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1. INTRODUCTION

Tlie conformal covariant theory was studied as early as in 1956 but it began
atiracting much attention only since 1969 with the discovery of the scaling
invariant law in the process of inelastic interactions between leptons and
hadrens. In recent time, conformally covariant equations have also been studied
in the works {1,2].

In the conformal covariant theory, one sssumes that, under conformaj
transformations, the physical guantities are transformed according to their
dimensions. Within the pure mathematical formalism this fact can be explained
as follows : a conformal transformation is considered as a global or local trans-
formation of measuring units, therefore measured values have to be translor-
med in an inverse proportion to the changes of the associated measuring units
in order tc ensure the invariance of the physical quantities [3]. We shall use this
interpretation for the transformation laws of the mass of fxelds vnder the con-
formal transformations.

In Section 2 of this paper, necessary and sufficient conditions for the non-
zero mass free field equations

{(Lpd¥ — m(x)) p(x) = U {1.1)
(O — mYx)) gla) = 0 1.2y

to be conformally covariant are derived by the R-inversion method. This method
is simpler than that used previously in the works [1, 2]

In Section 3, extending the conformal symmetry to the superconformal
one, we consider the superconformal! covariance of motion equations for the
non-zero mass free scalar superfield.

As is known, after extending the Poincare group to the conformal group,
there exist equations of the forms (1, 1), (1, 2), which are covariant with respect
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to the conformal group[1, 2] In extending the Poincare group to the supersym.
metry group. we still have supersymmelrically covariant equations f01 the
scalar superfleld

(_})_ DD, — M) Oz, 8) =0, (1.3)

(01 ~ M2 ®(x, g) = 0 (L.4)

where, the scalar superfield ® (x, 8) contains, as its components, almost the
fields considered in the equations (1,1), {1,2}. Finally, since the superconformal
group is the exiension of the Poincare group in both above manmners, the ques-
tion paturally arises asto whether there exitst superconformally covariant
equations for the non-zero mass free scalar superfield, Using the representations
of the superconformal algebra studied by Dao Vong Duc in [8], we show tha
do not exist such equalions.

2. THE CONFORMALLY COVARIANT FIELD EQU&TI@NS WITE NON-ZERD MASS

_I;et.ﬁs.‘;:pn'si.del‘- the ‘é'qu'ati'bn::.__-r ' o o
o (Lp "+ m @) o (@) =0 )

where Ly are some operators.which will be determined later, m(z} is the mass
function of the field. Components of the field ¢(x) —considered as a relativistic
field—are transformed under fully reducible representation M}l v of SL2, @),

which is decomposed into the irreducible representations

[P e oletter | (ui o )o@
¢@) = = L :
. ~ T :
Tn(z) . - : (P:'tn (CC,) Ilrfp.'\; ‘ (Pc.n {\x)
v .
- P = M1 - M. .
- . O Mf Muv“@ ® M7

. jEvery irreducible representation T, of SL (2, C)is labelled by 't:i:(lol. . lﬁ)
accordmg to [4].

- Under a conformal transformation {, the coordm:tes xy, the interval element
dsiz), the mass function m (z), and the fleld functions cp(a:) are transformed as
follows (see [1]):

e

Ty T ,

ds? (%) — ds? (x)— 6% &, a:) ds? (x)

, m(:v)ﬂm (:L)—s 1(" w)m(:v)
fP(:L)-vrp k:c) *—-SPU x)cp(aﬂ.‘
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and cquﬂlon {2.1) becomes o _ -
(Lua + ) ¢ (x) = o o S (2.2-)
The function 6(f,x) and the cocycle S‘P(t x) are expressible in terms of tne

basis JMftv’ D®, K(Ii { of the Weyl group (s’ée‘.[l]) :

SP(eiaP, ¢y =1

-+ Ky \ : '
SP (e' g My, 07 ;9’:) — 7 _% we MOMY

S DD a:)—'—i—'ibD‘P"
@K . oy Bo§ o ® v 3P
$P(e 10K 3 gy = 1 - iC ;Kp_ 23:”1) e M}L

Then, the necessary and SLf[1c1em CODdlthﬂS for the \,quatlon 2. 2) to have
the same form as (2.1) are: o .

19 it L -
["”u\,’ LP] = iy vp LP- — e L,) . 2.3)
(D% Ly =0 . | | (2.4)
Ly(M%" — D DP g"“) =0 | (2.5)
Ulus ul=10 S S (2.6)

Accordmg to [4], the form - of -the - operators L,; (k=:1.2.3), satisfying

equation (2.3), which ensures that equation (2,1) will be relativistically covariant,
can be found if one knows the form of the operator L in- the cqnomcal basis

{Elm}’ with T = Ty y., T, - In this bas1s, the exp iicit form of L, is given by

. . R T
Lo G = 2 e,k ( 22 eri, T ) @.7)

cf‘,l, ,_c'” 8,8,

The equation (2.1) will have the non trivial operators. Ly (i.e. at least one

~of the operators LU» is non-vanishing) if and only if a' least one of the
numbers C;c"’ is non-zero. The factor Clu ¢an be non-vanishing only if t=({;1)

and ¢’ = (l’ I’) are interlocked, . e. if either

Aly=0 and alh=4+1
or alg=+1and Al =0 2.8)
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According to [L], equation (2.1) is covariant with respect.to the dilatation
transformation D only if D® = ilo (lp is called the scale dimension of the field
¢ () ), and the scale dimension of the operators Ly equals zero. These condi-
tions hold for equation (2.4).

Let us consider the conditions for equation (2.1) to bé covariant with respect.
to the special conformal transformation. They correspond to the two equations
(2.5), (2.6). We suppose that equation (2.1) is covanant with respect to the Poin-
caré and dilatation transformations. Since

Ky = RPuR ; My, — RMy,R ; D= —RDR,

equation (2.1) will be covariant with respect to the special conformal transfor-
mation if it is also covariant with respect to the R-transformation. Therefore,
we shall consider the R-covariance of equation (2.1). According to [5], under the
R-transformation, the guantities of equation (2.1) are transformed as follows:

Tp—> Th = — Tp/E?

e

dS? (z) — dS*? () = dS2 (x)/ =*
m (x) — m’ (x) = %m () '

¢ @9 @) =@ B (= T o @

Necessary and suificient conditions for the form of equat:on (2, 1) to be preserv-

‘ed nnder the R-transformation are:
Re(x) Lpd'* (x)-19R? '.(- ~) + Re(x) Ly (%)% 9’ R+ ;(-.. _‘fg) —0 (2.9
1z

Re @)L, Rw'.-(— f‘-) = ( 8y + Pra “’“) L, B (2.10)
2 T2
Using the follwing relations for the function R‘P(a:) studied in [6]
. :.'I: . . N - i k]
ap. R= (— w-";) = — 2ip¥ R¥ ('—— x——g)ﬂ’[g,
z' [R? (x), M3, ]+ =0
and solving the system of egunations (2.9) and {2, 10), we find
lp = —— 2.11
o === @11)
This resunlt coincides with that obtained by another method in the work [1].

On the other hand, from equations (2.3), (2.5), we can derivé the Tollowing
e Juation (see [2]

(L, — L)) = (_;— 4 lcp)Lo N 2.12)
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where I is the Casimir opemtor of the Lorealz group
=L u, =1 o eBr n
f. .I T, x«tv o,
I'i = 5 M[Jl M ['D‘f"'"" i-ﬁ ~.1-

Substituting the value of Iy into equatlon (2, 12}, we have
I L — L= =0

Using the definition (2, 7) of operator L0 for the above equation, we deduce
that I'° =", (e P4 2= 2+ it ¢F¥ = 0. Thus, if the irreducible

representatmna T = Uo’ 1) and 7 = (I’,I’J) are 1nterlocked they ‘are also
strongly interlocked.

Finally, from thg comm_utaitor RN
_ [D, Ku] = —IER
and DY = ilp

we have ch,_ = 0, and therefore (2.6) is antomatically fulfilled: Thus, we obtains

_ THEOREM 1. Equation(2, 1) is conf ormally covariant if and onlg if the follow ing-

conditions hold: the field function has l(p = — -%— , KY o= 0 and when restrzct-

ed to the Lorentz group, it realzzes the fully zeduczble represontaizon M‘P =

=M1 Q.. M of SL(2 C), in whzch every pmr of really inferlocked
representatzon T and T’ is also strongly interlocked.

Note that the conformal covariance of the second order fleld equations can
also be studied on the basis of the R-method by using analogous arguments, -

BN

3. THE SUPERCONFORMALLY COVARIANT EQUATIONS FOR THE FREE SCALAH SUPERFIELD
WITH NON-VANISHING MASS

According to the arguments in the introduction, we consider the- STPErton-
[’ ormal covarxance of the two equatlonl

(fo)(a: 5) — miz, 8) (IJf:c, ) =0 G B
0z, ) = mi¥x, ) Da, 0) =0 D (3.2
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We espress the changes of :the field-fuaction ¢z, 6) in (3. 3) by a malclx
8%t (x, B)) expanded for- the group parameters . . _ - :
o (@, = @ 0) Bz, o) o= il + i 5° (F ™ e))] O 0}, (3.10)
From the relation (3. 3), we have - - D .

@, (x 0) __d) (a:, 6) zej[f(F ),_ A:(m, 9)1-'—(1“,' o
e, ) 9@ty
+ 35:1: B NI 1 -—-————f
thre the commutators [f(F ), CD (:c, ‘)-] -(I; "y are the gradéd ones défined in
[7]. Using (3:8) and (3.9) we obtam o S
D@, 8). =0 (@ 0) = i {[F(E))s (0 0], A)+tu" )0, (@, ) (3.1
The representation l(F ) of the superconfmmai algebra, and ihe con:lmutatmq
[f(F ) @, (, 8)]_ 1, 4) an be found in [8]. Substiiuting their exphclt fo1 ms into
(3.11) and comparing the latter with the expunsion (3. 10}, we find the trans-
forming matrices S¥(, (z, ), corresponding to cach of the elementary trans-

formations; ‘ chv o 3
S:'.I’.'(eiﬂp; (@ 0)) == ©.o0 e T L L {3.12)
5% i (x, W =1 *"‘%"‘{hiv'*}%f?’;"""""’ S e DL gy
S‘D(e ""D (a:, e))—-—1 —sz‘I’ S D
'gltp(emrc (1, 0 =1 + ch {K‘I’ ; 2:1, D‘D _1, za:vM"’ ~I— T
+-—£-B'yp'y BED + zer ¥ wguvlpeyp o Aoy (315
{ —;gs . (z, B)) S A R AR Y -L'-_ IS PR S U (3.16)

i N N oy
S%EC @ ) =1 — B {Qy — 5 MM —
D 3 R

cepm oz oo o v 8D T g (e Ep L BID)
Sq’( —ldE . (g, 0) = 1 — sz‘D o (8.18)

-where MS\-};E?’-‘ K-g-,; ,QF(-D E -aré--the: matrices. acting on the indices of the
superflelds and ap, O, cp, U)pw, {.‘, . E“ d ale the droup palameters assocmted

€

‘thh the group g,enerators Pp, D_ fip, H;-nn 3.:. Qns re5pect1vely
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whére DP(w, 8) and D@ (2,0) ave some differential operitors to be determined
later, m (x, 0) is the mags function- of the -superfield. These equations. are’
generalizations of equatibns (1,1) = (1,4). In the general case ® (z, 6) is a colummn:
matrlx with componenta A(:v, 8), the operalors ‘%(1’29(:1:,8 ), m (x,8), and m? (z,9)
arc "square matrices. ‘

-In this section, we use the followingz notation: € denotes the superconfor-
mial group { its elements, _#{ the superspace with supercoordinates (z,0), %6
a vector space of stale vectors | o>, l( f)a representatlon of € on M, and f(t)
s Tepresentation of € on .

Under a transformation {, the state veclors |« > and the supercoordmates.
(z,9) are changed as follows

o f(t) ! a>
i: (n:,B) = (2,07

Lonverseiy, if we keep these states | a>>. unchanged then the fleld functmns‘
®({x,8) and the operators CD(I) ( x,0 ) and ‘9)(2)(:1: 8) muat be transformed alterna—

tively for the | a>>. : : ‘
i@, (@0) = @y (T, 8) = F(1™ Vo, (ac a’) fct) - (3.3)

t: GOV =G U = 1 ) B £y (349

In the supercomdmate representahon of the superconformal algebra, the
expression (3,4) takes the torm Lo

§'W2) (2, 0 )= {177 ) D, v) () T (35)

Smce the supercoordmates (a:, 8) are operators too, they are transformed as
%(r, 6), and in the supercoordmate representation, they take the forms:

(x,0)=Ut"1) @0 Ut) = It ) (x,0) )

"In order to prove the nonexistence of the sube‘rconformally covariant

equations, it is enough to relain only the first order terms in the infinitesimal

expansion of the transformations { for group parameters. Therefore, in thls
section, we shdll only expand the transformations ¢ as follows:

Dot=14de, Fp ‘ N N5
where. ¥, are the generators of the-superconformal group € and ¢ ; are group
parameters associated with F,. .

Corresponding to (8- 7),vtﬁe differentials.. S:ru, 86* are expanded for the
group parameters in the flrst order:

Th =1, 4 Sy = [(t ):cp ~ oy — i, UE, op (3.8)

e =% + 8p° =l(t 1\9@ = % — @5, IF, 0% (3.9)

In this approximation, we caculate the changes of the quantmes in the equations
(3. 1), (3. 2) under the transformation (. '
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Now, we consider the changes of the mass function m(z, §) under the
superconformal transformations & Following [3], 'we suppose that nnder the,
superconformal transformations, the maas fanction m’ (=, 6) is changed in the
inverse proportion to the 4-dimensional line element: - '

t: dS2(x, 0) — dS? (z7, 0) =02 (L (x, M) dS2(z, ), (3.19)

t: miz, ) — m (v, 0)= 671, (z, ) m(x@, O (3.20)

~Thus, in order 1o calculate the changes of the mass function,. we must

caleulate the changes of the line element. under the transformations (. There

are several ways to define the line element. In [9], the line eclement of the
superspace was chosen as follows: : : '

But this line element is not trgéqsformed.lpcally under the superconformal
transformations. For this reason, in this section, we choose the Mink owski
conventional 4-dimensional interval to be'the line element : '

Do o dwp = OTfs L (3.22)

Here, in order that dw, be transformed locally, this line element must be

defined only for two. pointsof superspace with ihe same value of the Grassman
coordinates 6o

. Let us calculate the dilatation coefficient 6(f, (=, 9)) defined in (3.19)
corresponding to the line element difined by (3.22). We denote the change of

a coordinate x,, on a fibre 8, under the transformation 7, as follows: -

d: oz () L @)=y @ 0
f: . (e 08z YO — (Te T dzp ¥ (0).= yp (@ + B2y ,.0) (3.23)
Fro dWa@) . — dWy @) = yu(@e F Bz, §) — Pul@s, )
From (3.19) and (3.23) we have the equation for 6 {,. <, ) ET TN
L aS?=dW AW =6 (¢, (2, §) dav d2¥ . N €
With the approximation (3.7) — (3.9), the solution of this equatjon is
ot G, O) =1+ it o (Fy(m)=1—— e LN (6.25)

Substitnting the explicit forms of the re .-esentation I(,) into (3.25), we find
the dilatation coefficients o (FT,,\(:E, 8)) corresponding to-each of the elementary

transformations of €:

i ARy
o.‘(eiaP’. (x,0)) =6 ..(e".ﬂ ' M s 8)) ==
= o (B (g, ) = (e Smay=1 @M
g (eicK‘; (:L‘,B)) : 1 + 263[:,’ - (3-27)
e (70D ; @, oy =1%b, - (3.28)
e (B0 () =1 — _12_59 S (3.29)
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Now, we consider necessary and suffficient conditions for the eqnations
{3.1) and (3.2) to be superconformally covariant. Under the transformation t,
the equation (3.1) takes the form : :

o (2, ¢) — m’ (@, ) O (x", 0 =0, (3. 19
Using the expressions (3.3), (3.10), (3.20), we can write equation (3.1°) as
[ EH W @8 @) — 61 @ 0) m(z,0)]8% ¢ @ 0) 0@ 6="0.(3 30
With the approximation (3.7), the inverse matrix (S® (¢, (z, 0~ !is given by
(S ¢, @ o~ =8P t, o) = 8® (7L, (= 0).
Therefore, the equation (3. 30) becomes :
{6 ¢, (@ 0) S (@ it . 9D (z, o)lt) S® (¢, 12 8)) —

— m(x, 8)}p{x, 8)=0. {3.31)
Comparing (3.31) with (3, 1), we -obtain ;

THEOREM 2. The first order equation (3.1) for a non-zero mass free superfield

O(x, 0) is superconformally covariant if and onlyif there is an operator Cb(i)(x, 8)
salisfying the following condition: B

(99, 0; (F))] + (9D, 0); S (F, » (= )+
6 - (F; (x B)) 20z, B)fcp (@, 0 =20 (3.32)
In a similar way, we derive the following theorem for the second order
equation (3. 2):

THEOREM 3. The second order equation (3.2) for & non-zero mass free superfield
&(zx, 9) issuperconformally covariant if and only if there is an ﬂperaior CJ)(~)(3;, 8)
salisfying the following condilion:

(29, 0. 1)) + 2P 0); SOF, @ 0] +
+ 26(F @ ) 29 ) 0@ 0 = 0. (3.33)

In the general case, the field function ®(x, g) has many components,
therefore each of the equations (3.32) and (3.33) is a maltrix equation, i.e. there

is a system of equations for each of the operators (1) (z,0) and o2 (z,8).
We shall apply these equations only for the case when the superfield ©(z,0) is
the scalar superfield. This will be sufficient for ns, because the scalar superfield
contains almost all the physical fields.

Yor the scalar snperfiel_d, we have several restrictive conditions:

® (M @5) -_ﬂ;uffv =0; SD(E; 20) = E®=0
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and therefore, with respect to each ol the generators Mﬁ-v’ P!«l’ S B 13, Kli ,

Q, of C, the equation (3.32) for operator (1) (z,5) takes the Tollowing concrete

form ¢

(DD (@0, (M )] @ (@9) = 0, ) (3.34)

(2 (©.0), 1P @ (@.0) = 0, - (3.35)

@D @y, S @ @H =0, T (3.36)

D@ (@0), KE)) @(x,)--O | o (3.37)

(9@ @9, D)) — 19 Va,a)} o@h) =0, C (3398

{2 (:c,e), LK+ (2 (@:0)3 (-—2qu®+:97” Q )] ~
—2:xu€b(1)(x,a)}m(xe)_o | S (3.39)

(22 (z0); () — (2P @H); 0.D% ] +
| +-—;—‘a,a(1)@;,e) @8 =0 . ... (3.40)

- Solving this sysfem of equations, we can find the explicit Afor;ﬁ‘ of the

operator D (z,9).
Slmllarly, with reapect io each of the generators MMV’ PM . Sa, E, D, KM’ Q.

of C the equation (3 33) for Cb(z) (a:, ) taLes the form

2P0 L WMo @b =0 T @A)
(2 (2) (z,0); (P & (=, 8)=0. ‘ ‘(3_4.2)
(9@ (2, 8); 1(5)) o (@ 0 =0 o BN GE)
2 @ (z,0; (O] ¢ (= O)=0. L (344)
(D ¥ (z, 6), (D)) — % D Pz, )} @ (@, ) =0 (3.45)

9@ (@, 0): LK)+ (9P (@,0); (—2wp D® 45 ve Q®)]—
—4i2 9% @ 0} o 0=0. @46)
(19D (=, 0); l(Qu)]—-[%(f?)(x,ﬁ) 0, D? ]+:9 0 (@ 0} oz, 8)=0. (3.47)

Solvmc this system of equatlons, we can find the exphcxt iorm of - the
' ‘operator Y (2, 9) '

Solving ) (z, 8) :

In order to solve the above derived equation, we expand operator 2 (2,9)
for the anticommuting Majorana spinor§ analogously to the expansion of the
superfields:

~108



D1} (z, ) = A@) +7* Ba @) +(08) C(2) + (0 vs0) ) --
(T v @@+ (00 T H @+ (8 8)° K(x). (3.48)
where A(x), B(x)..., K(z) are some coefficient functions to be determined later.
' 0,2 ;3 d the Di
e 98, ‘33’ an e Dirac

matrices yi, ¥s Yos ¥s» Op, With all possible combinations, so that the operator

They are functions of the variables xu ,

5 (I(z, g) is the most general possible. These seven terms are independent of
each other and sufficient to expand Sl (x, 8) for parameter 8. Now, the
system of equations (8.34) — 3.40) serves as a syatem of conditions imposed on
the unknown coefficient functions of the eperator 7 (x, 0)..
Let us consider successively these conditions:
"From the condition (3.34), we dednce that (1 (x, 6) is a scalar,
From the condition (3.35), we obtain the following expression

(E—?f:;&-—“’—el) ® (z,0) = 0.

Recanse of that, DM (x, 6) contaiué the wariable xp not in the explicit form, but

only in the form

a:l}'p. *
From condition (3.38), we see that the scale '‘dimension of 2™ (z,0)
equals —1.

These‘three conditions are imposed on ihe coefficient functions A, B, G,y

a . . .
K in (3.48). From 9 ’ 0 , , and the Dirac matrices, we find all the
dxp 0, ik ‘, -
possible coefficient funetions A, B, C, ..., K in (3.48) satisfying these three
conditions. The most general operator DV (x, 8) satisfying the above condi-

tions is

9 0 IR AWANE: 72
(1) = —_—— b 0 = = b =]
DR, 1) = o (ae ae)+ 0( a&) (BB 69)+ 1(9 i )+

D70 AV o By ooe o 3 .~ 0
Co (00) (EE ﬁ) 4 €, B0) 0p0F 4 e, T 9) (5% a —,)-1-

/-
+g, By, 30 (f:'_ i_) R, (@ ‘("e“’a‘l_ "5’—1)
T s o8 Y55 +h, 66) ae_) " a9 T
_ /- @ L e \ o

These ten terms are independent of each other, and a,, bo, bye... are complex
coefficients to be determined later. The operator D” D, in the equation (1,3) is
a- special case of the operator D™ (%, 8) when a, == Lo, =1, = —‘11— and the
rest equals Zeroy ' '
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Let us substitute the expression (3-49) of D (x, 8) into the remaining
equalions (3.36) — (3. 40) to determine the complex coefficients dg by, b, .

of 9D (z, 8). Upon simple computation we find that: in order that all these
equations hold it is necessary that all coefficients in the express:on (3.49) of

DD (x, 8) are equal to zero.

Thus, there is no non-frivial operator D (x, 0) satisfying the equation
(3.32). Hence

COROLLARY 1. Fhere exisis no superconformatly covariart first order equation
of jthe form (3.1) for the non-zero mass scalar superfield. =~
Solving 92 (%, 6)

By a similar method, we find easﬂy D@z, 6) from the syatem of the
equations (3.41y — (3.47%.

We also expand C_DF'?) (=, 9) for the parameters 9,, 6% as (3.48):

Using conditions (3.41), : 3 42y, (3.45), we deduce that 9z, 8) is a scalar

operator, whieh contains x;,, only in the form

2 . and has the scale dimen-

sion-2. Such an operator takes the most general form as follows

@ . ) 6L p .._._a_\ iiz
2Pz, 0 = a( )+a2696+0(9 == aﬁ_) B

+ 0, (TTF) (G55 T2 (7 2) 0. 00+ C(T) (5 55) 20 +

. 3% o
+ha (T 00 (- 5‘%) 9ud® 4 k¢ (T 02 (3,07

All the terms in (3.50% are mdependent of each other, and the eoefﬁmrenis
a, »ay b, ... are determined in the same way as %(1)@:, 8). After subsntutmg
%(2)(93, 8) for (3.50) into the remaining equahons (3,433, (3.44), (3. 47 we

deduce that every coefficient in. the expressmn (3.50) of %(2)(m, 6y is equal to
zero and consequently

COROLLARY 2. leéfe_ exisis no su pérconformally covarian! second order
equation (3, 2) for the non-zero mass free scalar superfield. -

Thus, the tgétipercr:mfomml symmbetry of the nen-zero ‘masg free felds is
merely too approximative. It is exact for only the massless free fields.
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fn a subsequent paper, we shall couasider thé superconformal covariance
of the molion equations for the massless free fields, and derive conditions for
these equations to be superconformally covariant.
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