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ON A LINEAR PROGRAM IN THE SPACE OF
BOREL MEASURES AND THE PROEBLEM OF
EXACT INEQUALITIES FOR DERIVATIVES

DINH ZUNG

1. INTRODUCTION

Let € be a subset of the Euclidean space R". Denole by V(€) the normed
space of regular Borel measures It on € with the norm | 4| = var u and
by V,(C) the cone of nonnegative measures of V(C). Let Por @g vees @

be positive continuous funct:ons on C and Ty s-ss, T Teal numbers., We will

study the following linear program

minimize — { g, du . )
¢
subject ta _ .
Scpj..dll < v i=12mnm e V) )

[

If at least one Tj » J==1,2,.., mis negative, then the set of measures satis-
fying condition (2) is empty In this case we set inf (5 = 4 o=.

When studying the generahzahon of the Chebyshev problem in compact

sets Golstein [1] considered an analogous problem on the space of functionms

with bounded variation and proved a theorem of Haar type for the extremal
polynomial.

In this paper we shall be concerned with the duality for the problem
(1)—(2), the sufficient conditions of finiteness of its extremal value and the
existence of solutions of the.primal and the. dual problems. The obtained
results will be applied to solve a special case of the general problem of exact

inequalities for derivatives which can.be formulated as follows: Let o/ ¢ R? |
1< /oo, j =0,1,..., m and let Y jsJ = 1,2..., m be rcal numbers, E be the
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n-dimensional torus or a snbset of R%, It is required fo find the supremunm of

the norm I /%% 15 (g) over. all. functions 2. for which the norms
p

)
j . .
=) i ijf'E) are bounded by Yo d = 1,2 ...m,

The first results concerning this problem were obisined by Landau [2].

Hadamard [3] and Kolmogorov [4]. At present there are several works on this
problem (for details see {5]). The problem of exact inequalities for derivalives
in the metric L, was completely solved by Dinh Zung and Tihomirov [6] for

the cases E= R" and E = T2, The special cases when n = 1,‘m =2 and m=
= n-- 2 have been earlier by Hardy-Littlewood-Polya and Subbotin, respectively
(see [5]). The case £ =T, n > 1, is still open,

With the help of the Parseval—Plancherel equality the problem of exact
inequalities for derivatives in the L, -metric can be reduce to the form (1) —

(2). Therefore, the methods of linear programming and convex analysis and, the
above mentioned can be obtained to this problem. To illustrate this idea we

shall examine in detail ihe case E = 77 and prove the resulis announced in [6].

2. THE LINEAR PROGRAM (D = (2)

Although the dimension of the space V(C) is infinite, the problem (1) — (2)
has a rather simple duality, Its dual .problem is a convex program in the

space R" . This allows us to study the finiteness of its extremal value and the
exisience of solutions of the primal problem and to find this value and these

solutions in some concrete situations.
m pm Om . , . o

Let R+ , R+ and R_ be the positive, nonnegative and nonposilive cones
of R™, respecti{rely; a; the }-th coordinate of ‘a‘. vecior o ¢ R™, and
<o P> =aBy + ..+ o, B fore,pe R™. given ¢, ¢/ 0o we deaole
by S(7), v =(vgsws v,) € R™, the extremal value of the problem (1) — (2).
For terminology and notation of convex analysis see {7]. We have the following
duality theorem. DR

THEOREM 1. For ang v € Rf the value S(y) is equal fo the exiremal value of
the following convex programming problem in the space R™ ;.

moximize (Y, B) ‘ @
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subject to
(@ (). By & @By < 0, t€C; p & RT @
rwhere

@(t) - -i((P_-t .(t)"“.’ Pm (e

Proof. Cousider S(7) as a function on R™ with values in R-w {% o }. This
function is convex in R, It is obvious that the domain of definition of S, dom §,

is Rm Denole by S* the conjugale functlon of S, From ‘the definition of S§¢
we derwe '
@), 8 R"

5% @) =
+oo, Be RT_
where

J(®) = sup §{g (D @ B#} du,ts e R™.
Kv.(c) € C

If oo (D +(® 0 B <0, ¥tel, thea JP) =0, If g5 (8) + (®(8),B)>0
forsome point 8 & C, then taking the measures P«{-, with dit = ¢ & (¢ —6)dt (&(1)
bemg the Du'ac function) we obtain

and, cons equently, J(B) = -}c-. Hence o

0, szeRmandcpg (i)+(<1>(f)s[3> 0 fGC

5*(p) =
+o== otherwise (5)

According to Fenchel-Moreau's theorem we have
S%¢(Y) = S(v), ¥y € int dom'S
Since int dom § = Ro_”; by (5) acd by the formula

Stk(y) = sup {{y.B) — S*(¥) }
7 per™
we see that the proof of the theorem is cqmplete. ‘

THEOREM 2. In order that the extremal value S(y)befinileforanyy € R, i. e,

it is necessary and safficient that

inf {p (Do (O} > 0 ©)
teC
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where
o) = max q@;(l)
1<j<m !

Proof. According to Theorem I we have S'(fy) 3> — oo, forall y € f%i if and

fmiy i'r.f'tl;ére exists a point $* € R™ such that

B (O, ) + o) <O ¥ eC NG
if relatlon (7) holds, then, ohwously &= -—(ﬁ"‘ 4+ e + B ) >~ 0 and |
Consequently, < = (@), B*) [o() < Bo()/oy(t), ¥t & C

o (D)9, () = 1/8, ¥t € C,

Converseiy, if :
inf {@(t)/p(f)} = a >0,
tEC

then the point ¥ = — (1/a, .., 1/&) satisfies (7)..

We. now consider the ‘question of existence of solutions of the problem
(1) — (2) and examine how to find these solutions. In general, the finiteness of
its extremal value does not imply the existence of its solutions. In the other hand
there always exist solutions of the -dual problem. If’ C is a compact set, then the
problem (1) - (2) has sclutions as shown by the followmg

THEOREM 3. Let C be a compact set. Then for any v & R$ the éxiremanl
value of problem (1)—(2) S(y) is finite and thereexists a soiuion W of the form

dy B(t-—i")dt S 8

II v &

k=1

where a, >0, th g Cok=1, 25T s< m+ 1.

Proof. Since C is a compact set and the fanctions ¢, ¢, ..., ¢ are conti-
nuous and positive, it is easy to see that the condition (6) holds. Therefore
according to Theorem 2 S(y) is finite. Let M be the set of all measures satisfy-
ing condition (2). QObviously
- " b=ming(H>0

teC

For any M « M we can write

> % Yo oars Yemarssyng
7 =1 C C

I M3
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This means that M is contained in the sphere Q ={R e V(O).| I/ < r}
where r= (71 -[-..—}-fym )b, i.e. M is bounded. Moreover,M being closed, M i5

weakly compact. From this it follows that the continnous linear functional
— (o, an
Cc
attains its minimum on M. Thus the existence of solutions of the problem (1)—(2)
is' proved. Moreover, the set of its solutions is a extreme subset of the weakly

compact convex set M. Hence according to the well-known Krein-Milman
theorem (see [8]) there exists at least an extreme point-of 3/ which is a solution

of {(1)—(2). I3cnote by a\such a solution. Obviously, ﬁ\is not equal to zcro.

Since {Lis an extreme point of the intersection of the weakly compact convex set
0, = 0NV, (C) with m closed semispaces of V(C), it is not difficult to prove
that 1 is a convex combination of no more than m--1 extreme points of (4. On
the other hand a positive extreme point g of Q has the form dH =
ad(t—e)di, 0 e (i, a > 0 (see [8]). From this (8) follows.

THEOREM 4. Assume that the condifion of finiteness (6) holds. Then for any
y e R ™ the set of solutions of the dual program (3)—{4) is a nonemply compact
+ _ IR

convex sel,

Proof.For agiven T e RT lét B denote the set of peints of R™ satisfying (4).

From (6) — (7) we infer that B is not empty. In addition it is plain that B is
closed and convex. Observe that in the problem (3) — (4) the mazimum may be
taken only over the nonempty compact convex subset

{8 e B/ (1, B) > (v, B*) where p* = —(1/a,..., 1/a),
a = inf {:q?.(t)/cpo,(t)}.
C{EQ

The theorem is thus proven.

3. EXACT INEQUALITIES FOR DERIVATIVES

Let L be the space of periodic functions x for which the following norm
is finite

™
fzll, =(§ 1a®[? dyv
-7
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For « € R and a [unction x denote by (%) the Well fractzonal denvalne of
rder « of w. .
Let o9, o ..., «™and Y0 ¥greor Yy be real numbers. The problem of ine-
ualities for derivatives of periodic functions may be formulated as follows :
maximize |jz(%) []g

)

nbject to

i CC("'j) " 2 < v _’ J= 1., m. ' ' (10)

For simplicity of presentation we shall consider omnly functions = wuh
ero-mean, i.e.

T
f w(t)dt =

We shall show that the problem (9)-—(10) may be reduced to the
orm (1) — (2)

fzxisa perlodic function and z(*) ¢ L, , « & R, then by Parseval equality
ve have |
2

ly (2= % kep
€T 2. re1 k

i/
vhere p, = (2m) g(xkg—k xz?), z, denotes the k-th coefficient of the Foarier
eries of x. Hence the problem (9) —(10) is equival_en_t to the following problem

maximize ¥ &2 P,
k=1

wubject to

i
2K p <Y, j=1lewmmp, >0 kel
k=1

This problem may be rewritten as

minimize — § 20" gt (11)
R |
ibject to

7 ' :
2% dp < Tis =T, m e Vi(N) - (12)
N

Thus the problem (11) ~((12) has been reduced to the form (1) — (2).
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According to Theorem 1, the dual problem of (11) — (12) is
maximize {7, 8} (13)
subject to :

zjg k2 L2 o keNpe RM. (14)
J

Using Theorem 2 we infer that the extremal value S(V) of (11) — (12) is finiteif
and only if

i W< max o , (15)
. 1< /< m

Since the exziremal values of the primal problem (11) — (12) and the dual
problem (13) — (14) are equal in order to find S(y) it is simpler to solve the
dual problem than the primal one,

THEOREM 5. ({6]). The extremal value of the problem (9) — (10) is equal {o

| inf (inf {v; el > o}, inf {py, +av, 1 &° = o v, > 7, })
1<j,r,sgm
where P> 9) is the solution of the linear sgstem

ot g = I e+ 2 p o (kD = e+ D (16}

=k =y, /’y}_)(i/g(“s - mr))] where the symbol [a] denocles the infeger part

of the number a,

Proof. Remark that the extremal value of the problem (D) — (10) is equal

— S(‘Y)' Without loss of generality we may assume that ! < ¢ < ., <™ and
Y7 < Yo = e <Y,
From (15) it follows that S(y) is finite if and only if o® < «™ and v 7, It is

m o .
clear that if «° > o or y ¢ Ri’ Theorem 5 is irivial. Consider now the case

«® g 3 ,TGR_]_. PIIt

T v m J o
B= {Be TIZp k™ — K >0, ke N
J=1

o Theorem 1 gives |
BeB
By Theorem 4 in the considered case the dual problem (13) — (14) has a solu-

tion. Consequently, there exists a pointfi?.\s B such th.aﬁ

(v, B)= inf (y,B) | (18)
Bes : .
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Examine now the function

o= 2 pe

j=

sy

on.the real line,

Since /Ee B, f (&) > Ofor any £ € In N. We will show that there exists at least
one point § € In N such that f(§) = 0. Assume on the confrary that f(g) > 0 for
any § € In iV, Then it is easy to prove that p’ = (1 — €) /,[? € B for some number

-
¢ (0 < ¢ =<1). On the other hand, <7, f’> < <Y, B>, which contradicts (18).
Remark that the strongly convex function f has no morve than two zeros on
the real line. Combining the above arguments we conclude that the function

F)= = p.2% _ <
| jet

has on N éithér one zero or 1wo consequent zero. The first case occurs only

if for some number j (1 < j < m) we have o = &%, Bj =1 -andBk: 0 for

k 7 j. The latler occurs only if there exist two numbers r, s A<r,sm

guch that o <wl <ws, Brs B, >0and B, =0 for & = r, s, Hence (18) yiclds

inf <%pBp>=inf { jof <7, 8>, iof <7 > 3 {19)
B

peB jolr sy Bs Bj Be s

where the infimum is taken over all j with o/ > a® (1 < j < m) and all r, s
with o < of < S <<r,s<m) | ‘
Co . 4 .
Bi={peB|B=18 =0ks=j}
BI'S_:{BGBIEJ" BS Ol Bk_:‘zO’k:I:r!S}.

It is easy to cheek that
Be B; J

. Y . . U e
Set B =(81, weoe Bm) where B = p, B, = ql andﬁk = 0 for k # r, s, Let

1,
(3

] 1,.92 be the solntion of the limear system
r . o )
B2 0,4 (f+ 1% 4, = T, @n
S §
K2+ (k+ 1) 0, = (s

where k = ks 1t can be verified that p* e BI, , and 8,8, > 0. Let'g be an arbi-
trary poiat of B, . From (16) an@1) we obtain " .
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Ty B> = o B 4 v, B — 0, (PR gk - 1290 o, p (et n) 2 4

+ gk 1% = e 12 =g, 1% By (e + D™ 4 ply, —o 12—

— 0 U+ D)%) o (o, = Bgkoa — 0, (k+ 2)%) = 0, 1% g, (k- )P

A+ BT =8y K2 om0 (ke 1)) e B (T, — 0, K% g, (e 1y

= ¥,B By (P — B KT — B K g (e 1)2%° B, (e 1)2% _
— B+ * )<y B v B = < T, B

This means that
inf <y, B> =<vp*>= py,+9qv,. (22)
N |
Combining (17), (19), (20), (22) we get the proof of the theorem,
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