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APPROXIMATE CONTROLLABILITY OF
NONLINEAR DISCRETE SYSTEMS IN BANACH SPACES

‘YU NGOC PHAT

' In this paper, usmg esse-mally the inv estlgatlon method of stability theory
[1—3}, we presernt new sufficient conditions for the global approxsimate control-
lability of- nonlinear discrete-time systems with rather genmeral comstrained
controls in infinite-dimensional spaces. We shall also point ont a class of

nonlinear discrete-time systems which are not globally approximately control-
lable,

The results of this note extend the corresPondma results in [4, 5].

Comnsider the following nonlmear dlscrete time control system

Tppq = ‘4xk+.fk($k’ o ,k=0, 1, 2,... (1)
where z, & X, u € Q& CU; X, U are infinite-dimensional Banach spaces; Q is
a given nonempty subset of U; A: X -3, fk: XXU=X, k=0, 1,.. are linear
and nonlinear operators,

Throughout this paper, the resolvent of A, ‘the spectrum of A and the set
of e1genvalues of A are denoted by R(A), s(d4) and sy (A) respectwely. The

open ball of radius ¢ centered at x is denoted by B (x)
DEFINITION 1. T he system (1) is said fo be globally e-controllable if, for some
g > 0 and for everg x & X, there exist a positive integer N and controls u, efl,

k= 0 Treves ‘N — 1 such that the correspondzng solution x,, k = 0, 1,..., N, o! )]
satzsftesx =z, zy & B, (0).

DEFINITION 2. A sef Q is called radzallg conwex if for every ue Q, A € (0,1],
e Q.

Clearly ary convex cet contamlng 0 is radlallv convex, but not every radially
convex set is convex,
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LEMMA 1 [3]. Assume that foreverge> 0, m > 1, ¢, >0, v > 0,0 < g, <

n—1

i <c+ T oa ym,
n k=0 kYEk
and
H_Z-I 1.
m—1 a, <
. (m — 1) Py k
Then

n—1 ¥

Le[l —(@m—1) e ! IE’__O% m—1 -

LEMMA 2. let A: X — X be a linear bounded operaior. Assume thal
sd)S{z:lz I<9< 1} for some q=> 0, Then there exist numbers >0, M >0
such that

HA® | <M exp (—on)y n =1, 2., , (2)

~ Proof. Since A is a linear bounded operator in a Banach space, it follows
that the operator A has the following spectral expansion (see e. g. [2])

i r
Al = —— _ \ V2R, (AdX,
25 S % ()
r

where
‘ r={z:fzl=qk
Therefore, by taking]

& = —-lﬁq,
M= Tax | Bo(A)Y | &

el
we obtain '(2). ‘ o
THEOREM 1. Lef A be a tinear bounded operalor, {d « the asequence of nonnegative
numbers convergent to zero, & be a radially convex subset of U, Assume that
sdyg{=: nz1<q<1}
for some g > 0 and, moreover, that

i) Eo PEIf (@, 0 < + o, f) (0,0) =0 | ®
i) 1 (m W <a fz)™ +blui’, ¥reXue, BN ()

where p > 0,5 > 0,¢ >0, m > 1 and a; — 0 as k — | os. Then the system (1)
is globally c-controllable, T

Proof. Let x be an arbitrary element of X. For every contro} u= (z,, gy,
u __,) the solution of (I} with ¢, = x is given by

n—1 i1

K=0
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Define

@ = —Ing,
M =max || R, |,
A&l

v = min (o, B),
where 8 > 0 is defined by (3).

Furthermore, set
M, = max {1, M},

e, = T M ETD G f @0,

k=0
8 =7 (m — 1)
=(l—¢ )/E(m——l)M e'V(MI )4 ci)m"f
We have ‘
ez eYrs M, )+ - My XDy f @) (5)

—
Let p € (0, I) be an arbitrary given number and N be a positive integer
such that @, <U p for all k ¢ N. From (5) it follows that

N-1 y(k+1)
=z leV"< M, jz|+ E M,e 0F, @ gl
+ 5 Mt D nf @ 1)

k=N
In view of (4) we have

N -1 ) |
z, | VP M, 2] + = M, YD f (@, )|

}:: M e\’("“)buu fe+ ):: M, e¥ Ok p( |z,  eTym
=N _' .
- Pick 1]3> v so large that for &k > N ‘
ez | /MY p <1,
Define the following positive numbers

_ _ -& - .

‘02____ F—e m—1 — 01’
2m—1)M, e’Yp

g =1 — i

Co | ‘ - )
9= (ﬂnmﬁ -, ) (1-e%)
LetueQ be an arbitrary control such that =~
1
0= ;;_< qC .
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et | |
0 L fork=0,1..,N—1,
u l e 1
= _Tt O
k ie xJ u, for }c > N.
Me¥p ) .

It is easily seen thatc, > MI il x| and

@ =DM, e — e T <1 L ®)
where
¢ =@+ 17— e ) Han+ ¢
Therefore :
o ITgeley , n5t Yok yk.m
hz il e < Mg+ ¢ +—————-—-—+ Z Me Pl e )
1—e k=0 . _ .
Setting ) . -
z= tz, |7
qk= M HET,—BRP’
yields - :
S n—1I m
zZ, < € —]— kEo q.kzk .
Now, using Lemma 1 we have o -
2, < el —(m—T1) cm LM per(t — =Syt T,

Taking (6) into account, we get
-1

z, <2 63.
Then . : :
]Ia: ;|<2m—1c o~ 1a, o
On the other hand for every ¢ > 0 there emsts a number N, > N stch that

-'Yn < e/2m 1
Consequently,

le,l<e - for all » > N,

The proof of Theorem 1 is complete.
The following theorem on the local e-controllablhty of the system (1) can
be proved by an analogous argument. c -

THROREM 2. Let A: X - X be a linear boundcd operator and
SA)c {z: lzlI<g=<1}
Lel {a } be ¢ monotone bounded sequence of nonnegative numbers sansfgmg

”fk(x’o)“ = k“xu[n‘..is m>:1,~‘xEX-
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Then there is a neighbourhood of zero V (Z X such that the system (1) si
globally s-conirollable in V,

On the other band we can slate:

THEOREM 4. Let 4 : X — X be a linear bounded ‘operator. Assume [haf
8,(8) N {z:lz|=>1} 5 &, @)
and
sup

If ()i < a Kol s,
ueld -

where a=0,a >0:

* 2 a‘<+oo.

k o
Then the system (1) is not globallu g-conir oflable

Proof. We shall prove that if the conditions of the Theoréin are satisfied,
thenthere exists a point x € X suchthat .le solution T, k =0, 1,... of the system

T 4q = Ao, + Fi (@)
x, converges to infinity,
Indeed, let

with x, =

hed () A{ztlzl>1}

and x be an eigenvector of 4 corresponding to A. We shall prove that the
solution T, M= 0,1,.

. of the above system with © =0 converges to infinity.

Assume the contrary, i. e., there is a number M = 0 such that for any positive
number N o

iz, <M, for some > N.

" Since
AR ‘ n_if Sy
x =ARz 4 T f (z,),
we l;‘a\'e
., n n—1
1o 2 pEeL S 1)
SIAPlz) -85 A
"zl —-M* £ a, — a, |z, 1%
k=N k k=0 k k
Setfing
e 5t
= a, fla,]*
=0 I k ’
yields

n—1
M >z | >IAt|z] —h—M* I a

k=N k
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Consequently,

g n\.—I- T o
M+ Mt 2 gy = I el—h @

Since [Al > 1, b @y < +oo this leads to a contradiction when n — oo,
This proves the theorem.
For example, if ' _
| f (2 1) =e K sin® o cosu, |
where a > 0, g [0, Tj) , the rsysteni-(l) is glo_bally e-controllable if

op (A)S{z 12} <g=<1},
but is not glohaily g-controllable if
T(A)f\{z 121>1};£¢,
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