\omega}=e^{-b\omega}<1.$$

This shows that, by Lemma 2.1, there is an equivalent norm | . | , on X defined by

$$|x|_1 = |x| + \sum_{1}^{\infty} U_1^n x.$$

For this norm, we have $||U_1||_1 < 1$.

Step 3. | F_1 | $_1 == 0$.

Proof. For any $\epsilon > 0$, from (A_3) , there exists N > 0 such that $|f(t, \varphi)| \le N + \epsilon |\varphi|$ for all $\varphi \in X$ and $t \in [0, \omega]$

Put $m = \sup \{ \| U(t, s) \|, 0 \leqslant s \leqslant t \leqslant \omega \}$, From (9), we have

$$|x(\varphi)(l)| < m |\varphi| + m \int_{0}^{l} [N + \varepsilon(|x(\varphi)(s)|] ds$$

$$m [|\varphi| + N] + m\varepsilon \int_{0}^{l} |x(\varphi)(s)| ds$$

which implies, by Gronwall's inequality

$$|x(\varphi)(t)| \leqslant m[|\varphi| + N\omega] e^{m\varepsilon\omega}$$
 for all t in $[0,\omega]$.

We have

$$-F_{I}(\varphi) \mid \leqslant \int_{0}^{\omega} U(\omega, s) f(s, x(\varphi)(s)) ds$$

$$\leqslant m \int_{0}^{\omega} [N + \varepsilon \mid x(\varphi)(s)] ds$$

$$\leqslant mN\omega + \omega m^{2} \varepsilon[|\varphi| + N\omega] e^{m\varepsilon\omega}.$$

1

This shows that $|F_1| \leqslant m^2 \omega \varepsilon e^{m^2 \omega}$.

Since $\varepsilon > 0$ is arbitrary, we have $|F_j| = 0$.

Since the norms | | | and | | | | are equivalent, we also have $|F_1|_1 = 0$.

Proof of Theorem 3. We have $\|T_I\|_1 \leqslant \|U_I\|_1 + \|F_I\|_1 < 1$. Hence, by Theorem 1, T_I has a fixed point φ and the solution x (φ) is precisely a periodic solution of the equation (I). The proof is complete.

Remark. The condition (A_3) of Theorem 3 in this paper is weaker than the condition (A_3) of Theorem 2 in [7].

Remark. The referee pointed out (rightly) in the first version of the manuscript that the uniform continuity of the solution operator with respect to the initial data as contained in (A_3) could be replaced by the weaker condition of continuity of the solution operator. In the present revised version of the paper, it is shown in the proof of Theorem 3 that even the continuity condition can be dispensed with. (The continuity of the solution operator follows directly from the conditions of the problem.).

REFERENCES

- [1] D. D. Ang and L. H. Hoa, On a fixed point theorem of Krasnoselskii and triangle contractive operators, Fund. Math. 120 (1984), 78-98.
- [2] D. W Boyd and J. S. W. Wong, On nonline a contractions. Proc. Amer. Math. Soc. (1969), 458-464.
- [3] B. E. Browder and R. D. Nussbaums, The topology degree for noncompact nonlinear mappings in Banach spaces, Bull. Amer. Math. Soc. 14 (1968), 671-676.
- [4] J. Cronin, Equations with bounded nonlinearities, Jour. Diff. Eq. 14 (1973), 581-596.
- [5] A. Granas, The theory of compact vector field and some of its applications to topology of functional spaces I, Dissertation Math.30 (1962), 1-93.
- [6] J. K. Hale and O. Lojes, Fixed point theorems and dissipative process, Jour. Diff. Eq. 13 (1973), 391-402.
- [7] L. H. Hoa, On a fixed point theorem of Krasnoselskii and its applications, Preprint Series Hanoi № 2 (1986), 1—17.
- [8] M. A. Krasnoselskii, Two remarks on the method of successive approximation. Uspehi Math. Nauk. 10 (1955), 123-127 (in Russian).
- [9] M. Z. Nashed and J. S. W. Wong, Some variants of fixed point theorem of Krasnosels-kii and applications to nonlinear integral equations, Jour. Math. Mechanics 18 (8) (1963), 767-777.

Received June 17, 1984 Revised May 15, 1988.

PEDAGOGICAL INSTITUTE OF HO CHI MINH CITY