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INTRODUCTION

In [5], [6] the second author infroda ed the Dickson characteristic classes
Jarived from modular invariants and used them to determine the algebra siracture

of H* (QgSq, Zj2y for 0 < g < <. Here .Qg §? denotes the component of the
hase point of the iterated loop space QI89.

The purpose of this paper is to study the action of the opposite mod 2

Steenrod algebra A, = A, (2) on the homology Ho(@? $7; Zj2) also by means
of modular invariants and the Dickson classes. Roughly speaking, we will reduce
thig action to the usual action of the mod 2 Steenrod algebra A = A(2) on the

Dickson algebra Z/2 [z, «..» xn]GL ns Zi2)

The paper is divided into 3 sections. Section 1 deals with recalling some
needed informations on the invariants of the group GL(n, Z/2) and the Dickson
classes given by Dickson [2], Huynh Mai [3] and the second author [3], [6]. In
Section 2 the action of the Steenvod algebra on the Dickson algebra is described

explicitly. Finally, in Section 3 we compute Ann PH,,Q(QE- $%. Z/2), the submo-

dule of H,ﬁ(Qg $%; 7;2) consisting of all primitive elements annihilated by any
Steenrod operations of positive degrees, for g smail.

It should he mentioned that one could theoretically compute this module by
means of Dyer — Lashop operations. However, such a computation does not
seem to be effective (see Wellington [11]).
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Using the similar results given in (7}, {8] on the mod p Dickson classes and
the algebra H*(Qg 8%; Zjp) for. p.an old prime we will apply our method here
with some minor changes to determine the action of the opposite mod p Steen-

rod algebra A.(p) on H,.F(Qg S%; Z/p) in a subsequent paper.

§1. PRELIMINARIES

Throughout this paper the coefficients are always taken in the field of 2
clements 22 = Z/2.

Let Z, be the symmetric grbup of all permutations on m letters. Set
H(Z,)=lim H, (£,). The well-known Barratt — Priddy — Quillen’s result
—_—
m

H(0=5")~ H, ()

(see e.g. [9]) explains why we pay attention to the homology of symme-
tric groups.

Let us think of Z;n as the symmetric group on (the point set of) the vec-
tor space Zg. Let E bethe subgroup of ail translations on Z’;. Let T, € H (E™)=

= Hom (E?", Zg), 1 < 1 <n, lepote the dual element of the translation defined
by -the i.th unil vector in Z’g‘. So one obiains.

' H (Er)=Zylwysoen,z, ] © (L)

Since GLH = GL (n, ZQ)_ is the: Weyl group of E? in Zyn, then GLn acts

on H*(E") by adjoint isomorphisms, This is the usual action of GL on Z,
2500 x ]under the identity 1.1.

A well-knowan result asserts that the image ol the restriction homomor-

phism Res (B, Z,nm) : H* (£,n) — H (") is a subalgebra of the invariant

algebra: 22 [:ci, - xn] GL‘“ » Furthermore, -Haynh Mui showed in [3; II. 6.2]
Ahat ( o .
" : ' . 1 GL =
ImRes (E", Z,n) = Z, ( Travees @, ] R - (L2)
-According to-L. E. Dickson [2] we have .
7% DU [ _ S
. 2[@1,..,,93“} - - zz[QM”_“ Qn'ln_ii._ s
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Here Q_ , for 0 <s < n, is the Dickson invariant of dimension 2 98 de.
fimed hv the following equation in Zylxgpeenz,lx]

n—1 5

0 x°

iy s .

X ¥
—_ ) =
'g ) x +

5
waere x is an indeterminate and the product in the left hand side runs over
all z & HY (E”)=22 z, @ ...@ZQ z, .

Let T s he the Dickson coinvariant dual to Q,. . with respect to the basis
of all monomials of the Dickson invariants. Then, taking the dwal of Dickson’s
resull we get

He (BN = T4, o s Gy o),

the divided polynomiai algebra generated by ¢, ,u..., 9,,n—7 With the divided
powers v, { > 0 (see [1]).

Now for every‘K = (ko s ) k, > 0, we define the Di;':kso__r_x homology
.gvlas.s D, by; 7 ' '
D= HE 5o B g o (14)
where { (Egn, Ef‘): H, (E“)GI ~> 'H.ﬁ (Zgn), denotes the homomorphism induced

n

by the inclusion ER — X 2 and

Ig = Tko @) T g, pey)-

. n—1
For convenience, we define the length and the height of K =(&y sueey n,_ )
tobe [ (K)=mn,| K P= &, -+ e+t k__; respectively. Further, we equip the
index set ' '
J={K =(k; .., k _sn>0k >0}

with a partial summation defined only for elements of the same length in
terms of the coordinales,

The regular embedding Qg 857 — QSOSC” induces the monomorphism

H QIS - H, (07 5= = )

Indentifying H, (Qg 8% with its image under this monomorphism we noted
in [6] that . :
D, eH, Q]S K| = ky + w4k, < g

fOl‘K = (k IR | kﬂ'—j).

115



By means of thé weak homotopy approximation of Qg 57 by the space of
%_ — orbits in the configuration'space F(RY, o) (see May [4]) the structure of
the Hopf algebra H (@} §7) is described as follows.

THFOREM 1.1 [5], [6] (i) As algebras
H, (2] ST _22 (Dys K € I%(q)]
for 1 < g < o, where o
J+(q) = {K = (ky s K

(ii) The comulliplication is given by
AD, = X D ®D
B pw=x L M (1.6)

yelJ;n>0,| Ki=gq, Kk, > 01

n—1

for K, L, M e J.

(i) D DG
.. . (0, 0 "0 eees kn-—I) (kO sreey kn.__'[)'
- :

Given H € J let Wy e HY(Z.) = H* (&7 §=) denote thedual element of
D, with respect to the basis consisting of all monomials in the right hand

side of (1.6) for ¢ = o= Passing to the dual of Theorem 1,1 we obtained in
-[3] .the isomorphism of algebras
H* Z.)=2, (Wi HelJ _ (1.7)

‘where J_; = {{&, s+es h,_Yed;n>0. h isodd for seme i},
So WH is cailed the universai Dickson class of the type H for H € J .

Moreover, the kernel of the epimorphism H* (5 S°) - H*(QgSq) can be

computed by means of (1.5) and Theorem 1.1. Hence we obiained in [6] the
algebra isomorphism

H* (QISHh=Z* W, ;H el h{g H -
@2 = 2 Wi 1S g (q)]]WH,ETge} @) (1:8)

where h(g. Hy=min {he N 2" [H|>q},
J=4{Hel :{H|<aq}

§2- STEENROD OPERATIONS ON THE DICKSON ALGIBRA

- This section is devoted to computing the action of the Steenrod aicebra A
on the chkson algebra

GL
it
22'{:‘31,---,3:11] ng [QR,O"..,QH’ n_J].
This actionis derived from the usual action of A on the cohomology
H*(E‘n) — Zz {xl" cees xn]. Co e i eme o RSN
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The resalting formula is more explicit in comparison with that given in
Wilkerron [12]

THEOREM (21

& Q@ ,< 2" 2'+2’—~st,n>r>s>t,
Se°Q — mr e .
T %5 s ‘LU]IBI‘(‘ r = simpliess =1, L
0 otherwise,
where Q = 1 by convention.

ne I

Proof. Since dim Q, —327 — 2% so we need only to compute

qu Q,,  for0 < k< 2%

From private discussion w1th Huynh Mui we know the following formula'
(see also Wilkerson {12] for lhe proof). :

. P | _on—1 _ -
qu Qn,s: Sq!‘ 2° Qn,s—l + (qu 2 Qn,n—I )e Qn, s (2'2)
for 0 < k<27, Here Sq' and Q_ ; are interpreted as 0

fori < 0. Applying this formula we have

n—1

n—1 . J—9n
Sql‘ ? Qn,n—l bq}‘ 2 —272 Q, 2 + ('qu ? Qn,n—l') Qn,n-f =

ma—
:qu_2n_1 —9n=2 g

nyn—2

(by information on the dimension)

[f there exists a number t such that k= 22— 227! then

n_ (9l . gnt—i
Sq* 2 2 ) Qu,n-t:Q

nnt

Otherwise, we can choose { large enough so that k — (2" — 2“"‘ J < 0.

. S k—(?n _ gn—D _
This means Sq Q=0
Hence, for o = k < 2% we get ,
. gn—1 .__9n __9r
Sqll 2 Qn,n--;[ — Qn,r ‘ 1\ =2 2

) 0 : otherwise.

Now formula (2.2) becomes : '

s> g LQ  Q k=202 ,0<r<n, (23)
ms—17T *mr n,s P ? '

~1
bqk“zs Q

SgkQ

s

Pamin  UIPL NP N

nys—1 otherwise,

for O =i - 20,
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We consider the following Lwo cascs.

Case where k=2" -2 0 < r<n).
If r 2> s then using formula 2.3 we have:

n_ o | "on_o5—1
qu 2 Qn,s _.Sq 2- Q 1+Qn.r * Qn,s
P L _Qs_I __25"2 ' }
‘_Sq Qn, s—2+ Q’n,r * (”'.’I;S

because 20 — 27 — 23— _ gs—t#= 0 for anyd

r<s,setr=s—Ft{{> 0) Then using (2.3} aga'in we  tat

gt g5~ g -l -
Sq Qn, s Sq Qn, s—1 + Qn,r ’ QH;S
L an_g8 LgsTl | g9t
Sq Qn,s +Qn, r’ Qn,s
o oftgS
=S¢ Qp, 5=t T Qﬂ,r' Qn,s
=Q,s ~nr+Qnr‘Qn,s
=Qn, s” Qn,r + Qn,r ‘Q n,s = 0.
Finally, we obtain 7 :
' .0 k=28"_2T r>s,
‘quQn s s S : : . {2.4)
0 E=22-2",r«<s.

Cuse where A ,+_ an _. 9 for everyr wzih 0=r<n
If k= 27 — 9 4 9 — 2571 for certain r, t with 0< Sr=<nt<s, then by

information on the dimensions we see easily
Sk Q, =0 for r <.
Suppose r > 5. Byvirtue of (2. 3) and (2.4) we have

n_gr o8 —1 -t
59k Q,, =S¢ 2T g,

egtoorpes 2y s
- bq - Qn, s—1

9" -2
= Sq Qn,s—-i Qn.g—i' Qn.r.

118



If k==92% — 9 4+ 259257 forany r, { with 0 r < n, < s, then using 2.3,
again we get

_gs—1 )
k=2 Qn, s—1

Sg* Q.. = 5q

—1
g k=2 s—u
= Sq . — 2 Qn, s—u

k=28 —-22"T1 ugs,

0 otherwise
In short, if k 5% 27 — 2" for every r with 0 < r < n, we obtain
Qnsl Qn,r k=2 — 2 + 2 — 2t yts < r<nm

me =)0 k=2 -2 @5)

0 otherwise

s¢* Q.

Combining (2.4). and (2.5) completes the proof,

§3. ON THE MODULE ANK PH, (Q7 s7)

For any space X let PH,x) be the submodule of H,(X) consisting of all
primitive elements That means '

PH,,(X) {”ceH(X) ./_\:cﬁﬂ1®:c—hm®“1;,
where A\ denotes the coproduct in the homology.

Furthermore, suppose M is an 4,-module. Let .4nn M be the submodule
“of M consisting of all elements anmhllated by any Steenrod Operauon of posi-
tive degree. :

For various targets, it is important to compute Ann PH, .(Qoq‘Sq). In [17]

aided by computer, Wellington computed that-module with ¢ = o= up to the
dimension 200. -

Now we first determlne PH, (Qq sh). Set

J(q)-—{ler- | K1 <q}
For any K e J(g), let d be the dual element of W with respect to the basis of

H*(ﬂq 5% represented by the monomials in the right hand side of (1. 8). With

the index set J, (q) menlioned in (1.8) we have
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PROPOSITION 3.1 PH,, (Qg §% = Span !{dK ; K € Jod (9)}, the submodule span-
nedby {d,. ; K € J (q)}. Moreoier, for K e T (q), d. is the unique primi-
tive element sgtz'sfying o B o .o
g Wd=8pg
forang H &€ J _(q)- :

Proof. Let [H* (X) denote the ideal of decomposable elements in H*(X) for
any space X. Asis well-known, PH(X) is dual to the module of undecompo-
sable clemenis

QH(X) = H* (X)/[H* (X).

From (1.8) we derive immediately

0B (21 Sh—span{[W,1; H < I, (@},
where[WH] denotes the image of W, in the quotient module QH* (Qg 5. By
. e K . q oy _ '

the definition of d* we obtain PH, (@ 5")=Hom Span{[W_1; HeJ  (9) },
Zy)=>5pan{d, ;Kel ;(} |

Finauy’ Suppo'ge x € H-‘.‘ (.Q.g Sq) is primitive and

- A% _WH )=8gg :

for any He J_,(q) Since z is primitive, x is annihilated by every monomial of

{ Wy s Jod(q)} with at least 2 factors. By the definition of d. this implies

z = d . The proposition is proved.

Remark 3.1 The Hopf algebra H, (Qg 5% can be described by the genera-

tors dK » 5 as follows.

() H(Qls"=17,[dg; KeJ* (9]
.I 2 “ " ER
] d —
(i) (ko vvot_gy = Horkeyse o by
for ‘amy (k_,e. 055 D EJD
(iif) o HKisind (@) = J(g) / Jod(q). Then there exists a unique
expansion K = 2% . H, where k is a positive integer and H « Jo;l (@). We get
A d = x d,  ®d
kg mer 2H O 9PH
Lm0 o

To compuie Ann PH, (Qg'Sq) we need the following proposition,
S“PPOée I is a finite szbset of Jor} (g). Denote b}"IO the subset of / con-

sisting of ali seqnences K with the shortest leagth. We have
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PROPOSITION 2.2 If £ d_ e Ann PH, (9 57)
K&l

A q g ‘
then Dy € Ann H, (9] 5% . L (83)
Kef - v

Remark 3.2 In general, the inverse implication is not true,

To prove the proposition we first define homogenuous multiplicity for
monomials of Dickson eiemnents D by putting

R(D)=2 &),
I (@.g) = M) + K@)

For convenience, zero is considered as having any mmltiplicity. Using the result
of Section 2 and the Cartan formula we note that the module spanned by
monomials of Dickson elements of the same maltiplicity is an 4,-module,

LEMMA 3.1.
d, = D, (elements of higher muti p.licz'ﬁes) forany K e J_, (g) | (3.4)

Proof. Given K, L & J(¢). We define L <{ K if and only if
UKy = KLy=n, [ <k, (O0<i=<n)

where K= (Ico,..., kn_i), L= (!O sane,s ln—I)'

Let ¢ be the subalgebra of H, (Qg 5% generated by DL with L < K. It is

easy to see that
C = Z, {DL ; LK)

Moreover, according to Theorem 1.1, C is a Hopf subalge ra of H, (@I s%,
Let G* be the Hopf algebra dual (o C. We obtain the canonic al epimorphisma

i H* (Qg s = C¥,

rx: CH (@ 8T — QCx,
where QC* is the module of undecomposivle elements of C*. Denote by w,. € C*
the dual element of D, with respect to the basis of C cons isting of all monomials
of D s. Weget immediately
W) =w, s [we] =7 [W,]#0inQC*
Let e, be the unique primitive ele .ent in € characterized by the condition
(s FIWg D= dyp
for Held , (q). Combining this condiiion with the definition of € yields
[}

e = D + (elements of higher multiplicities).
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Finally, the definition of d X and e, implies

ep=i(e)=d,,

where i: C C Hg (Q-g $% denotes the canonical inclusion, The lemma is

proved,
Proof of proposion 3.2 Using Lemma 3.1 we get
Z dy= % Dy (+ elements of higher multiplicities). Recall that the
Kerl KGIO
action of the Steenrod algebra A preserves multiplicity, Hence, if 2 d is
Ker
annihilated by ali Steenrod operations of positive degrees, then so is = D The
’ ' ) Kerl
1]

proposition follows.

Remark 3.3 (i) It is easy to see that if i € Ann PH,, (ﬂg S% then r?™ ¢ Ann
PH, (Q% S?) for every non-negative integer m. (ii) A classica_l result asserts that
in H, (E') == T q,, 0) one has

v;(4,,) € Ann Hy (E') & i = 2% — 1, for some k. (see e. g, Sleenrod
[10; chap. L)) ' | | -
From the definition of D, it follows that

D(i) & Ann H*(.Qg 8 e i= 2k 1 < ¢, for some k.

In this case, D = D271 ¢ Ann H. (94 ST,
(052450, 25 —1) (k=) = (2 57
n -
Define
d (gk _1) + d(i;q,---,b) if & = 1,
A k = : k. .
2t d ‘if k=1,

We can check divectly that if 2k _ 1 < g then _

h, <Aoo PH, (0 89, -
2_171 -

In the rest of the paper we .ompute Ann PH, (Qgqu) for g small. |

THEOREM 3.1
() For g =2,3

It .
Ann PH, (Qg Sé) == §pan {11“3 ;0 < m < ool

ofll Il alll

@) Ann PH, (R 8*) = Span {ky kg , d; 4 p30<m<ody (3.6)
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Proof. Wewill always use the simple fact that H,, _(Qg 59) is an A, - subco-

algebra of H, (Qg’ Sq,) forqg << ¢
Fix a positive integer n. We set
I g (@ 1) ={Kel;|K|<gqg, 1(K) = n},

H (q. my=Span{D,; K eJ , (¢, n)} C H. (Qg 89y,

By Proposition 3.2. to determine Ann PH, (] 87) we need first to compute
Ann H (g, n) for every n.
Case where g = 2
J 4 (2 n) comsists of the following sequences
a(n, r) = (0,0, 0, 1, 0, vua, 0)
i+1
for 0 <'r < n. Recall that

.dim D = Z k, (2n — 20y,

O‘O reem, kn

So H {2, n) admits at most one generator in each dimension. Hence
ED,esnnl (2,0) < D e Ann H (2, n) for any K € I, where I denotes an
K<€l : .
arbitrary 'subset of J ., (2,n).

Taking the dual of Theorem 2.1 we get
yfo r<<m—1 lk=2r

< K
@) ‘Sq* Da(tz, 0D = D“ (nsr + 17
‘ 0 for r =n-1, any k > 0,

This implies
Ann H 2, n) = Z, .
From Theorem 1.1, D

3.2 we obfain

a (mn—1) _
a(m n=D Is obviously primitive. So using Proposition
2 o2 : '
Ann PH, (2, S°) = Span {D_ (t, n—3 0 < B < ool
By the definition and Theorem 1.1.
on—1I

)xhi’ Da(n,n—1)=h1 '

Da 1, 0
So the theorem is proved for ¢ = 2.

Case where g = 3.
1,4 (3:9) consists of ¢ (n,r) (0 < r < n) mentioned above and

b(n, r, 5) = (0,.., 0, 1, 0,...,0, 1, 0,..., 0)
r4+1 r+41
for 0 < r<Cs < n. Again, H(3,n) has at most one generator in each dimension.
Using the dual statement of Theorem 2.1 we have

n__ o
®) S T Dy = Dofpyy -
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By the same argument as in the previous case we get

Q3 S — o {,
AnnPH}F( 0S) Span a( an—1)° ;0<n= |

The theerem follows for g = 3.
Case where G = %
J g (510 consists of the above listed sequences a (n,r) for 0 < r < n, b(aur,s)
for 0 <{r <s < n and additively the following
c(n,r) = (0,00 O,/S\, 0,...0), O0gr=n

r+1 _
d(n,r,s) = (U0 0, 1, 0,..., 0, 2, 0,...0, 0L r=s=<n,
r/-‘l\- 1 s/—i\— 1
e(n,rys) = (0,..., 0, 2, 0,...0h 1, 0,...,0), O0L{r=s=<n,
ri1 sE1

f(nrst) = (0,0, 0, 1, 0,.., 0, 1 0., 0, 1, 0...0), 0 r<s<t=n
A simple computatlon shows that H(lt n) has at most one gemerator in all
dimensions except the dimensions 3 (2"— 27) and 3, 2" —2" — 9st1 | where
it has two generators. More explicitly, dim Dc(n,r) = dim Dc(n,r—-i ) =

— 327 —27), dim D or — gt

dlnyrss) dim De{n,r—i, 1) = 3.2"~
Passing Theorem 2.1 to the dual we obtain

(c) Sg& Dc(n,r)= Donrir+)  r=n—1,k=2",

0 r=n—1, any k>0,
(@87 Dy =0
@SeE ™ Dypng = Lot
g
© Sq?f’ 2 Dgne = P
Dyt  THEISSE=2 o
© 5ok Dicaron = ) Ditrstly sH+1<t k=20,

Df(n,r,s,t—i—l) : t+1=n, k=21
0 r+3ﬁs+2_r+1ﬂn,
any k = 0.

Combining (¢, (d°) (¢) shows that the elements
Dc (ny 1) + De {nyr — 1o+ 1) and Dd (2, rs5) + De (ny r—14, 5+ 1
do not belong to Ann H (4 n).
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Furthermore, according to (a), (b), (c), (d), (e), (f) and individual elément
D, forKelJ ;4 n) belongs to Ann H (4, n) if and only if D_is one of the

following elements:

Da {n; n—-1)° Dc (nyn—1) * nf(n, 2— 3 n—2 n-1D°*
As a consequence

(g). Ann H “L’ n) = Span {Da (n,n-1)° Dc (ny n—~1¥
Df {m, n~3» n—2, n — 1)} *

Note that
Pyun 1 =Py =50
Deay n -1)=D§I(11:o§ - D?SH)—I ’
Df (n, n—38, n—~2, n=1) = ?:;3—,10, i, 9 =D(1, 1, 1)

So we now resiriet our attention to D(f)' D(3) and D(L 1, ) (See Remark 3.3

again). Let us consider the primitive elements associated to them. Using Propo-
silion 3.1 we can check easily

3
dipy = Digy» digy = Digy + Dy Digy + Dy

D D + D D

d(i, 1, 1):D(1, 1, TP, 0,00 Piout,n.

0, 7, 0 7(1,0,1) _l— D(Os 0, 1,) D(LLD)
(p belongs o Ann PH, (Qg st
Besides, so do hs == d(3) - d(i,o) and d(i,I, R We can check this fact by

As seen before, 1:1 = h

‘making use of the foliowing formulae obtained as consequence of Theorem 2.1.
k K Dy, k=1
S — —_— (051)
1, d(3) ‘Sq. d(I,O) - ; 0 otherwise,

D(Osjs 0 k= 1’

Sak
q* D(L 0,0 = D(O, 0D k=3,
0 otherwise,
Sq* — {1 Dw,1,0 ’
q:;: D(Gy 19 D g 0 ¢ ) otherwise,
S¢* p = { Do, 0,0k=2
» 0y 1,0 ] otherwise,
Dopap k=1
S¢* Dy g = Do *= Z_’
* s Uy L T=
( Dy *
0 -otherwisze, .
Dz, k& = 2
S¢*D, = 0angk, S D, . = {D. k=6
o 00D g5 9, Pa,1,0) (1,0,0) ’
/] otherwise,
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Finally, we note that :
C gn—i 4 . : hgh_j ; ‘ w
1 — “aln,n~1) * 773 = “eln.ni—1) -+ Ca(n-l-l‘, n—i

h

d(.'[, 4, 1) = df(H9 n—3% n—=2,n—1 +

Combining this with (g) and Propositien 3.3 we obtain the theorem for ¢ =4,

The proof is completed.

Conjecture 3.1

Ann PH, (@1 $% = Ann PH, (&% &%) for ¢ =5, 6.

The authors would like to extend their thanks to Huymh Mui and V. Snaith

for helpful suggestions and discussions,
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