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BANACH SPACES OF D.C. FUNCTIONS
AND QUASIDIFFERENTIABLE FUNCTIONS

TRUONG XUAN DUC HA

In recent years, quasidifferentiable functions (q.d. functions) and functions
that are representable as differences of convex functions (d.c. functions) have
emerged as natural tools in the study of many nondifferentiable optimization
problems. ‘

In this paper we shall be concerned with some properties of the spaces of
these functions.

In the first section we introduce two definitions of quasidifferentiability,
These definitions extend the concept of quasidifferentiability to functiors on
a nonnecessarily open set. They will include as special cases both Demyanoy-
Rubinov’s and Shapiro's definitions of q.d. functions.

The second section is devoted to properties such as continuity, Lipschitz
property, integral representability of directionally differentiable functions. The
resuits obtained in this section will play an impertant role in the study of the
space of q.d. functions.

The basic results of the paper are presented in Section 3, where we prove
some theorems about Banach spaces of d.c. functions and q-d. functions,

[n the final section, we consider q.d. and d.c. functions on [0,1]. Due to the
special structure of [0,1], these functions have a number of interesting proper-
ties,

1. D.C.H. AND Q.D. FUNCTIONS

' We shall consider finite functions’ defined on a nonempty cone or ona
nonempty set of Hn . Denote by JJ . || x the norm in the space X (the subscript

will be omitted in the case X=U~R_). We assume that the reader is familiar

with the concepts of Convex: Analysis (7).
Let K- Rn be a nonempty convex cone,
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DEFINITION L.1. 4 function h: K""RI is called a d.e.h. (K) funclion if it can

be represented as the -dif ference of -two convex. posz!we[y hiomogeneous. ium,fmns
defined on K.
When no confusion can arise we write d.c.h. functions.

DEFINITION 1.2. 4 d.c.h. (K) function is called iotal d.c.h. (K) if it can be
extended to a d.ch.(R,) function.

To motivate this concept of total d.c.h. (K) functions, consider the follow-

iny example, Let K = {u = (g, up)e Ry, 0 Ty, <Too, 0T t, < e} and
] o '

oy=—uy, (14-u, a,y) I’Qfor each uze¢ K, Clearly, i(n) is d.c.h. (K), However,

using Theorems 24.7, 25,5 [7] w: can easily pl'OVP that this function cannot be
extended to a d.c.h. (R,) funciion.

A class of [unctions closely related to d.c.h. functions consists of q.d.
functions which we arc going to define.

Let O be a nonempty subset of Bn. A vector u € Rn is said to be a feasible

direction of Q at x if there exisis a number A > 0 such that [x, « 4 Au] C Q,

where [z, y] denotes the line segment jeining x and y. The set of feasible
direction of Q at z is a cone denoted by K.

DEFINITION 1.3. A function f: Q —> R ¢ 18 said to be directionally differentiable
at x € Q if the directional derivalive '

f’(:r, uj = lim fx + M) — f(x)
Mo . A
exists for every u € K . '
" We are now in a position to define the concept of quasidifferentiability.
Notice that in previously published works there have been two approaches to
the definition of this concept for the case when Q is an open subset of»Hn

The first approach uses sup- and super-differentials, the second uses d.c.h.
funciions,

DEFINITION 14. A function f is called quasidifferentiable (q.d.) a iz € Q
if it is directionally differentieble at x and there exisl two nonemply convex
compact subsets of (z), 8f (x) of R_ such that;

fr(x,u) = maz  (v,u) - min (,u) (1.1)
vedf(x) = weadfx)
forallueK .
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Follow'ng Demyanov-Rubinov [2] we call 3 f(z), 9 i(z) the sub- and super-
differentials of f at z, respectively. The pair of sets’ {3f(=), 9 f(x)} iz called the

quasidifferential of f at z. Observe that the quasidifferential of f at x is not
uniaue.

~ Lel us now give another concept of quasidifferentiability.
DEFINITION 1.5. Let x € Q be a point such that K _ is nonempty and convex.

A functionf ; O — R is sazd to be quaszdszerent:able at a if it is d:rectzonally
differenticble at and f (5. ) is total d.c.hh. (K D

Using the techmque of Convex Anlysm and Corollaries 13.2.1, 10.1.1 in [7]
oné can easxly prove the foliowing .

THEOREM 1.1. Suppose thai the cone K is nonempty, convex., Then Defini-
tions 1.4 and 1.5 are equivalent.

Remark 1.1. The notion of quasidifferentiability was introduced by Demy-
anov and Rubinov [2], who called a directionally differentiable function on an
open set of B ~quasidifferentiable at x if (1.1} holds for each ue R_. Later,

Shapiro [8] defined a dii‘ectionally differentiable function on R‘1 to be quasidii-
terentiable at = if f’(z,.) belongs to the space DSL (R,) ofall functions that are

representable as differences of sublinear functions. Note that in both cases the
set {2 on which the funclion is defined is open so that K_=R_foreveryzeQ.

Hence, our Definitions 1.4 — 1.5 exstend the concept to the general case where Q
may not be open.- _

Remark 1.2. D, c. h, (R )} fanctions have been studied by many authors

However, to our knowledge the notion of total d. c, b. (K) function is flrst used
in this paper.

2. DIRECTIONALLY DIFFERENTIABLE FUNCYTIONS

As g.d. functions must be directionally differentiable, it is natural to study
directionally. differentiable functions in more detail.

From classicat analysis the following result can easily be proved

THEOREM. 2. 1. Let there be given a function f : [0, 1} — R, . Suppose that f is
dzrcctzonally dif ferentiable on [0, 1) and

L= mar{mplf(a, 1)1,sup|f(x,—1)]} < oo, (2.1)
z <01 x€(0,1]
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Then: 1) f is Lipschitz with a Lipschilz constanl equal to L.
2) f is continuous on [0,1].
3) The inlegral representation

fz) = f(0) + g Foy.1) dy @.2)
holds . |

4 f(z, 1), F(x, —1) are zdentz cal almost everywhere on [0 1]
Consider now asubset Qof R_ with the following property.

PROPERTY 2.1. For every x € there exists an s-neighbourhood B(z, )=
={y:lle—yi<c} of x(z>0) such thal B(w, )\ Q-4{x} and for all
iy e Bz, g) n Q. the inclusion [z, y] C Bz, ©) n Q holds.

Evidently, the family of sets with Property 2.1 includes open sets, convex
sets and is closed under the operatizn of union and intersection over finite
number- of sets.

Foranyx € Qand u ¢ Kx, Jull =1, denote
"R(zx, u) = sup {A>0: [z, x4+ du] C QL .
Let f be directionally differentiable on Q. For every ¢ € (0, R(zx, u))y set
a(z, u, B) = max {sup If*(z + ru, w)|, sup }f(@+ Ay, — )|} (2.3)
Aefo, 8) Ae(0, 0]
THEOREM 2.2 If

w(T, i, 8) <. oo : (24)
then for each y € [z, x + 0u} we have the inlegral representatzon

f(y) = (:c*)+3 f’(w + Hu, w)dit (2.5)

Pfoof. This follows immediately by applying Theorem 2.1 to the function

THEOREM 2.3 Suppose that

B(x) = up: : sup «(, i, B) <t =, (2.6)
uek 5 flufj=1 60, R(z, o))

Then : 1) f is locally Lipschitz at every x € int Q.

2) If [z, y] < Q then | F(y) — f(:c)l B) lig— =1 and therefore fis
continuous at x.
3) If we assume, in addition, thal Q is convex and .

L= sup B@)<ee @27
xell '

then f is Lipschitz on Q with Lipschilz conslant L. Moreover f can be approxi-
mated, as closely as desired, by a dif ference of fwo convex functions.
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. Proof. The proof is immediate from Theorem 2.2 and the theorem aboul
approximation of continuous functions by differe ices of convex functions.

Note that all the conditions (2.4), (2.8) and (2.7) are fulfilled if-

sup [, o< o, 2.8)
ref}, €K, flu =1

If a q.d. function f satisfies. (2.8) then f has all the properties stated in the
just established theorem.

3. BANACE SPACES OF D. C, H. FUNCTIONS AND Q. D. FUNCTIONS

The problem we are concerned with in this fundamental section is to study
Banach spaces of d. c. h. (K), total d. c. h. (K) and q. d, functions, respectively,

L. We begin by considering d. ¢. h. (K) functions _
Let K C R be a convex cone and i(u) be a d. c. h. (K} function having at

least one representation

h(wy = ¢ (m) — g2(n) YueK (3.1)
such that
sup g+ sup [gP(w)] < oo (3.2)
u €K, |[al=1 - u€K |l =1 -

From now on by DCH (K) we shall always mean the family of d. c. h. (K)
function for which there exists at least one representation (3.1) satisfying (3.2).
It is easily seen that DCH (K) is a normed space with the norm

hi| = inf sup‘ lg” ()] —[— sup 2(u) .‘ 3.3
A DC H(%) h=gl _ 92 {HGK, lall=1 €K, ] <1 g I} )

In addition, we ‘shall show that this normed space is a- Banach space. To this
end, we need two lemmas

: 'LEMMA 3.1. A normed ' space X is complete if and only if any series

b . oo oo ‘
Z Iy with 2 || &, i x << oo converges, (The convergence of a series h, means the

existence of an element h € X such that

m
imih — 2 Ry =0)
Hl~»oco i=1
LEMMA 3. 2. Let K C Rn be a convex cone and h( ), hm (), m=1, 2,... be positi-
vely homogeneous functions from K to RI . Asstune, in addition, that each ]zm (1)

is convex and
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lim sup | A —h (a) =0 B.4)
m=>oa g€K, Hu” 1 - :
Then h{u) is convex. :
The proof of these lemmas is siraple and is omitted. \Iote that from (3.3)
we can derive the inequality -
sup  [h(@)| < 4l (3.3)
ek, llull =1 . DCH(K) :
which will be used laler.
Now one of cur main results is the following

THEOREM 3.1. The linear space DCH(K) endowed with the norm (3.3) is d
Banach space.

Proof. Let I &l be a convergent series. By Lemma 3.1, it suffices
i=1 DCH(K) . :
. (=3 e . .
to verify the convergence of X k. Suppose that llA, || # 0 fori=12..,
i=1 " DCH(K) ¢
Fix a representation
' 1 2 . ,
) hi (H) = gl(u) — g; () Yuek i= 1,2,...
such that
i .
sup  |g(w| + sup lg wi<2 llh l . (3.6)
 agllg, |lull=2 - uek|luf=1 DCH(K) , _
Setting

sty = E: g, S = 3 6@ Syw = st (@) — 52 (),

we get
gt 1 2
sup | S, . (@) — S (w)|+ sup |87, @) — L@
ek, |Jull=1 mEp m ek, llull=1 mTp _ ‘
mp o
<2 =2 Al . | o (3.7)
i=m+1 DCH(K) o
. Consequently, for every u € K, fu = 1 there exist numbers g’(u),
g?(u) such that
gl(u) = lim S?(u), g2(w) = lim S?(u)'
i~ {—>co

By letting p — o= in (3. 7) we oblain

wp 1@ —Si@i+ s 1 - S @I<
wek. | u || =1 wek, | u || =1 ‘
< 21:5;—{—1 il hi il DCHEK) » 7 | .(3.8)
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Replacmo nt by m+ p in (3.8) whére p is an albxtlary positive integef
yields ~ :

sup g = ST @) — (ST | @) = STe) 1+ sap (g7 —

wEl, | u |l =1 : . ' : u€K, || u || =1
9. 9 : .2 iy
~ S =L, =S I<2_ 2 Ik pca (3-9)

Now extend g1 (1), g?(u) to all X by selting

i 9 . 2 u
Ty )"g w=hulg ( T )"’L”GK\{O}

g0 =g =0 : | if  0eK

gf(u)=llu1191(

From (3.9) and Lemma 3.2 applied to gl(x), ¢ (), g () — 5! (), g°(—5% (w)
: m

‘it follows immediately that these functions are convex. Therefore, the function

() = g' (u) — g% (m)

is d.c.h. (K).. By direct cornput'ation we can check that (3.2) kolds. Finally,
combining (3.3) and (3.8) yields

lim |A—S HDCH(K) llm 2 Z )=20

m—se i=m

. 12 pomex)

which shows the convergence of b3 h;. The proof is complete.
i=1

Observe that (3.2) is automatically fulfilled if K= R . As an immediate

consequence of Theorem 3.1 we obtain

" COROLLARY 3.t. The linear space DCH(R, ) endowed with the norm
Iilpuacn,) = Wl fmax gt i) max (gt |
R) T el Juli =1
is @ Banach space.

Remark 3.1. In[8] and [9] the DCH (R o) and DSL (R o) have been conmder..
ed with the sup-norm :

Hh"DCH(Rn) (orl R DSL(R ) )= ﬁEIF—L A(u) |

As far as we know, the compléteness of these spaces has not been established
yet.
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 Remark 3.2. Nguyen Dink Dan [6] considered  the family DC(Q) of fané-
tions representable as differences of convex functions on a convex ecompact
set. He proved that DC(Q) is a Banach space with the norm

”f”Dc(Q) = inf max {max {1 fF)], ]fg(x),}} | - (3.10)
f-—vfi _,I:-! =19 )

[I. Our next task is to find a nerm in DC/(K) (the linear .space .of total
DCH(K) functions) that makes it'a Banach space. .

We first consider an interesting subspace of DCH(R ). Let K C R _bea
nonempty convex cone, K = Rn'. Denote
DCH (R )= {heDCH(R ):h(i) = 0 YueK}
[t is easily seen .that DCHK(RH) i nontrivial. Indeed, since the function .

k() = inf Jjo — u|| NueR
DEA T

8.convex {respectively, positively homogeneous) whenever A Rn is a convex
set (respectively, a cone), the function

h(u):q—inflluéu]] YueR
VEE .

belongs to DCH K(R y and A(u) £ 0.

Noting that DCH (R _).is cIosed we can consider the quotient-space

DCH (R = 35:}‘{.:{1:, Fp.c DCH(R ): h—Te DCHK(Rn)}

n)/ DCH,(R,)

As is known, this quotient-space isa Banach space with the norm

” “DCH (R )/ DCH (R )=_1Hf 1% ”DCH (R )
he A

Now we defire a norm in DCH (K) in the i'dlioWing way. Let'us associate
with every b ¢ DCH (K) a vector h € DCH-(R ) / H (R ySuch thalt
. Co T o n
h(u) = k() Yue K, ¥h ek
We then write i « R 1t is easy to prove thqt €D 13 a lmear one-to-one

norrespondence. Now for every he DCH (K) define

Wl oCH (k) ”'Nh“DCH (R) / Do (R )“' , (3.11)

lf h “ h Then weé have
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THEOREM 3.2. The linear space DCH (K) of total d.c.h. (K) functions endowed
with the norm (3.11) is a Banach space.
1II, We now turn to the study of the space of q.d. functions and its relation to

the classical Banach spaces Cp, €.
Let Q C R, be a convex compact set (some of the results below remain

valid if the compact set Q& has Property 2.1 and K is convex for each xz & Q).

Denote by q'C(1J the space consisting of q.d. functions that satisfy

sup I @557 k) < = (3.12)

Combining (3'12)' '(S'O) yields (2.10). Therefore, by virtue of Theorems
2.2, 2.3, f is continuous on £ and for every x, y & & we have

[ty =2
f)=f@+§ @+ wdn u= Hy:iﬂ
Note that from (3.12), (3.5) we can derive the inequality
if" (@ + e, W] < sup ] N .. )HDCH ) = (3.13)

which wilt be used later.
The main result of this paper is the following

THEOREM 3.3 qu(‘i)‘is « Banach space with the norm

u'fuch Ifllg, + sup @ 20 [ o

o DCH(K ) ' (?ﬂii)

Proof. It is easily seen that ch) it a normed 3paée. By virtue of Lemma

3.1 we need only show that for every convergent series T fill oD we can
: j=1 g
[$

find a function /& qu(;ID such that

m—roa
where S = .Z‘ f..

It is clear that

(=]

z Sup | f (@) || =

=1 2el ponky =
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Fhis, together with Lemma 3.1, implies thé existence of funciions A{x,.) which

xe limits of X fi{x,.)in DCH(K ). By an. argument similar {o that used
i=1

or the proof of Theorem 3.1 we get

h ey ' ‘< ; ! 2 o8 E 3-16
'“P I Ae,) ] CH{K) 2 2:5 I f @) | o) < (3.16)
nd R

up [ A@w) — 8 ) < = sup I f; (;c,)][ ‘(3.17)

3EQ RV o DCH(K:B) i=m+1 zal) | DCH(K)

_et us fiz a point &, € Q and define" :

flo) = = fizy)
L i=1 Co,L

e R r— o L
' _ o bl Yy—2%_ Y= %o \g,, 3.18)
f = flwo) + § @“P“w—%uiw—%ﬁﬁ 6B

We have to show that f & qC( ) and_ ‘that (3,15) holds. First we prove that

the representation (3. 18) does not depend on the choice of x,, i.e. for all

ry €
ly—= .
flyy =f@) + S h(:r- +n —2., 3 ) (3.19)
- - : Ily —~ il |y —=l SN
Let w,y be given, Denote
x—a  p—x
u 0 gy =2 0 ,_F=Z
T e=a," 2 =gl “ "y = °

Let¢ > 0 be an arbitrary number. By v1rtue of (3.9), (3.17) we can choose a

posﬂWe integer m, such that-

g

su hizuy — 8 (z0)] < :
z€Q, njﬂ 1' @) = S ¢ )l“sdiamp_ |

where diam @ stands for the d_ameter of .
Therefore taking account of the equality

a] My =oll, lle - oll,
”ys Sr (@ -4 nu, Wdg— g i (Zy +ﬁug.u2)dﬂ—l ) Ollgjn(sco+ﬂu1,u1)dﬂ
0
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we get

i

{ly —zol| lle ol

y -] o
Y S+, wydy—~" § h(z, +-may,u, )dn 4§ A, oy, ay )dy| <<
0 .0 0
3zdiamQ

= 3diame
Since = > 0 is arbitrary it follows that

|y—=ll lly—o]| [Jaezo]

g hx - nu, u) dn = g h(rr;o + nu, 5 4, ydn — g h(:z:o + 1y, 4y ydn
ie.

y—f

y—xly
i) =7 4+ § hix+ qu, w)dy,
o

as desired.
Our next step is io prove that
fl@u)=h (x,u) YuekK ,juil=1 (3.20)
for every x € 2. To this end, for the chosen number m, we take & > 0 such

that
A

1 , ,
- [ S Smo(w -+ ma, u)dn — Smo(wsu)

o}

<€

for any A € (0, d). Taking (3.19) into account we have

3 A
l%(f@“”’“ﬂx» — h(z, u)][-= _% Sh(x+nu,u)dﬂ—fl(x,u) < i% S A(z+-mu,t)dn -
‘ : °
A 2
1 (e o -8 -
- Tg Smo(-l - ﬂu,u)dﬂl + Az, 1) Smo(m’u) Tes 3diam®Q T

4]

Hence (8.20) follows, Thus f(x) is directionally differentiable and f’(x.,)emff T).
From (3.16) we have f ch). It is now easy to check that (3.15) follows from

(3.13), (3.17) and (3.18). This completes the proof of Theorem 3.3,

Let Cq, Cg) denote the classical Banach spaces of continuous and conlin-
uously differentiable functions on the compact set {2 (C R . Assuming, as usual,

that ©Q is convex compact we can state the following relation between ch)

(N
and CQ, CQ .
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: ; (1) )]
THEOREM 3. 4. 1. CQ - ch
2. If intQ = @ and © = int Q) boundary O then for any fe Cg) we have

M = IF1 gy (3.21)
qC 0 -G S
Proof. The first assertion being immediate, we need only verify (3.21). Let
f e Cg). Since ' (&, ) can be represented as

f(@, u) = (f(x), 1) - 0,

it follows that

[, [ < sup (@) I<|F@].

DU uek g lufi=
Therefore

Il < F I gqy
aleY (D
9“q Gy

To establish the converse inequality we take an arbitrary vecior x ¢ int Q

_ i@ : (), L@

and denote i, = m » Then we have |f(z) = (f @) W) =
=@ v =1 u:O) xseltﬁnﬂf(x’ A pen ) = b 7 “LIFH(K )
i, e. |
:Icneaé N fx)ll = m:::lltin ) < S“P I (.. )HL—-—'?Km)
Therefore .

IF il C(ﬂ) It f _”qu{
which together with I f [I (1) 1f0 @ iI;PIiBS (3. 21),

. ._ﬂ :
The theorem follows. )

) ‘ - '
THEOREM 3. 5. ch 'is dense in Gy

(11

Proof. It is evident that qC That qu} is dense in 'Cﬂ follows

from Stone-Veiersirass® Theorem applied to ch). The proof is thu.s‘

complete.

Following [5] we say that a Banach space E is normally embedded into a:

Banach space E, if E1 C E, and ‘for every f & EI“we have
If g, < 051 g
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From Theorem 3.5 and the fact that

HfHece << I e
qCqy

We derive the fol owing

. C oy .
COROLLARY 3. 5.1. The Banach space qC:] is normally embedded

info C,.

4. Q. D. AND D. C. FUNCTIONS ON [0,1].

This final section is devoted to the spaces of ¢. d. and d. c. functions on
{0,1]. The simple structure of [0,1] allows us to establish some interesting facts
ahout these spaces, Along the way shall illustrate the results obiained in §3.

1, We shall first consider the space of ¢. d. functions on [0,1). Observe
that both Definitions 1.4 and 1.5 can be used. Using for instance Definition 1.4
‘we can' easily establish the following criterion for quasuhffelentlablhtv of
directionally differentiable functions.

Let f be a function oa [0,1].

PROPOSITION 4. 1. Suppose that f is directionally dif ferentiable atx. Then f

is q. d. at x if and only if f'(x,1), f'(®, —1) are finite (at x = 0 and x =1 only
°(0,1) and f1,—1) are considered, respectively).
.- Further, a concepi of k-!imes q. d. lunctions can be defmed in the following
way. Let { be quasidifferentiable on [0,1]. By setting (0, —1) = (0, 1),
(1, 1) = f'(1, —1) we obtain two functions f’(. , 1), f’(. s~-1) which are defmed
on the whole mterval {o, 1].

DEFINITION 4. 1. 4 ¢. d. function f on [0,1] is called twice quasidifferentiable
cat z if £(, 1), f(,—1) are quaszdszezenftable at x.

Suppose now that f(x) is twice- qua31d1fferent1able on [0, 1] and that the
q. d. fanctions f,(z,1), f*(x, - 1) satisfy the inequality (2.1). By repeated appli-
.cation of Theorem 2.1 one can establish the interesting fact that if the direc-
tional derivalives of a twice - - quasidifferentiable. on [0,1] function f satisfy an
inequality of the type (2. 1) then as a matter of fact f is continnously differen-
tiable, with a q. d. derivative. <

The concept of k——-hmes quas;dltferenhabxhty can be defined in the
same way.

(1
Turning now to the space g Clo, 1] of q. d. functions on [0, 1] that satisfy

sup | F(@u)f<o,
xe[0,1], u==+1



we can show by a straightforwarti caléulation’ that the hoim (3.14) bedomés

Ml =Ifl + sup max {1/, 11, ]|/ =—1)]}
10 Y1) e

(recall that f’(O,——l) = f’(osl)s f,(lsl) = f’(i’—l))"

Therefore it is evident that for every f ¢ C (2. we have

[0,1]
il @w=Ifl ® =Ifl -+ I .
1) o] o Clo,1]

2. We conclude by some remarks on d. ¢, functions on {0,1}. In recent years,
d. c. functions have attracted mach atlention from researchers in connection
problems of global optimization. We refer the interested reader to [4] for a
defailed ireatment of these fanctions. Let us recall only the following

PROPOSITION 4.2. [3] A function f . (a, b)c(.—w oo)—>(__oo o) is d.c. on (a by
if and only if ‘

1) f has directional derivatives f*(z, 1), f*(x, —1) _(where these derivalives are
meaningful)

2) f'(z, 1), f’(x, —1) are of bounded variation over all of [¢, d] T (g, b).

Now let f be a d.c. function on [0, 1] and set f’ (0, —1) =
FO,0, (1, 1) = £ (I, =1). Observe that, although . f’ (z, 1), f' (=, —1)
belong to V[ ,d] for al' [¢,d] — (0, 1), f'(z, 1), f'(x, —1) may not belong to V[ 7]

(where V[ d) deno'es the Banach space of functions of bounded variation
on [¢, d)). This occurs for example for the function .
fl@)y =VI~ T -2+ y1—4a? z (0,1}

‘It-is a simple matter to prove the following ' |
PROPOSITION 4.3, Lel f be a d.c. function on [0,1). Then f can be extended to
ad.c.function on (—cs, c) if and only if f'(x, 1), f (z, —1) belong to V[ 1

As is well-known; for these functions, f*(x,1), f*(z, —1) are identical almost
‘everywhere. This fact together with the equahty (0, =1y = £(0,1) glves, by
virtue of Theorem 24.1 in [7]:

IPC DY =P =D]
' V[a, 1] . [o, 1
Observe, moreover, that
max { sup [F@ Dl sup_|Flw 1)1} < Vf< 1)< VFeny .
x€[0, 1] z<[0, 1) 0, 1]
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Therefore applying Theorem 2.1 we obiain
x .
flxy =f(0) + J (3, 1) dA. 4.1y

o

From this and the compleieness of Vro 4] We can derive

THEOREM 4.1. The family DC[ 0, 1] of d.c. functions whose directioral derivatives
[z, 1), f'(z, —1) belong to V[O’ 1] is a Banach space with the norm

Il =1FOI+IfC ol . (4.2)
[0, 1) Vi0.1)

Remark 4.1. The norm (4.2) is different from the norm (3.10) applied to
Q = [0,1%

Finally, it is worth mentioning a close relation between the space of d.c.
functions and that of functions of bounded variation. Let

VE0,1]= {feV[o’I]: mes {:c f(a:) <+ 0} = 0},

‘ Vi1 = Vioa) Vioar
DCpy 1= {feDCpy 417 F(0) = 0}

If we define a correspondence « < » between ?[0,1] and DC{’O’I] by setting fg

o ~

it feDC[M], g=14gh,.:g—he VEO,I]}G V[o,i] and f'(z,1) € g, then it is easy
fo prove.

PROPOSITION 4.4. The just described correspondence befween DCE’O I]and fff[o 1]

is an isomorphisin.
On the other hand, if we consider DC[O 1] and V{o 1 as Banach spaces
ordered by cones I{DC[OJ]L—.{fEDC[O’I]: ftx)>0, ¥ze (0,13}, KV[O,I]:{feV[O,I]: fla)

> 0, ¥xe [0,1]} then in the terminology of the theory of ordered Banmach

spaces [1}, the cone KV[ " is d-extremal but is not normal [10]. As one might
0s

expect, so is the cone K . Thus between DC[0 1] and V[o.ﬂ there exists a

Do, 1)
close relationship.
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