APPROXIMATE CONTROLLABILITY OF NONLINEAR DISCRETE SYSTEMS IN BANACH SPACES

VU NGOC PHAT

In this paper, using essentially the investigation method of stability theory [1-3], we present new sufficient conditions for the global approximate controllability of nonlinear discrete-time systems with rather general constrained controls in infinite-dimensional spaces. We shall also point out a class of nonlinear discrete-time systems which are not globally approximately controllable.

The results of this note extend the corresponding results in [4, 5].

Consider the following nonlinear discrete-time control system

$$x_{k+1} = Ax_k + f_k(x_k, u_k), k = 0, 1, 2, \dots$$
 (1)

where $x_k \in X$, $u_k \in \Omega \subset U$; X, U are infinite-dimensional Banach spaces; Ω is a given nonempty subset of U; $A: X \to X$, $f_k: X \times U \to X$, k=0,1,... are linear and nonlinear operators.

Throughout this paper, the resolvent of A, the spectrum of A and the set of eigenvalues of A are denoted by R(A), $\sigma(A)$ and $\sigma_T(A)$, respectively. The open ball of radius ε centered at x is denoted by $B_{\varepsilon}(x)$.

DEFINITION 1. The system (1) is said to be globally ε -controllable if, for some $\varepsilon > 0$ and for every $x \in X$, there exist a positive integer N and controls $u_k \in \Omega$, k = 0, 1, ..., N - 1 such that the corresponding solution x_k , k = 0, 1, ..., N, of (1) satisfies $x_0 = x$, $x_N \in B_{\varepsilon}(0)$.

DEFINITION 2. A set Ω is called radially convex if for every $u \in \Omega$, $\lambda \in (0,1]$, $\lambda u \in \Omega$.

Clearly any convex set containing 0 is radially convex, but not every radially convex set is convex.

LEMMA 1 [3]. Assume that for every c > 0, m > 1, $a_k \geqslant 0$, $y_k \geqslant 0$, $0 \leqslant y_0 \leqslant c$

$$y_n \leqslant c + \sum_{k=0}^{n-1} a_k y_k^m,$$

and

$$(m-1)c^{m-1}\sum_{k=0}^{n-1}a_{k}<1.$$

Then

$$y_n \le c \left[1 - (m-1) c^{m-1} \sum_{k=0}^{n-1} a_k \right] - \frac{1}{m-1}$$

LEMMA 2. Let $A: X \to X$ be a linear bounded operator. Assume that $\sigma(A) \subseteq \{z: |z| | \leq q < 1\}$ for some q > 0. Then there exist numbers $\alpha > 0$, M > 0 such that

$$||A^n|| \leq M \exp(-\alpha n), n = 1, 2,...$$
 (2)

Proof. Since A is a linear bounded operator in a Banach space, it follows that the operator A has the following spectral expansion (see e. g. [2])

$$A^{n} = -\frac{1}{2\pi i} \int_{\Gamma} \lambda^{\prime n} R_{\lambda} (A) d\lambda ,$$

where

$$\Gamma = \{ z : |z| = q \}.$$

Therefore, by taking

$$\alpha = -\ln q,$$

$$M = \max_{\lambda \in \Gamma} \| R_{\lambda}(A) \|_{*}$$

we obtain '(2).

THEOREM 1. Let A be a linear bounded operator, $\{a_k\}$ be a sequence of nonnegative numbers convergent to zero, Ω be a radially convex subset of U. Assume that $\sigma(A) \subseteq \{z: |z| \leqslant q < 1\}$,

for some q > 0 and, moreover, that

i)
$$\sum_{k=0}^{\infty} e^{\beta k} || f_k(x_k, 0) || < + \infty, f_k(0, 0) = 0$$
 (3)

ii)
$$||f_k(x, u)|| \le a_k ||x||^m + b ||u||^c, \forall x \in X, u \in \Omega,$$
 (4)

where $\beta > 0$, b > 0, c > 0, m > 1 and $a_k \to 0$ as $k \to +\infty$. Then the system (1) is globally ε -controllable.

Proof. Let x be an arbitrary element of X. For every control $u=(u_0, u_1, ..., u_{n-1})$ the solution of (1) with $x_j=x$ is given by

$$x_n = A^n x + \sum_{k=0}^{n-1} A^{n-k-1} f_k(x_k, u_k).$$

Define

$$\alpha = -\ln q,
M = \max_{\lambda \in \Gamma} || R_{\lambda} ||,$$

$$\gamma = \min (\alpha, \beta),$$

where $\beta > 0$ is defined by (3).

Furthermore, set

$$M_1 = \max\{1, M\},$$

$$c_1 = \sum_{k=0}^{\infty} M_1 e^{\gamma(k+1)} \| f_k(x_k, 0) \|,$$

$$\delta = \gamma \ (m-1),$$

$$h = (1 - e^{-\delta})/2(m-1) M_1 e^{\gamma} (M_1 x_0 + c_1)^{m-1}.$$

We have

$$||x_n||e^{\gamma n} \le M_1 ||x|| + \sum_{k=0}^{n-1} M_1 e^{\gamma(k+1)} ||f_k(x_k, u_k)||.$$
 (5)

Let $p \in (0, h)$ be an arbitrary given number and N be a positive integer such that $a_k < p$ for all $k \in N$. From (5) it follows that

$$= x_n \| e^{\gamma n} \leqslant M_1 \| x \| + \sum_{k=0}^{N-1} M_1 e^{\gamma(k+1)} \| f_k (x_k, u_k) \|$$

$$+ \sum_{k=N}^{n-1} M_1 e^{\gamma(k+1)} \| f_k (x_k, u_k) \|.$$

In view of (4) we have

$$\| x_n \| e^{\gamma n} \leqslant M_1 \| x \| + \sum_{k=0}^{N-1} M_1 e^{\gamma(k+1)} \| f_k(x_k, u_k) \|$$

$$+ \sum_{k=N}^{n-1} M_1 e^{\gamma(k+1)} b \| u_k \| c + \sum_{k=N}^{n-1} M_1 e^{\gamma - \delta_k} p(\| x_k \| e^{\gamma k})^m .$$

Pick $\eta \gg \gamma$ so large that for $k \gg N$,

$$e^{-\eta k} \| x \| / M e^{\gamma} p < 1.$$

Define the following positive numbers

$$\begin{split} c_2 &= \left(\frac{1 - e^{-\delta}}{2(m-1)M_1 e^{\gamma}p}\right)^{\frac{1}{m-1}} - c_1, \\ \sigma &= \eta - \gamma, \\ q &= \left(\frac{c_2}{\parallel x \parallel} - M_1\right) \left(1 - e^{-\sigma}\right). \end{split}$$

Let $\widehat{u} \in \Omega$ be an arbitrary control such that

$$0 \blacktriangleleft \widehat{u} < q^{\frac{1}{c}}$$

Set

$$u_k = \begin{cases} 0, & \text{for } k = 0, 1, ..., N - 1, \\ \left(\frac{e^{-\eta k_x}}{Me^{\gamma}p}\right)^{\frac{1}{c}} \widehat{u}, & \text{for } k \geqslant N. \end{cases}$$

It is easily seen that $c_2 > M_1 \|x\|$ and

$$(m-1)c_3^{m-1}M_1e^{\gamma}p(1-e^{-\delta})^{-1}<1/2,$$
 (6)

where

$$c_3 = (M_1 + \|\widehat{u}\|^c (1 - e^{-\delta})^{-1}) \|x\| + c_1.$$

Therefore

$$\|x_n\| e^{\gamma_n} \leq M_1 x + c_1 + \frac{\|\widehat{u}\|^c \|x\|}{1 - e^{-\delta}} + \sum_{k=0}^{n-1} M e^{\gamma - \delta_k} p(\|x_k\| e^{\gamma_k})^m$$

Setting

$$z_{n} = \|x_{n}\| e^{\gamma n},$$

$$q_{k} = M_{I} e^{\gamma - \delta_{k}} p,$$

vields

$$z_n \leqslant c_3 + \sum_{k=0}^{n-1} q_k z_k^m \cdot$$

Now, using Lemma 1 we have

$$z_n \leqslant c_3(1-(m-1)c_3^{m-1}M_1pe\gamma(1-e^{-\delta})^{-1}$$

Taking (6) into account, we get

we get
$$z_n \leqslant 2^{m-1}c_3.$$

Then
$$\|x_n\| \leqslant 2^{m-1}c_3e^{-\gamma n}$$
.

On the other hand for every $\epsilon > 0$ there exists a number $N_1 > N$ such that

$$e^{-\gamma n} < \varepsilon/2^{m-1}c_3$$
.

Consequently,

$$\parallel x_n \parallel < \varepsilon$$
 for all $n > N_1$

The proof of Theorem 1 is complete.

The following theorem on the local e-controllability of the system (1) can be proved by an analogous argument.

THEOREM 2. Let $A: X \rightarrow X$ be a linear bounded operator and $\delta(A) \subset \{z: \|z\| \leqslant q < 1\}.$

Let $\{a_k\}$ be a monotone bounded sequence of nonnegative numbers satisfying

$$||f_k(x, \theta)|| \leq a_k ||x||^m, m > 1, x \in X.$$

Then there is a neighbourhood of zero $V \subset X$ such that the system (1) si globally ε -controllable in V.

On the other hand we can state:

THEOREM 4. Let $A: X \to X$ be a linear bounded operator. Assume that

$$\delta_{T}(A) \wedge \{z : |z| > 1\} \neq \emptyset, \tag{7}$$

and

$$\sup_{u \in \Omega} \|f_k(x,u)\| \leqslant a_k \|x\|^{\alpha},$$

where

$$\alpha > 0$$
, $a_k \geqslant 0 : \sum_{k=0}^{\infty} a_k < +\infty$.

Then the system (1) is not globally e-controllable.

Proof. We shall prove that if the conditions of the Theorem are satisfied, then there exists a point $x \in X$ such that the solution x_k , k = 0, 1, ... of the system

$$x_{k+1} = Ax_k + f_k(x_k)$$

with $x_0 = x$, converges to infinity.

Indeed, let

$$\lambda \in \delta_T(\Lambda) \, \wedge \, \big\{ \, z \colon | \, z \, | > 1 \, \big\},$$

and x be an eigenvector of A corresponding to λ . We shall prove that the solution x_n , n=0,1,... of the above system with $x_0=0$ converges to infinity. Assume the contrary, i. e., there is a number M>0 such that for any positive number N

$$||x_n|| < M$$
, for some $n > N$.

Since

$$x_n = \lambda^n x + \sum_{k=0}^{n-1} f_k(x_k),$$

we have

$$\| x_n \| \geqslant \| \lambda \|^n \| x \| - \sum_{k=0}^{n-1} \| f_k(x_k) \|$$

$$\geqslant \| \lambda \|^n \| x \| - M^{\alpha} \sum_{k=N}^{n-1} a_k - \sum_{k=0}^{N-1} a_k \| x_k \|^{\alpha}.$$

Setting

$$h = \sum_{k=0}^{N-1} a_k \|x_k\|^{\alpha},$$

yields

$$M > \|x_n\| > |\lambda|^n \|x\| - h - M^{\alpha} \sum_{k=N}^{n-1} a_k.$$

Consequently,

$$M (1 + M^{\alpha - 1} \sum_{k=N}^{n-1} a_k) > |\lambda|^n ||x|| - h.$$
 (8)

Since $|\lambda| > 1$, $\sum_{k=0}^{\infty} a_k < +\infty$ this leads to a contradiction when $n \to \infty$.

This proves the theorem.

For example, if

$$f_k(x, u) = e^{-\alpha k} \sin^2 x \cos u,$$

where $\alpha > 0$, $u \in \left[0, \frac{\pi}{2}\right)$, the system (1) is globally ϵ -controllable if

$$\sigma_r(A) \subseteq \{z: |z| \leqslant q < 1\},$$

but is not globally s-controllable if

$$\sigma_{T}(A) \cap \{z: |z| > 1\} \neq \phi.$$

REFERENCES

- 1. Halanay A. and Veksler D., Qualitative theory of impulse systems. Moscow-Mir, 1971 (in Russian)
- 2. Dalesski Y.L. and Krein M.G Stability of solutions of differential equations in Banach spaces. Moscow, Nauka, 1970 (in Russian).
- 3. Martiniuk D. Lectures on qualitative theory of difference equations. Nauka dumka, Kiev, USSR, 1972 (in Russian).
- 4. Marinich A.P. E-controllability of linear systems in Banach spaces and moment inequalities Diff. equations, 1984, №-3, 413-417 (in Russian)
- 5. Vu Ngoc Phat. Controllability of discrete-time systems with nonconvex constrained controls. Math. Oper. and Stat. Ser. Optimization 1983, N=3, 371-375.

Received April 3, 1985 Revised November, 1986

INSTITUTE OF MATHEMATICS, P.O. BOX 631, BO HO, HANOI VIETNAM