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§ 1. INTRODUCTION
Let f be a functional defined on a real Banach space X, C.a non-empty

closed convex subset of X, F a map from X into 2 real Banach space ¥ and K

a closed convex cone in Y with verlex at the ongm Let us consider the
mathematical programming problem
0 minimize f(z),
subject o F(x) e K, e €. :
Necessary optimality: condifion’ for Problem- ) is well-known (see:[1}).
Sufficient optimality conditions for Problem (I) have been given in [2], [3] [4],
[5] [6]. In [2], the problem is solved under the. assumption that C = X and
= {0}, The papers {3 —,6] deal with the case where & =X or K is the non-
posmve orthant of a ﬁmte-d:mens:onal space. .
In this paper we shall be concerned with sufficient optlmahty conditions
for Problem (I). The paper is orgamzed as fellows. In Section 2, using the
generahzed open mapping theorem in [1], we shall show that under, the regula"
rity assumplion, introduced by Zowe. and Kurcyusz [1)¢ the feasible set of Pro-

blem (I) can be approximated by the hnearlzmg cone, In Section 3, some first .|

and second-order sufficient optimality conditions for Problem (. 'will be
obtained. Section 4 is devoted to the dlSCl.lSSlOD of a ‘cas¥ which'was studied in

(3], 14}-

EORt!
B

oo
- § 2. AN APPROXIMATION PROPERTY FOR THE FEASIBLE .SET OF PROBLEM (I)

The set of all feaalble pomts for Problem (I} is denoted by M, 1. e,

R M=CnFRE) -
For fixed z ¢ X and y € Y let C(z) and K(y) denote the conical hull of C—{z}
and K—{y}, respectively, i. e.,,
C(:z:)—{?x(c-—;c)lc'eC?l. 0}
K(y)={k —ry|kekK, ?L>0}
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Tbroughout this paper we assume that the maps f, F arc continuously
Fréchet dlfferentlable at x € M.

We recall the regul'\rltv concept of Zowe and Kurcyusz [1]
The feasible point x is called regular for Problem (I} if

F(Z)C(3) — K(F(z)) =Y. @1)

It was pointed out in [1} that (2.1) {s equivalent to either of the following
conditions:

O eint (F(z) -+ F(x)C(x) — K), - e (2:2)
0 eint (F(z)C(x) — K(F(x))). - (2.3)

It is worth noticing [1] that either of the i‘oliowmg two conditions implies
the regularity of =

() € int C and F’(x) is surjective ;
(1) There is some z € C(x) such that
F(Zix < int K(F{@).
We recall the generalized open mapping theorem in [1] which is
needed later. i

THEOREM 2. 1 (1] Let * € C, y_ € K and T be a continuons linear operalol
between the Banach spaces X and Y. Then, the foflowmg statements are equivalent :

G Y=T7TC (x) — K () .

D By(os p) C T(C — =), - (K —y)l,. for some p > g, where:
(C=TF), = — {3 N nByo, 1),
(K—y ), =(E—{g})n By0,1),

and By (0, ») stands for the closed norm bail around zero with radius p=> 0 in Y.

Denote by L the hneanzmd cone of M at T ;1. Ce, .
L={cxecX{x s C(z)and F'(z) x & K(F(a:))} (2.4)
DEFNITION 2. 1. The feasiblesel M is said 1o be approxzmated atxeM bg L, if
(here exists « map h.: M - L such that

bh(z) — (2~ E) = 012 — Z1) form e o, . .(25)
where . .
0(![:1:-*1:{])/||x_“x“u - (when |z — = ||~ 0).

THEOREM 2. 2 Let x be areqular-point of Problem (I). Thenthe feasible set M is
approzimaled al T by L.

Proof. Let xz € M. Since F is differentiable at z , we get

By — F@) = F@ @ —3) 4 @) . . (26
where L - L
[z D= 0z == |).
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Noting that r(z, x) €l r(:r;, )| B y(©, 1), and applying Theorem 2.1 to the
map F'(z) we can find a number p = 0 such that
pr (x, T ) e K (:c)(ll f'(il?sﬂ?)ll €C—{z }’) I BX(O 1) —
— ) r(x, )| (K — {F(a:}) N By(0, 1). (2.7)
From thfs ‘it follows that there exist & & (C — {;}) N By@, 1) and
1 & (K —{F(x)} n By(0, 1) such that

or(@, ) =F@)(I r @ )18 — (7@, &) ] @38
For each x ¢ M we put
SRR EiC DN
h(z) =z — & + T— p—-ﬁ. (2.9)
Then, because || § | << 1 we have
hw) — @ —7) ) < L&z L
. [

;rhich implies that _ :
| h@) — @ —2) |=0() = — x }).

- Now we show that his a map from M mto L, in other words that for every
z e M h(z) € L,i. e, h(z) sC () and F (x)h(:r) & K(F(x)).
In view of (2.9), there is x & C such that |

h(z) =z — +m‘;_5_)__il_(5__§)

x4t | r(zx.z) | ;’___ (1 +‘ I r(x%) |l )5
. [ - 4 .
et Ir(zD) | o lrz@) | -~
= — T + —_— > _=\
P (p + [rizz) |, p 1 r@,x) || N w)
_.Since c T'.s a convex set, it follows that d T I r@s®) 1. ';7 e C, :

' _ ceFnr@z o el P, |
hence h{x)& C(x). T . _
Comhmmg (2.6), (2 8) and (2. 9) we get

F@h@ =FP@ @@ -2+ PG )(“-*(ﬂ-"f)n ‘)

= F(@)(z—) + r(x,a“5)+li$§s_@i .
= F2) — F@ -+ m;@_l N o0
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ﬁr‘(xﬁ) l n e (!

{ — {F(Z)}) we can write Do)l

(L
= -—F(:c) for some 'qje K. - ) - 2.1
Since F(x) < K, substltutlng (2.11) into (2.10) ylelds '
F(x)h(x) = F(z) + n,—2F(z) € K — 2F(z).
Therefore, F'(x)h(x) & K(F(x)), which completes the proof.

But, noting that

N =

§ 3. FIRST AND SECOND-ORDER SUFFICIENT OPTIMALITY CONDITION FOR PROBLEM (1)

The Lagrangian of Problem (I) is defined to be:
Lz, A = flx) — < A E(@) >

A second-order sufficient optimality condition for Problem (I) can then be
stated as follows

THEOREM 3.1. Let & be aregular point of Problem (! ).Supppose that the mapsf, F
are twice continuously Fréchet differentiable at x and
a) There exists a Lagrange multiplier A € K* such that

£, (@) = (@) — AF(@) & (C ()%, ' | (3.1)
(M) = 0, (3.2)
b) There is a number 6 > 0 such that '
LE NGB >6 e foraltels . (39
Thenz is a local solution of Problem (I).

Remark 3. 1. Theorem 3. 1 is more general than Thesrem 2. 2 in (5] oot only
by the presence of the constraint x ¢ C, but also because the uniform positivity
of the Lagrange multiplier A is not assumed.

Proof of Theorem 3. . Let x be an arbitrary feasible pomt of Problem (J),
i,eezeCand F(x) € K (a:eM)

‘We first observe that x — x e C(a:) and = A, F(a:) == } 0 The tw1ce
differentiability of f and F yields

f(z) > f(w) — (A, F(2))= f@) — (n F©)) + ;
+ 2@ A) (@ — ) o £”(:v, N (& — T, & — )+ ry @, @), (3.4)
where |1, (x — 2} | = O(Ei x — |3, ,
It follows frbm Assumption a) and (3. 4) that

fla) = @) + 5 L& N @~ 2, & —a) +r (@ o). (3.5)
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Moreover, according to Theorem 2. 2, for x € M, 2 — = can be represenied
as a sum of two elements: ¢ — 2 = T, + Zgs Wherez, & L, || z, = O(Ha:—?”)-

Since g;m('a;, A (U, 1) is a bilinear form, (3. 5) implies the existence of a

number &, > 0 for ¢ > 0 such that for everyz ¢ ¥ N Bz, 8,),
I 1 EE] - sy
fly > f(o) + 5 L@ M@y 2 + L7 (2, A) (&, Tp) -
| —
t g L@ N @y, w) — =z — T % (3.6)

We observe that for ¢ = 0, there exists & > 0 (5 < §,) such that for every
T e M n Bz, 8),
lz, | <eflz—z|, (3.7)

hence, .
Iz f=llz —a - x| >tz =2 | — ol 21 — ) flz — 2| (3.8

Combining (3.7) and (3.8) we get
EPIE 1—::_"; e, (3.9
it follows from (3.6) and Assumption b} that

F@) > 1@ + o (o el — 2 125, M eyl i —

~§ 224 Dz, = e 2 — &)%), (3.10)

From (3.8), {3.9) and (3.10) we see that for everyx & M A B.(z, &),

— 1 2 J— y —
fl@) > f@+ 5 4o+ =2 1LLE NI = (= V18, @ miia, ° -
-tz -3’
—_ Y _
> & + ﬂ—igc— 2 L@ Nl
2 1—c¢ zz
(7)1 v - i =7y i
1 —E xx? (1_ :)2E E] (3- )

If we choose ¢ > 0 so small that

2e FY— € 2 »
O —— | Lpp G, AY[[ = (l — ) =Lz (Z, A) i — (16___“‘6)2 > 0,

1 —c¢ £
then, it follows from (3.11) that for every x € M N By (z, &), f{x) > f(@. The
proof is thus complete.
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Remak 3.2. From Theorem 3.1 we can derive a corollary which is stronger
than Theorem 2.2 in [5] because it does not assume the uniform positivity
of the Lagrange multiplier. ' '

Now we establish some first-order sufficient optimality” condition’ for
Problem (I).

THEOREM 3.2. Lel x be a regular pomt of Problem {1). Assume, in addztron,
that there is a number § > 0 such that

(F(E), ey >plalforalzel, (3.12)
Then, there cre a € (0, 8) and p = 0 such that forallze Mwith|jz —z| < p:
f(zx)>f (x) +alilz—, ‘
That is, = is a strictly local solution of Problem (I).-

Proof. According to Theorem 2.2, any x € ¥/ can be represented as a sum

=7 + 2+ 23, where zy € Land [aa|l=0(lz —E[).
" Because [ is differentiable, we get
fz) = @ + <f’(f), z—3) 41y (T (3.13)
where ' :

(x,x)I—O(fl:r-—a,I])
It follows from (3.12) that for ¢ > 0 there exists 6,0 such that for evary
zeM n B, (T8
f(x) =f@)+ <f@ha;>+ < (T) vy> + 1y (& T)
>f@ el l—elf @z —F)—clizc—%l. (3.14)
Onthe other hand, argning as inthe proof of Theorem 3.1, we can find 6, >0
sach that .
lz, >0 —e)lz—F] forallx e M n BX(E, 62). (3.15)
Denote 8.= min {J, , &, }. Then the inequalities (3.14) and (3-15) imply
that for every x € M N By (%, 6), 7 _
) > F@) + ¢ — ¢ A+ BEIF @ IN n F-zp @16)

B —
sothat p—e(1
T @ T
41 f ®1) > . Then, it follows from {3.16) that for every z ¢ M N By (%, 9),

f(x) > f (@) + || ® —% .. The proof is thus complete.

Given any o & ‘0, B), we can choose ¢ <

§ 4. FIRST-ORDFR SUFFICIENT OPTIMALITY CONDITIONS FOR
MATHEMATICAL PROGRAMMING = B

This section deals with the approximation property and first-order suffici-
ent optimality conditions for the mathematical programming Bproblem. A
second-order suflicient condition for this problem can he found in [3]. It should
be emphasized that in this section no regularity condition is assumed.
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We shall use the Hoffman lemma (see [3]) ay the main tool for deriving
our result.
LEMMA 4.1 ([3]). Let X,Y be Banachspaces, A a linear operalor from Xonlo Y, ie.,
AX =Y, Z},ceee, Tha elemenis of the conjugate space X* and
_ Ls'z{meX|<x;,m'>g0.i= 1, wr, my A x = 0}.
Thert

p (2 L)< €Y 21<"’1 .:c>++l!A:v|I}.

where o (.) stands for the distance function, the constant C is independent of x and
<a:;f, a:>,if<x;,x>>0

0 ", otherwise.
- Note that if L, is of the following form:

LT T >y =

{meX|<a, > < 0,‘?€Io,<x,a:>0 Aa:__O} 1 < iy < my,
then,wehave

p (x, L’s)gC{i§i<x';,x>.-.+i<x,io.:s>!+llf\xll}-
0 .

Consider the problem

subject to F (x) = 0,
and f, (z) < 0 (i = 1,u.., m),

where foyens fm are functionals defined oniX, F:X —»Y, X and Y are Banach

minimize f, (x),
an g

spaces.
As in Section 3, denote by M the feasible set of Problem (II). We consider

a point = & M, such that f x)=0(¢= 1,.., m). The hnearlzmg cone of M
at x is denoted by L,
2"__{a:eX]<ft(:c),:v> 0(1—1 w m), Pz =05
Before stating ihe first-order sufficient conditions we shail study an appro-
ximation property for the feasible set of Problem (II). It is known that My
can be approximated by L, at z if dim X < 4 oo (see [6]). Here, we shall
show how this fact can be extended to the infinite-dimensional case.
THEOREM4.1. Suppose that the maps F,f s, fare Fréchet differentiable at
z and F' (@) X = Y. Then, the feasible set M, can be approximated at
3 by L -
Proof Bv vxrtue of Hoffman s lemma any feasxhle pomt T (x & MI) can be

represented as the sum of x, & L, and «, such that
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e, I<C{ o <fi{zhaze + IF(2)@—2)I} @1
1=l
By setting then h(v) = x,, we defined a map X from M, into L,. We shall
prove that (2. b) is also satisfied. '

In view of the differentiability of F and f, (i =1, .., m) at z, we get

Fx) = F(z) 4+ F'(z)(x— 7) 4 r(z, =), 4. 2)
f@=Ff@+<F@hz -2 =+r( %) (4. 3)
where || 7(z, T) || =0(| e — Z ||), \r;@@, 2) | =0l —=z|)

Since z € M,;, F(z)= 0and f; ()= 0({ =1, ..., m), it follows from (4. 2),
'{4_.' 3) that
IFPE @—2) | =0(llz —x), BN C
<@ —F>< 1n@E) |- R
Consequently, substituting (4. 4) and (4. 5) into (4. 1) we get the relalion
N, |l =0z —"=1)
from which (2.5) fellows. Therefore, M, is approximated at x by L.
A first-order sufficient condilion for Problem (II) can be stated as follows

THEOREM 4.2. Assume that the map F and the functionals f i = 0, f, ey IM)

are Fréchet differentiable af x and F’ (:r:) X=Y. Sup pose, furthermore, that there
is a number B > 0 such that

fr@, x> >pl zl forallzeL, (46
Then, there « > 0 and p > O such that for all x e M, with | —z s;_ P

fo (2) > fo(2) + allz == |,
i.e,x isa stricily local minimum of Problem (II).

This theorem can be der ved by using the same argument as that used in the
proof of Theorem 3.2. . ‘

We now try to mitigate Condition (4.6) of Theorem 4.2 by replacing the
cone L, by the foilowing one: , _
.

L_kerf’(x)/\r\ ker ("}r\{:v|<f’('),a:> 0}, (1\<\iaf<‘mj'
i=1 . .

isf=i,



A modified first-order sufficient condition for Problem (Ii) ¢an be formii
fated as follows.

&

THEOREM 3.4. Assume thal the map F and the functionals fo,f,,.., f  are
mn

Fréchet dif ferentiable at T, and F' (T) X = Y. Suppose, furthermore, thoi there
exist Lagrange multipliers y* e Y*, ;> 0 (i = 1,..., i, —2,0, + 1 e m),

A 20K i, < m)and a number § > 0 such Lhat

o

a) L; (ZTy by soons Km, y*) = 0, where
m
L(, Appoms A y*) = f, (x) -+ 21 MFi(®) < g% F (z) >
i:

b) < f’(x) x > Bl forallze L.

Then, ¥ is a local minimum of Problem (II).

Proof. Let % be an arbitrary feasible point of Problem (II) (x ¢ M 1,). In
view of Theorem 4.1, there exists a map & : M, — L, satisfying (2.5). Thus, x
can be represented as x = T L T, + Ty, where x, = h (:c) & Lg, and a:2sat1s-
fies the following relation : ‘ ' : ‘

| 2ol = || R{Z) - (x — &) = 0(l = — Z ). (4.7)
This means that for € > 0 there exists p, > 0 such that for every xe M, n

B (T)h o4)s
Haylf < s fle — % |l (4.8)

Moreover, applying Lemma 4.1 to the cone L, one can rewrite x4 as

*y

ﬂmi < C | Zi<f’ (x), :1:>|+<:f (x),w1>+}(C>0) “4.9)
i=1
i7#ig
Since ®, & Ly, it follows from (4. 9) that

2 H<Ci— 2<1’(x), xy >} (4. 10)
i io
We can choose a number A4 > 0 such that
Amin A, — max (| t(@ ) —1>0 (4.11)
C iz I<i<m
Consider the following two cases:

a) o, Il < 4e fz—7j.

=) 4 zy’ where x; & L, and 7’ such that

For x & M,, we have x —E:x}—!—w;’—[-:c?. Hence,

fo@ =/fo @+ (fy @23} + (Fo @0 27+ (7 @ zg) + O (e — 2|,
(4.12)
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Wiere '01{11:2? — ];)/ . = 0tas 11'.:15‘—»;:-||~->;\0):.- o

lz—azh
By virtue of (4.7), one gets
{f2 (o:),a: y= O, (flz —z )

where 02(”3:—--:.—,1[)[ — 0 (when ||z — x| — 0)
|3:-—:1: - ‘ :

I
Hence, there is a number p, = 0 such that for allz e M Bz, o9 ),

O m i< = =3,
o - B —_ (4.13)
<P (@s 2>+ 0y (lz—2 It)léz fz—z |,
frorn which we get
' ' — . 1 —
[l £;+ T [lr=A[l$ —T =T, II. > £y l!x—wu‘.
Therefore, L ,
1
e i= [lx’ fc”il-l!w”il —é—llx—xu-Aeux—xu.- (414)
Moreover, L B
| < f’ @), m”)l <Aellf @ [z —=2n. (415)

. Taking account of Assumption b), one can see from (4.12) — (4 15) that
fo @ —F,@ > blz; |+ (Fy @ 27)+(F @), 2) + 0, (1 = —Fh)

> L llxﬂ“fCH"‘Aﬁeﬂx—x“ —~ 4e | f, @ | Hx-icll—-—B-llw—xl!

2

=(J;L__83A—~sa: @) n--)-n‘w -z S

‘We can choosee = 0 (s < —;-) so small that
Eopa—car i@ =0 .

Consequently, taking p = min {pys pgfs We have

fo @ — fo(a_:_) > 0 for everyx € M, A Blz, p). N

b) ||y = deljz— T Y.

By (4. 10) we get "~ ;
Ae [z — z <)yl < C{— zo< () :1:1':-}.' (4. 17)
l#lo ~

56



- it follows from {4.1'1), (4_17) that there is a number P3 =. (93 S 91) such
that for every @ € M, N Bz, Pyd

(2) = L hys v by y*)f- z A f (:v) E(E..)—i--éﬁ;:(;,.),:c-—g =

~F=]

-—'%lf {z) — z...}\ <f(’r) x—-—a,>+0 { x—-x[[)

Pi=1 ci=lo-

f(ar)—~ Z ?\<f’(:c).x—:v> + 05 ) ® — x )
i=]

— I . —
f (z) — Z A, = f; (z), Ty > = 2N 4,'f1. {al, Ty>4 0}z — -z I
zFi i=1

>f, (z) —‘%min Az — z||—= max (N f:(?) ||)]i.r—-'§f|-—s|]a:-—_;£“

z;ﬁlo

mf (x) - ejla— z i (—C—mm?\ — max (A, llf(x)il)-—i) f(x)

Ir—!o
The proof is thus complete.

By the same argument as that used in the proof of Theorem 4.3, we
obtain

THEOREM 4.4, Assume thai F, f fy oo f are Fréchet differentiable at x and.

F'(z) X = Y. Suppose, furthermore, that there exists Lagrange muliipliers
y* e Y¥, A =0, Ai =0 (i=1,. ,ml,__;_mI 1, ..., m) and a number > 0

such 1hat
a) £}("a':", Ao hps y*) =10,
by < f(2) x> =Bizlforadlze L, where
L={xzeX|=<f; (), x>0 <f(:z:) z==10 F(z)z=10,
z:l,...,ml,_jr—m+I,...,m}(l m, < m)

Then, x is a local minimum of Problem (1I).
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