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APPROXIMATELY SOLVING CAUCHY PROBLEM FOR
THE WAVE EQUATION BY THE METHOD OF DIFFERENTIAL
CFERATORS OF ININFITE ORDER

TBAN DUC VAN*, NGUYEN DUY THAI SON** and DINH ZUNG#**

In recent years the theory of differential operators of infinite order
(DOIO) has varicus fruitful applications to partial differential equations in
general and to Mathematizal Physics in particular [1, 2, 3, 4]. The foundation of
these applications is a nenformai algebra of DOIO, which are generatea from
entire functions. The nonformality of this algebra is obtaimed by considering
DOCIO in corresponding Sobolev spaces of infinite order. Observe that the
type of the partial differential equation plays no role if this equation is con-
sidered in the Sobolev space of infinite order {1, 2, 4]. However, we emphasize
that for those problems which are correct in the spaces of fimite smoothness,
both the spaces of infinite order amd DOIO play an intermediate role and
provide useful tools for theinvestigation of the initial problem. At the same time,
the introduction of the spaces of infinite order for those problems which are
iil-posed in the usual sense, plays a decisive role in this method: problems
which are ill-posed in the classical sense are correct in these spaces.

The theory of DOIO opens new possibilities for the solution of approximate
partial differential equations. This idea is based on a very simple but in no way
trivial fact, namely : the spaces of the type H™ |1}, W™ [4] are dense in the
Sobolev spaces of finite order in which we are seeking the solutions of initial
and boundary valae preobiems for PDE.

In this paper we shall consider the Cauchy problem for the wave equation
and present a new method for finding an approsimate solution of it by the
technigue of DOIO.

In Section 1 we review some general gqualitative properties of the solution
of the Cauchy problem for the wave equalion. The main result of Section 2 is

Theorem 2.3, which asserts that for all f € C™™ (R™) there exists a sequence of
entire functions of exponential type /, € S/K, (R®) [5], (v, = 0), such that
k

— 0, k — o5,

ﬂfk _fﬂcm(K)
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for every compact sét K < RA. I Section 3 we consider the approximation &
solution of the Cauchy problem by the techmique of DOIQ. We show that by
this method one can obtain an approximate selution with arbitrary accuracy,

1. CAUCHY PROBLEM EOR THE WAVE EQUATION

- Let us consider the Cauchy problem for the wave equaiion
?°u ' n : ,
———Au=flz,),xe B" , t = 0, {1.1)
ot2
u(0,7) = ¢(x), , 1.2)

ou(, :
) _y @ | (1.3)
where A is the Lap'lace operator in R" , fla,b), (p(zr;), q:_(a:). are given functions,
(@, )= (X4 snees xn',t)-, zeR™, te RY . We denote the cone ’
{@ty: | o—X | <T—i, lo<t~< T} by KX, 7,00 and its base by X, .T,t° . Thus,
Dy g0 ={@b: | xz=X | < T—t, t = to}, For simplicity, let us denote
the sets '

{@h:zeBR",i=1 } {wh:zeR" >0,
{(x,t):a:e'R",tO{tg‘ii % o
by {t=1i } {t=t° ), {to Lt }s respectively and the space Ck({t > t° h,
ck {t=0h. by CE(t = 1), Ck(i > )eue, TESPEcCtively,

A function u(z,) s C2 (i =0y ) CT ¢ > 0) is called the classical solution of

problem (1.1)—(1.3) in the half-space {t > 0} if for anyx < R" , t > ¢, 4 @)
satisfies (1.1) and when =0, u(zx, {) satisfies (1.2)-and (1.3). For convenience
we consider only the case f(z,f) = 0. _ 7

THEOREM 11 (6] If 9 & ¢mtd B, pe cmt? (R™), where m = max (Fﬁi} _.;

L

— 1,0), then the Cauchy probtem (1.1)—(1.3) has a unique classical solution in the
half-space {{=0}. Moreover, for any (X,T) {t > 0} the following estimate is
valid ' o o

- = m-{-1 i I m— ‘
ful) Cfffx,r,o)-“c; lotl (™ By p o) T 10, Garo) E (1-4)

where the constant (. depends only on T.

128



When n = 1 we have

THEOREM 1.2 [6} If ¢ & CE@RN, p e CYRY), Lhen the function u (a:, t) givep
by the D’Alambert formula

;c-!-f

u(z, 1) = o (-1 é— o (x—1) e > S y (8) dt (1.5)

x—{
is the classical solution of the problem (1.1) — (1.3). Moreover, for any (X, T) &
{t > 0} the following estimate is valid

Ilu“‘?@x,r,o) éll@l\c(gx’r’ ) +T1!w1ic(5x’ r o) (1.8)

THEOREM 1. 3[6] (Generalized solution). IfoeH (la|=<R), ¢ & L, (lx|=R)
for every R > 0, then there exisis a generalized solulion of the Cauchy problem
(1.4) = (1.3) in the cylinder l, = {x e R®, 0 < 1 < T}

For the notation of generalized solution of the Cauchy problem (1.1)—(1.3),
the reader is relerred to [6, ; . 325}

2. APPROXIMATION OF SMOOTH FUNCTIONS BY
ENTIRE FUNCTIONS OF EXPONENTIAL TYPE

We use the terminology and notation in [5]. Let f(zx) be a function defined

in R, h e R,
A f(m)—f(m+h)~f(9J)

Ahc fl@) = A;:_j Af(z) k € N,
k _ k
oy (f,0) , = [?gé] Agp F) 1 L&Y’

*n

m 3y & o 61
fh= L D'fh®, h* = hy . By
e
Q" (", 8, ISlilp wp (F7 8)
=1
(If k= 1, then the superscript & is dropped).
Let p be a non-negalive even [unclion of a single variable of exponentiaj

type 1. For example,
0 =C (sin s )7\'
t y
where the constant C and the number A are chosen so that
fe(lzi)dze=1.
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For.f = Lp (R®), we set

0g®) = 95(f ) = Sq’( 1t )}(—1) Al T@) + f@ at,
" Rn ‘
F @) — 0p@ =(~ D7 [ (;tl)A;';jif

Rli
6> 0,meN.

LEWMA 24 ([5 p ) Let f(g) € W ("), 1< p < + o Then the
followiny estimales hold :

: ' C 1\
N - ! -..<__‘—Q m;“— »
D =gl _(f )
by For a e Z3, |« | < m
D*f — D < — 3 n(vu
10°f — Deg "LP(R") g o)

G"O Remark 2.2,
Q('m,—-j-?) — 0,0 —> oo,
o] ! :

£2 {fkv)s i) — 0, O—r o2,
o P ’

*

THEOREM 2.3. Let f(x) € C' (R" ). Then licere exists a sequence of entire functions
¥, of ewponential lype v, (¥, € Sﬂ(\,: (R™)), such that for any compaci K CR"
we have c .
if — v 1 Cm(K)"—’Q fe—> o0, 1

Proof. We introduce the following notations. For f ¢ (™ (R") we set

f(x )_?f(w), | 2] <

’ |.1-]> !\, o
Pg, i @) = P f s @) =
Scpum;(——f)m Af;;”f,, @) + f @ | d,

Rn
Q. = {weR" ,|a|<kh
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We invoke Lemima 2.1 io-deduce that for v -'Zi lo ] << m
§ D*f = Dég_ || = || D*f, — D*p_, |l -
kL oe)) CE T TR T k0))

< | D°f — D* & ———— YD*f, 110) 2.1
| <l k (Pc,k“Lm(Rn)\o.m—-'lcc]“(l fk’/c @1
We select 0 = 5, such that
C Q(Df,, 1;:_ )
max K
lal<m  omm il

S s

Then, it foliows readily from (2 1) that

[ D*f — Dy, |l (2.2)

‘ < 1,
L“’(Qk )\ Ik

where 1, = tpo_k’ I

Let K be an arbitrary compact in " . Obvicusly, there exists a number
p Such that 3¢ k >k, : K C Qg . Then for every k > k, we have from (2.2)

=0l g ST — 00

k

= 1,,.
Q) /&

.. Hence

Ny — 1, — 0, when k - oo,
f =] c™(K)
This completes the proof, ' :

3. APPROXIMATE SOLUTION OF THE CAUCHY PROBLEM OF THE WAVE EQUATION

Now, let us consider the Cauchy problem (1. 1) — (1. 3) with the following |
initial conditions

(pGCm+3(R“) ve Cm+2(Rn)
where m = max ([ ; D 1,0). Based on the fact that (JS)K,. is dense in
. V=0

CT(R™) (Theoxem 2. 3) one can approxxmately solve the problem (1.1) — (1.3)
bv the method of DOIO.,

'First, Theorem 2, 3 shows that there exist sequences {q’k} {wk} flom U SHKy e
such that for every compact K C R" we have

UPp — @fl g — O koo, (3.1)

P — 9 fl ot 3 )

ﬂ‘LPk’h-—wu - 0, k —» oo, (3.2)
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THEOREM, 3.1- An approzimate solution of (1. 1y — (4, 3) can-be obtained in
the form , , '
[~ =)

u, (s ) = (21) ] A (Pk (x) +

,21+1 : '
"“1_0 CTEHT Ay, @), o o (8.3)

where 2\ is the Laplace operator, Moreover, for all (X T)e{t > 0} the followin
estimate holds g

lw(z, ) —u, (x, 8| Cky, 7, o/ <
. B ) 3 | _
(e, — ot cm+ I(DX, - +hy, — v c‘"@x . 0)), _ (3.4)

where the constant C depends only on T.
Proof. Putting §= YA we have from (1. 1)
% n
at?

Solving this equalion as an ordmary differential equation in { we get the
folmula \ ‘ Lo

wmv=€@Q@y+rﬁg@x

where the functions C, (2), C, (z) are arbitrary. In order to determine these
functions we use the initial conditions (1. 2) and (1.3 This yields

€@ + €, @) = ¢la),

EC, @)+ (—EYC, () = ().

A direct computaﬁon shows that

el ¢ g-itE ztb _ —-HE.

Taking account of the relation & — i &, we find that the formal dosi
ed solution has the form a- e formal de?n--t
ua, B = cht VY & gla) + 31:; L . s

or, equivalently,

ww, = 5 Lol '
x, == —_— : .
T o @ e P+

LI

Oz'? £+ i !
.].i:,o.m Al @), B (3.6)
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Y'rom the resuits obtained in {4] we see that when the initial functions ¢ and
belong te S)K, ., © W™, the formulas {3.5) and (3.6) have a nonformal
sense and give the classical solntion of (1.1) — (1.3). Therefore, the function
u,(x, f) defined by the following series

uk(:c, 3] :IEO (27-)-' A cpﬂx) -+

co i?l + 1

+l§0 @ Eh1 2 ¥ (1), 3.7)
is a unique classical selution of ihe Canchy problem
62. u, ’
2 — auy, =0, | | 3.8)
a. 0, 2) = cpkf(zv) * . . (3.9
du, _ ' _ . ‘ _

To complete the proof it remains to show that u, (x, 1) is an approximate
solution -of the problem (1.1} —«(1. 3), But we remark that by yirtue of

Theorem 1.1, for all (X, T) € {{ > 0}, the following inequality holds

Na, —all - =C(llg, —oll - +
k CME g, 7,0 ) * ¢™ @y, 1,4
| ‘Pk -y ” m— )-
_ : € yg1,0)
Consequently, (3.1) and (3.2) show that
Nu, —all  — -0, k — oo,
g " Ky, 0)

This completes the proof. -

.. From mow -on, we shall restrict ourselves ‘to.the case n== 7, Lt us consider
the problem (1.1) — (1.3) under the hypothesis that

. | ¢ C? (RT), ¢ CI(RY) (3.11)
By Theorem 2.3 there exist sequences Pper Py from ; LY, S (RI‘)' such that for
v>p
every compact K C R®
- | . 0,' e . — ﬂ’ k Do,
e —a, 1 Eyadd Lk /Y ol - 612

In view of Theorem 1.2,:there exist solutions -of the -problems (1.1) — (1.3) and
(3:8) — (3.10), and they :are given by the D’Alambert formula .

x+t

u(e = HEEDTATZD 4 2 'S-w@)da @)

'x-‘“t. PR
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: o o okt :
IS o T N T W o
flk (x, i)‘: k - ) 2 k -+ _2_ S ka(&) dgf . ) (3.14)

x—t T T

(, ©yeC? (I > 0) and for all

From (3.11), (3.13), (3.14) it is easily seen that u
(X, T) & {t > 0}, the following estimates hold

po-—u I — <te—o I — FTle—w [ ’
U St ot e Ky, T,O)\ lo—ail C(‘Dx,’r,o)—[—lmJ O | C(DX,T,O) '
9 a2u 22 2%2u
g TE Ry = = e LT
ot2 a2 € (Eyr o ax ot . €&y 1.0 |
¢ —¢, I 4~ e -, I 7 - ,
i k C2 (DX,T, 0) 'L, -.CI:(Dx, T 0}
[ ey <lo—e .  Ahe—=pd
ax o ClEy.p o) N P A Dy )
Noting that - - : -
WFl o - ==max| D*f ,
: C™ME)  |o<m ! C(K)
we have s .
e —u, I o — <jloe—¢. Il g — +
k7 Py r,o ST R TP g,

T +DIe =l = e 3.15
R | By 1.0 (‘ )
" Hence, from (3.12) and (3.15) it follows that u, converges to u(x) uniform-
. "We invoke Theorem: 4in (4} to deduce thatl

ly on every compact in {t > O}
the solution of the Cauchy prohlem (1.1).— (1.3). belongs to Cg_(Ri, W“_(RI))

it o, Ve W‘""_‘(R:f)' and-is given by the formula

) =2, gt o |
+ z (;?jr;)! .‘l’(% (i‘), >0, 2R, .(3‘-1@5).
Now, let ¢ 9 € JKyu(® )Put B
A= Nl g ) B=1%l, g




Taking the results of [, p. 137] into account we-get

(k) .. . .o
By - WA
LA S
(k) gk B
L 1 L‘-W(RI_), ~ ¥

We show that in this case the approx.mate solution of (1.1) — (1.3) may be
represented as

P {z) (3.17)

Indeed, upon simple computation, we get
(t v)gk

k=N _(2_15)1_
(1 v+

" (BN L D)

I u(w, ) — up(@, R +

Bt |
2N+q

2k+1
B 5 @)

v @i < )

Therefore

I uN(:c, t)y — u(x, ) | o«

' IN+1
gmwnﬁﬁL:_P+-BT)* (3.18)

@N + D) N I 1

where K = {0 << 1< T
It follows from the above that:

THEOREM 3. 2. Let ¢ € o (Rj), ¥e (! (Ri) and let ¢,, ¥, be Lheir approxi-
mations that salisfy (3.12). Then an approximate solution of (1.1) — (1.3)
can be oblained in the form (3.17), with the estimale (3.18) being valid for
every K={0<t<T}

We conclude this paper with the following comment. Using the Theorem
1. 3 and Lemma 2. 1 and the above method we can find the approximate gene-
ralized solution of the Cauchy problem (1.1) — (1.3) in the form (3. 3).
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