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ON THE SOLVABILITY OF DUAL INTEGRAL
EQUATIONS INVOLVING FOURIER TRANSFORM

NGUYEN VAN NGOG

1. INTRCDUCTION

Dual integral equations arise when integral transforms are used to solve
mixed boundary value problems of mathematical physics and mechanics. Formal
techniques for solving such integral equations have been extensively developed
during the last three decades, but not so many efforts have been made to deter-
mine the conditions for the validity of various procedures [1, 2},

In {3] some results on dual series equations with general kernels have been
obtained. The zim of the present paper is to consider existence and uniqueness
problems for dual integral equations involving Fourier transform of general-
ized functions, which are a generalization of some equations encountered in
mixed boundary value prohlems of mathematical physics and contact problems
of elasticity {1, 2, 4].

" 2, FUNCTIONAL CLASSES

In this section we present definitions and auxiliary propositions from the
theory of Sobolev spaces [5, 6]. Denote by §= S (R) the space of quickly de-
creasing test functions and by S’ the dual space of S, where K= (—oe, o). it is
well-known that the direct and inverse Fourier iransforms are defmed on$ by

~ 3 ixt
o(t) = Floj(t) = S p(x)e dz,
-7 . ?i ~ixt
o(@) =T [3)(z) = 5 e dt
and on 8* by :
(FELF), FE 9]y = (20)* (f, o) (1
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where g €8, f €8, {f, o) denotes the value of the disiribution f &S on the
test function.g€ S.

Let Hs (R) (s € R) be the Soholev space defined as the set of all generalized

functions z S’ the Fourier transforms z (t) of which satisfy the condition [5, 6}

[==3

”u”iES(1+(1)281?1‘(1)|2dt<oa. 2)

—_ O

The scalar product in H_('R) is given by the formula

(wo) = \ A+ EW T a @

- It is well-known [6] that in the case s = m, where m is 2 non-negative inte
ger, the norm (2) is equivalent to the norm
oo .
i 2 m Iy 2 .
fall = Z | D u(x) " de (D = id ~dzx) 4
com k=0
—_ o
and in the case s 2> 0 to that given by

T oo

[s] [s] 2
lay, =hal, +S§ 1x_;|1+2s—9[s]

dz dy, 5)
where [s] is the infegral part of the nnmber s.

LEMMA 1. Let n(x) be a function infinitely differentiable on R such that
|DEq(x) | = C, for k=, 1. 2 ..., where C,_ are positive constanis. Then for
any ue H_(R), n(x)u belongs 1o H_(R).

Proof. For non-negative integers s the above assertion is obvious in view
of the equivalence of the norms (2) and (4), for non-negative numbers s this

assertion follows from the equivalence of (2) and (5). Now: suppose that
u e H _ (R), where s >> 0. Taking account of the formuia (1) and the fact that

the set G0 (R) of infinitely differentiable functions with a compac! sapport in
R is dense in H_(R) for all s € R with respect to the norm (2) {6] one can

prove that
J Froa) () FI(0) dt = [ Fla) () F[o] () at
for any » € H _(R).

22



Itis known that H_ (R) = (H (R))* where (H (R))*is the dual space of
H (&) [6]. Since ue H_ (R) and EEX= H_(R), then by the Bunidkowsky inegna-
lity it is easy to see that mu is a linear comtinmous functionazl on H_(R), i.e:
nu € (H _(R)y*= H_ (R). The proof is thus complete.

0 . -
Let » be an open set in R. Denoie by H () the subspace of H_(R) consist-

ing of all functions v€ H_(R) with support in w. The norm in f?{ (w) is also
defined by (2),Denote by p the restriction operator pu = u/w and by H_ (w} the
space of functions pz with the norm

Iy (o) = ol Ul Ll

where the infimum is taken over all possible extensions lu ¢ H_ (R)
From [5—7] it follows that if w is €ither a halfline or a finite integral,

then the set (9,‘:', (0) of infinitely differentiable functions with compact support

— ]
I w© is dense in HS {w) with respect to the norm of H_ (R) for all s € R.

The following lemma gives another condition under which this statement
is also valid.

N
LEMMA 2. Let w= || w» where ®

= (a,, b s
=1 k k k

kl

-;k N _c;j =¢, k==j. Then the sel C;" (w) is dense in g (w) with respect
. : s

to the norm of H_(R) for anyseR.

Proof, Let

wd =z |z —yl <38, yewni;n=1,2,...,f\f,

n
where & is a positive number.

Let n %) be functions satisfying the assumptions of Lemmal, and such

that 'nn(:z:)zl when & wa; T]‘(a:):O when CCER\QJ26. Here & is
. B n Co

assumed lo be so small that 20 A 20 — = ¢
n n+i
Putting
' n(m) = m(zr) + "12(3’) + o+ y(z) T ER, A
we see that n(xz) € £ (R) and1(x) == 1 in the neighbourhood of w, Therefore,"
if ue Hs(“’) then in the sense of distribations we have
u=u + u2+...—]—uN

where u,=m.u; n = L2 yue N,
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Obviously, supp u EIJ):, Therefore in view of Lemma ! the functions
n

u, belong to H (w ). Since mn-is,either..a semiaxis or a finite integral
- 5 I

there exists for any u, & fugcti‘on' ¢, € C;"(con) such that
fa, —e, |, <e N,

where ¢ is an arbitrary positive, small enough number,
Itiseasy to see that the function
o(x) = ¢1(T) + 904®) + 0. + 0y ()
approxlmates the function u with an error || u — ¢ Il, < e This com-
pietes the proof, ' ‘

[o] 8 ‘.| c : : .
THEOREM 1. For every u € H (w) and fe H;S (w) lhe integral
(f.w)o = JIf ()a(t)dt, S @)
where u(t) = Flul, exists and does noi depend upon the choice of ihe”equnsz'on'
If. Therefore, this integral defines u linear- continzous furctional on ﬁs(m).
- ?Converselg, for every linear conlfinuous functional p(u) on g (w) there

exisis a functlﬂn f c H (0)) such that (IES(U.) = (.f, H)O and ” ¢ ” - ” T ” H (0_7)

Theorem 1 follows flom Lemma 2. by an algun‘lent similar to that used in
the proof of Lemma 4. § in [6}.

By Theorem 1 we can 1dentlf'y H._s (w) vnth Lhe dual space of H (w) , Loe.

H_ (v)= uf (w))¥

We shall need in the sequel the followmc class of functioas. Let o be a real
number, Denote by o, (R) tbe class of coniinuous functions k(t), t € R, such
thal (14 £ )-*k(t) = 0 (1) waen || —oe. By definition there is a nosz!ne
constant € snch that

L) | < C(1+Itl)“ te R.
We shall say that the fanction k() belongs to the class ¢ (R) if k() esu(R)

and k{t) > 0. Finaliy, the function k(t} helonus to the class c+(R) if kil(t) g0, (R)'

respectively . It follows that the function k(%) belongs to the class 54 {R} ift

C,il+ 11y < k< C(I—Hi!)“'teR, ' &

where CI’ C ~are positive constants,

LEMMA 3. Let k()= 0 and stch that (1| ¢] )—* k(t) is a bounded contfnuousf

function on R; suppose, moreover,. that the positive limiis of the function
(11t )-*k(t) exist whent — + o . Then k() e_)c:(R) .
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Proof. Assume that ,
lim ({ + 1117 =1%, \F=o0.

[ % oo

Then for any positive small enough number < < A% there is a positive number
R such that

AT+ LY R < s 1 2 By
where

A_ == min {?&i—-—- e}, Ay = max {?\.i + e}

Further, [rom the assumption it follows that the function {1 4 |t | y™* k()
attains its greatest value M and smalles! value m in the imterval [-—Rg,R].
Therefore, (8) holds with

CJ. — min {A_.m}, CZ = max{}\._‘_, Ml‘.

This completes the proof, -

We now turn to the discussion of the solvability of dual ihtegral equations,

3. EXISTERCE AND UNIQUENESS THEOREMS

" 1. In this section we shall consider the following dual ihtegral equatién

pF-1k () a (D] (z)=f (z), x € w,
pPEARDIE) =g @ et ®)

Here o’ = R\ w0, u=F"1{u()] €S§" is a function to be found, k (t) is a
non-negative function (called the symbol of the given equation), f € 9’ («) and
g€ D’ (w’) are given distributions on » and w’ respectively; p and p* are res.
triction operators to w and «’ respectively.

We shall investigate the dual equation (9) under the following condxtlonq

k(t)eo, (625), feH_ o (w), geH, (v) _(10)

and we shall find the function # in the space H, (R).

THEOREM 2. ( Umqueness) Under the assamptzons ( 10) the dual equaiton (9)
has al most one solution in H, (R).

Proof. To prove the theorem it_suffices to show that the homogeneous
dual equation

pF-1[k(fHu(®)] (@) =0, zvcow,

pFiul@=u(@) =0zca’
1as only the trivial solution.
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Since z eH (w¥ the last equatlon can be rewrntten as

(Kuy () =0, rew, 11
where

(Ku) (@) = p F™1[k () u (0] (@) . (12)

(o]
Since Ku € H_,, (w) = (H. (»))* (see Theorem 1) we obtain from (7)

(Ku, ), = S FIKu] () F[a] @) dt ,

-oa

where IKy is an arbitrary extension of Ku from o onto R, [Kue H_, (R).
Since the last integral does not depend upon the choice of [Ky we can take
{Ku = IlpF-1 [Ifu] () = F-1 [ku] (x).
Then it is easy to see that

=]

(Ku, u); = Sk ) ]; YRrdt=0

o]

if the function u=F-1 [u] {x) satisf-es the equatlon (1. I‘rom this it follows

that u — u = O sinee k (i)}O(k(t)mO) QED

LEMMA 4. The dual integral equation (9) is equwalent to the following pseudo-
differential equation

()
~ o %
pF-1[k() 5 (1)) (2) = f(x) — pPL[k(1) Tg (D] (), (19)
where v = F—1 [’1\;] eH « () satisfies the condition |
v 4Pg=ue H,(R) (14)
( I, & Hy(R) being an arbitrary extension of the function g from o' onto R).
Proof. Assume that u € H, (R) satisfies the dhal equation (9) and l'g € H., (R)
is an arbitrary extension of the function g ¢ I1, (w'). Taking v = u —lg we get.
ve H (w). Putting (14) into the first equality in (9) we have (13). The r1ght-
hand side of (13) belongs to H_, (w) in view of Lemma 4.4 m [6].
<

Conversely, assume that v « A «(w) satisfies the equation (13). Then
obviously, the function uz defined by (14) belongs to H (). We shall prove that
this function satisfies the dual equatlon (9) in the sense of distributions. Indeed,
in transfering the second member in the right-hand side of (13) to the left-hand
side and using (14) we obtain the first equahty in (9. Further, from (14) it
follows the second equality of this equation. Q.E.D,
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Denote

i(x) = f(x) — pF-t[k(1) T ()] (). (15)
Using (12) we can rewrite {13) as
(Ev)(x)=>~z), e w (16)

Qur purpose now is to establish the existence of solution of the equation
(16} in the space flu (»)e To this end we shall consider the following cases.
2. The case k(f) = Ity s cga (f). It is clear that in this case the norm in

H, (R) defined by (2) is equivalent to the norm defined by (cf, (8))
hoil, =\ ks @ 5 ()t
ks
The norm joj k. can also be introduced by the following scalar product
in H, (R)

(0, w), . = Sk+ (v (1) W) dt.

—a

We shall also write K 4V instead of Kv
THEOREM 3. (Existence). If he H_ (), k(1) =ky(t) e s;; (R) then the equation

8]
(16 ) has a unique solutionv € H ()

Proof. By an argument similar to that used in the proof of the Theorem 2
we can show that

(K+ v, w)o= S 1\"+ (f);(t) FL; {f dth—.—..(U, w)k
+

[
for arbitrary functions ¥ and w belonging tc H _(w). Therefore, if v € I% «{(w) satis-
fies (16) then the following equality holds

@, @), = (b W)o, ¥ w & H (W) (17)

‘We shall demonstrate that if (17) holds for any w e ﬁa(m) then the fonction
v will satisfy the equation (16) in the sensc of 9’ (w). In fact, mnoting that (17)

holds for w =9 & € (w) we get from (1) and (7)
Q



(o= § TR 300 di=2m (9,

(@ 9), = S F[Ft [k_:}]}(t)ﬂ_;_?;|(f)dt==27c<F_-1 [k o} 9)

Hence . _
(F-2 [k, 0}, 0)=(lh @) g €C_ (w)
i.e. ‘ 7
pF-1{k, v](2) = pli(z) =h(z), = € o,

We now return to the relation (17); Since (&1, W)y is & linear continuous

functional on the Hilbert space H (w), then by virtue of the Riesz theorem
2 - o

Q
there exists a unique element v, € H, (w) such that

o]
(h, W)Yo = (Vo w)k+', VweH, (w)
and moreover C
190, SCIAN o), (18)
where C is a positive constant.

Since (17) is equivalent to (16), the equation (18) has a unique solution

O
v=v,€H, (v), and this completes the proof of Theorem 3.

— O .
Remark 1. It is easily seen that the operator K-_}_l from II__“ (w) into H (w) 1s

bounded. This follows from Theorem 3 and inequality (18).

Remark 2. The solution u of the dual integral equation (9) expressed in
terms of the solution » of the equation (13) by the formula (14) does not
depend on the choice of the extension [Ig. This fact follows from the
uniqueness of solution of the dual equation (9). Hence, we can choose the
extension g such that

Nl <20 G0 gy,

In this case, from (14), (15) and (18) it is easy to obtain the following
estimate

ety < COUIN g ey TTGT gy
where C = const > (. |

Therefore, the solution of the dual equation (9) depends continuously upon
the functions given on the right-hand side.
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3. The case, where k(1) e 6ga(R) and w is bounded. Assumeé in addition that

there is a function 1{+(i) € G;; such that
d(fy = k() — k(1) € 6%_3 (), 8 >0, (19)

We now represent the operalor K defined by (12) in the-formK=K+‘+ D,
where

K o= pl Yk 5}, Dyv = pF~1dv}.

+

LEMMA 5. Under these assumplions D, ‘is a ‘completely-continuous operator

1] .
from H (w) into H _ (o).

oo

. o
. Proof, Noting that the set C_(w) is dense in H (w)and taking account of (6)

and (19), we can easily obtain the estimates
Dyl H“”Ef FF=do]| _pepg < Clol,
+

C = const > 0

Therefore, the operaior D ls cor-tmuous irom F S{w) mto H ot+B(°°) Cn

the other hand, in view of the boundedness of wand § > 0, the immersion of
H—a-HS(w) into H_ (w) is completely continuous (¢f.-[5 — 7]). Q.E.D.

THEOREM 1 (Existence). Under the above assumplions on w and k(i) ( cf. ( 19))
for every f ¢ H__ (), g € H () the dual equation {9) has a unique solution

ne fl OL{R).
Prosf. According io Lemma 4 the dual equation (9) is equivalent to the

2quation. (13) which i8 a Fredholm equation by virtue. of Theorem‘S Rerﬁéi’k 1
and Lemma 3. On the other hand, from Lemma 4 and Theorem 2 one can see

that the equahon (13) has a unique soiut:on ve H o(@), Therefore, the dual
-equation (9) has also a unique solutxon ue Ha\_}i’). The proof is thus complete
By an analogous argument we can show that forf € H—a+B(“}’ g& H;_B.(co’)
the equation , - -
PPkE] @) =f@) @ e o,
p’F—f[hE] @) =gx). r o

has also a'unique solﬁtion ue HH‘B(_R) io elther of the following cases:



D KD e c;; (R, hity c;b (R), w is arbitrary:
D k't e o‘ « (B, 2(D) & cZB (R), » is bounded ;

NikhHeo ;l; » i) e ch, ®’ is bounded under the corresponding condi-

tions which are analogous to (19),

+
+1
tly in practice. In these cases we must find the solution u of the dual equation

Finally, we also note that the cases when k() ¢ o (c"i 4) oecur frequen-

0
(9) in spaces H:F1/2(R) and the solution » of the equation (13) in H +1/2 (w).

From known results in {7] it follows that the function » in the cases
k(1) € o, (R) can be represented as

v(m)—p*lfz(w)w(x)+(1+1)w(m), )

where w(x) L2 {w), P(x) & H-—l/z (w), plx)e Cw(w), p(x) > 0 and p(x) is equal
to zero only on the boundary 0w of » has the same order as the distance from
xre w tO Bm.

Therefore, in these cases from (20) it follows that the function p(x) in

general has the singularity p*¥2 (z) in a neighbourhood of dw. This fact
occurs when solving many mixed houndary value prohlems oi" mathematical
physics and elasticity [1—4). ‘
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