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*LOBAL MINIMIZATION OF A CONCAVE FUNCTION SUBJECT
[0 MIXED LINEAR AND REVERSE CONVEX CONSTRAINTS®

HOANG TUY

INTRODUCTION

In this paper we shall he concerned with the global minimization of a
oncave function over a nonconvex set which isa kind of «excised » polyhedral
onvex sel, i. e.,, a polyhedral convex set from which an open convex subset

as been removed. In more precise terms, we ghall consider the following
roblem: - - '

Minimize f(x), subject to
zeD, g(x) >0 !

here f: R® — R is a concave function, D) is a potyhedral convex set in
" given explicitly by a system of linear inequalities, and ¢ : R® - R is''a
»avex function, Setting T

G={reRr:g(z)<0}
€ can also formulate this problem as .

Minimize f(z), subject to o

| x € D\G. P
ere (7 is an open convex set (since g is continuous). The constraint g(x) & 0
. &, & ¢ &) is ealled reverse convex ({9]; [6]), so problem (P) differs from the
'dinary concave program under linear constrairts only by the ‘presence of an
lditional reverse convex constraint, -

Optimization problems with reverse convex constraints have been studied
st by Rosen [12] and subsequently by Avriel and' Williams (1], [2]), Meyer
], Geing [17], Bansal and Jacobsen [4], and Hillestad [5]. In [7] an algorithm
as given for solving linear programs with an additional reverse convex
nstraint, i. e., problems of the form (P) in the special case where f is linear

(1) Presented at the «IFIP Working Counlerence on System Modelling and Optiniization®,
.noiy 1983« ' o
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4nd D is bounded (is a polytope). Thére, Hillestad and Jacobsen established
the important property that the convex hull of the feasible region D\G is-a
polytope, if D itself is a polytope. ‘ ' I

In the sequel, this property will be extended, by proving that, in the
general case where D is a polyhedral convex set (may be unbounded), the
closure of the convex hull of D\ G, written co(D\G), is still a polyhedral
convex set. From the concavity of the objective function f it will then follow
that Problem (P) is equivalent to minimizing f(z) over the polyhedral convex
set ¢o (D\ G), which theoretically, is a concave programming problem already
studied by many-authors [14] ; see [8] and [10] for a review). The main difficul-
ty with this concave program is, however, that the constraint set, co (D\G), is
not given in the explicit form via a system of linear inequalities as in the
usual case. Nevertheless, we shall showthat this problem can be solved by using
an extended version of the method elborated by V.T. Ban in [3] (see also [16]).

The paper is divided into several sections. After the Introduction, we begin,
in Section 1, with estiblishing some basic properties of Problem (P). Next, in
Section 2, we present a general method for partitioning a polyhedral convex
‘'set into generalized simplices. Since this method proceeds through successive
bisections. of an initial generalized simplex containing the original polyhedral
convex set, it seems to be appropriate for use as a branching scheme in branch=
‘and-bound procedures for solving optimization problems of the type under
consideration. In Section 3, we examine the partitiono f (D\ G)into celementary
pieces » such that each subproblem obtained by restricting the constraint sel to
an elementary piece is quite easy to solve. In Section 4, we show how this
partition can be incorporated into a branch-and-bound algorithm to solve Prob-
lem (P). Einally, to illustrate how this algorithm works, a two-dimensional
example is given in Section 5, ‘ - -

1. BASIC PROPERTIES

o Before embarking on the solution of Problem (P), let ua establish some
basic properties of it, ‘

_ B PROPOSITION 1. If (P) is solvable, it has an optimal solution x lying on some
edge of the polyhedral convex set D. ' o .

Proof, Leiz be an optimal solution of (:P). Since?v\ef G and G is convex, there

"is by the separation theorem a hyperplane passing through % and disjoint with
'G. Let S be th section of D by this hyperplane. Then § is a polyhedral convex
set contained in D\ G. Since the concave function f is bounded below on S by

_the Nalue.f(/x\), its minimum over S is achieved at some extreme point x of S
"({12], Corollary 32 3.4). It is easy to see that » les on an edge of D. Indeed, let
F be the smallest face of I containing z. If dim F > 1, then F would bave in
common with S a line segment containing x in its relative interior, which would
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onflict with the fact that x is an extreme point of S. Therefore, dim F=1, and
o lies on at least one .edge of D. Since f(z) = (%), = is an optimal solution
f (P /] . '

In view of this Proposition, to solve Problem (P) it suffices to sesk the best
.mong the optimal solutions of the one-dimensional subproblems:

Minimize f(z), s.t. z € E\ G, . *)
where E is any edge of D. Since E\G consists of one or two connected compo-
1ents, each of which is a line segment or a ray, an optimal solution of (*) can
ye found simply by comparing the values of f at the endpoints of these com.

yonents. Thus, Problem (P) is decomposed inio a finite aumber of easy one-
limensional suhproblems. The difficulty is, however, that the number of edge.
»f D is usuaily very large, makmg this crude approach very difficult to imple-
nent,

To provide a better insizht into the problem, let us establish a deeper
roperty Wthh extends to the general case an earlier result of Hillestad and
facobsen [7].

L

PROPOSITION 2. Assume that n > 2 and D contains no line. Then the set
w(DN\G), ie., the closure of the convex hull of D\G, is a polyhedral convex
sel, whose extreme points are endpoinis of sefs of the form co( ENG ), where E is
m edge of D, and whose exireme directions are exireme directions of sets of the

formco (0 F\C ) where 0 TF is the recessron cone of a two-dimensional face

of D, while C is made up of all v €0 G (the recessaon cone of G) such that for
wery x & D the rag {o + Av: X > 0} meels G,

In other words, . :
co(D\.G) == caU 4 coneV,
where ‘ . : A
U = {J {ext (co (E\G) : E edge of D},
V = U {dext (co (07 F\C): F face ot D, dim F = 2}

(ext A denotes the set of extreme poinrs of 4, dext 4 the set of exireme direc-
tions of A),

Note that the sets U, V are finite, becanse each co(ENG) is a line segment

or a.ray, each cone (O F\C) is a two- dlmenslonal cone.

Proof Consider an arbitrary pomt x ¢ D\ G and let S be 'the section of D
by a hyperplane passing through x and disjoint with G. Then § is a_ polyhedra]
convex set and x & co (ext S) J- cone (dext S). But, as in the proof of Proposi-
tion 1, it is eas;ly seen that any extreme point z of S lies on some edge E of
D, hence C o
ueco (ENG) C¢ecol/ - if E\G is bounded, '

while . _ o
u € co(ENG) C ¢o U + cone V if E\G is unbounded.



ote that in the latter casé the direction of E is an element of V, since E is an
treme ray of any two-dimensional face of D containing it.) Furthermore,
st as an extreme point of § must lie on an edge of D, so must any extreme
y-of § lie in a two-dimensional face F of D. Therefore, the direction of such

extreme ray belongs to 0+F\C. We thus have = & co U -+ cone V, which
iplies co(D\G)Cco U ~+ cone V. To prove the converse inclusion we observe
at, obviously, U/ co(D\G) since EN\G C. D\G for every edge E of D, On
» other band, if v ¢ ( F\C for some two-dimensional face F of D then
xre is at least one x & D such that f 4+ Av: A > 0} < D\G. This means
itany ve0 F\C must belong to the recession cone of co(D\ G). Since this
‘essmn cone is convex and closed (see e.g., [11]), if follows that it contains

ery cone ¢o.0 E\C). Hencé it contains V and, consequently, co(Z \\ G) O
U + cone V, as was to be proved /f

COROLLARY 1. Problem (P) is solvable if and only if so is the problem
Minimize f(x), s.te x & co (D\G) : R)

1 then any optimal basic solution of (R) is ar optimal solution of (P).

Proof. If (P) is solvable, then the function f is bounded below over the set
\G, hence over the set co (D\G) too, by the concavity of f. This implies the
[vability of (R), because E:E(D\ ) is a polyhedral convex set by Proposition 2
‘e e.g., [11]. Corollary 32.3.4). Moreover, when ( R) is solvable, the optimum
achieved in at least one extreme point of ¢co (D\G ) and since any such point
longs to D\G by Proposition 2, it follows thatany optimal basic solution of
) is also an optimal solution of (P)

The above results show that solving (P) amounts to solving (R), which is a
wave programining problem under linear constraints. It should be stressed,
wever, that the linear constraints are given only in an implicit form, so that
en when the objective funcfion f is linear one cannot use standard methods
linear programming for solving it. ‘ :

Fortunately, the extreme points and extreme directions of the constraint

: co(DN\G) are related in a simple way to: the extreme peints and extreme
ections of the polyhedral convex set D, as shown by Proposition 2. In the

juel we shall show how thu property can be exploited to construct a fxmte
rthod for solving (R). :

2. PARTITIONING A POLYHEDRAL CONVEX SET INTO GENERALIZED SIMPLICES

A subset § of R is called a generalized simplex if it is a polyhedral convex
. containing no lines and baving n -+ 1 or fewer extreme points and direc-

ms. Thus, a generalized simplex in R®is a polyhedral convex set generated
k, = 1 points and £, = (r'4- 1) — k, directions.



The method to be developed below for solving (R) uses a partition of the
polyhepral convex set D into generalized simplices. Therefore, in this section,
we shall first examine a procedure for comsiructing such a parlition. The
essential idea of the procedure is borrowed from a cone partitioning procedure
presented in [3] (see also [16]).

Suppose the polyhedral coavex set D is given as the solation set of
the system

n :
.Z al.j xj - bi a 0 (l = 1,.-., ﬂl‘) (1)
J=1 , ,
x] = 0 (] = 1., H). ‘ (2)
In‘tr,oducing an additional variable x _, ,, we can write this gystem in the form
h,(y) =0 =1, m) 3)
y=(z, e RT T ' NG
t=1 )
where
S : n | |
R (y) =j§1ajfcj — bt ' (6)
Define -

M={yeRr*:h(y)=0(=1,., m)}

Q={y==(x t)e R :t =1}
(M is a cone, § a hyperplane). Then, d'ex-wting by D the set of all points
(x, 1) € RAtL guch that ¢ & D, we have

D= n R A0 @)
Consider now a system U, of n - 1 vectors of RT‘ 1 such that
M0 Rffl C econe Yy joi .

The idea of the procedure is to divide cone I/, (the cone generated by Ug)y
into subcomes, each generated .by n 4 1 or fewer vectors of co U, and lying
sither entirely ouiside M or entirely inside M. Then, clearly the collection of all
subcones lying inside M forms a partition of M [} (cone Uy) == M [ R"'{'] and
hence, the collection of their intersections with Q will give a partition of D into
generalized simplices (see (7)).

Let U be a system of n 4 1 vectors of co UO (so that cone U is a subcone )
of cone Uy) ¢ ' :

U={u,.., u”+1} .
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e uk ¢ M if and only if h =-_h ( 1‘)> Oforalli=1,.., m we ha‘\‘rre' cone

M if and only if the matrix o : o . .
() : (8

no negative entry. On the other hand, if at least one row of this matrix

ists solely of negalive entries then (cone U) () M = ¢. Based on this obser-
»n, we shall define some simple operations to be performed on U, so that
~ operation either cuts off the part of cone U outside M, or splits cone U
two subcones, and after a finite number of these operations the part of
: U inside M will be split into subcones with the desired properiies,

Givena systein U—= {ul,.,;\,, utt '} whose associated matrix (hi k) has at leasy
negative entry, we shall call the first row of this matrix that contains nega-
entries the fest row of the matrix (or of U)s Set s be the index of the test

of a given system U = {u,...,u®¥1},
I If the test row has no positive entry,i.e,,if h, =0 (k= 1,.., n+1),

ste by U(s*) the system that obfains from U by replacing each vector u#such
h <0 with the zero vector.

II. If the test row bas just one positive entry, say hsp =0, denote by U(s,p)

system that obtains from U by replacing each vector u* such that hy, <0
)

k k ' '
v —'I?sp u _hskup N : R L)

e that b, (WF)=h, b (k) =k h (uP)#h B, —h, h' — 0, therefore

ies in the intersection of the hyperplane H = {y h (y) 0} with the cone
srated by u? and uk)e : L

IIL If the test row has both pos‘i!ive and negative entries, and p, ¢ are two
ces such that Izsp = 0, hsq <0, denote by U(s, p, ¢) (or U(s, ¢, p), respectively)

system that obtains from U. by replacing u? (uP respectively) with the vector
v :Ilfsp ud —huf ‘ (10

ce h (v) = 0, this vector-lies in‘the interaeétion of the hyeerplane H_ with
cone generated by uP and uQ) '

We shall call the opel atlon of passmc from U to U(s*) (or U(s, p), or U(s,q,p),
J(s,q.p)) an elementary operation,



PROPOSITION 3. We have

(cone U (s« )) A M ‘—(come U) A M - ay
(cone U (s, ) n M =(cone U) " M (12)
cone U =cone U/ (5, p, @) [J cone U (s, q, p). ‘ (13)‘

An elemeniary operation increases either the number of zeros in lhe ftest row or
the index of the test row.

Proof ‘n the case (I) discussed above, every vector of U lies in the halfspace
H, ={y: hy(y)=0}, and so '
{cone )N\ M=(coneUyn H,nM=(cone U (s ) n M
(H, being the hyperplane h (y) = 0). Hence, (11). In the case (II), let

N = {k: h, < 0}. Since by (9) every vk (ke Ny is a positive combination of

uk and ©P | it is clear that cone U (s, p) C cone U. Therefore, to prove (12) we

need only show that 7
(cone YN M C (cone U (s, pl) n M.

Let y € (core U) n M, so that y_ZB ufF with 6, > 0, and & (y)ZG ‘hk>0‘

hub+ vk
Substitating ———— for u* (k € N) we can write
sp ‘ -
' h o
y= p) euk-]—[e —|— Ah"kJ aP 1+ 3 [EL] vk
KGN U {pt¥ sp reN tsp

by hs (y) . :
where, as just seen, § + = 8 = ———>> 0, This implies. y € cone U(s,p),

kEN kh hsp

hence (cone U) N M = come U (s, p) ~ M, proving (12). Finally, in the case
(), since » defined by (10) is a positive combination of uP and uf?, it is
obvious that ‘ :
“cone U (s, p,q) v cone U (s,q, p) CC cone U.

To prove the converse inclusion, let y € cone U, so that y=2x0, u¥ with 8, =>0.

L u? J-» .
If-4=6A_-0h >0, then, substituting u? = — ., we can write
psp g sq = 2 : .hsp
k % 1 R
y-—-EBH _|_[._‘1}v+[__]u s
_k#Ep _ hsp hsp

k#q

which implies y € cone U (s, p,"q). Similarly, if 1= 0 then y € cone U (s,r g, p)-
Therefore, cone I/ (Z cone U (5, p, g) v cone U (s, ¢, p) as was to be proved.
Thus, (11), (12}, (13) hold.



Turning to the second part of the Proposition, observe that in each ele-
itary operation some clements y of U with h(y) 5= 0 are replaced by some

ors v salisfying 2 (v) = 0, such that each v is a nonnegative combination of
nents of U: The latter fact implies that k. (v) > 0 for all {<Cs, and so the

'x of the test row never decreases by an elementary operation. Therefore,
er the test row gets some more zeros, or its index increases. //

We shall say that a point u ¢ R is D-feasible if & (u) > 0 (i = 1,..., m);_
I

stem U = {ul,..., u"'H} is D-feasible if every uX is D-feasible, in other
ds if ‘the associated matrix (&,) has no negative entry, For any

Rﬁ’l‘i (U sees 1)

let =(u) = 7 if u, ~ 0; m(u) = (g sy ) if

Fraai

rq="0. Clearly for every U = {ut,..,u?*1} Ri"'i , the set § =8(F)

rrated by = (U) is a generalized simplexin R, with extremé points

2k) =« u. - >0} and extreme directions {r (u*) : = 0}. We have

_|.
D if and only if U is D-feasible.

n+

PROPOSITION 4, Lel Ut={u 0’1,.. ,ulentty — RY™  be. such that cone

— M i~ R‘:’"l . T'hg_ "~ collection of all D-fedsz'btc 'syslems U that can be
ved from U, by. a sequence of ‘elementdryl operations is finite and the

‘eéponding generalized simplices constitufe a partition the polyhedral convex
D. ‘ - ,

Proof. Let us associate to the given system U, a trec F(UO) whose root

o and whose nodes are the systems U that can be derived from. Uy by a

1ence of elementary operations, two nodes U/, V being adjacent if and only
ne is derived from the other by a single elementary operation (is a
ccessor » of the other). Then, clearly a node of T'(U/ o) 18 terminal (i e,

po successor) if and onlyif it is D-feasible. From Proposition
follows that at most mn elementary ope'rations are needed to transform I/ 0

» & D-feasible system. Therefore, every path in (U 0) from the root to a
ainal node has & length of at most mn. .thing thai each node hasat most
successors, we see that the number of terminal nodes is at most egual

he number of 0-1 sequences of length mn. This proves the finiteness of the
ection of D-feasible systems derived from U . On the other hand, it follows

n (11), (12), (13) that (cone U,) n M =U (cone U) n M where the union

Fa



is extended over all' D-feasible systems derived from UO . On the basis of (7)
and the assumption cone U(J DM A Rf‘(_"‘i we then conclude that the

collection of all géneralize& simplices S(U'), where U is éﬁy D-feasible system
derived from U, . yields a partition of D. //
-Thus, to obtain a partition of a given polyhedral convex set D into genera-

lized simplices, it suffices to take any U0 = {u¥1,.., "2t} Rf‘{_"’i such
that cone U0 DM An Riﬂ and to generate the tree I‘(UO) — which c¢an

be done in many different ways.

Remark 1. Every extreme point or direction of D is an éxtreme point (or
direction, respectively) of some generalized simplex of the partition. This
follows from the fact that an exireme ray of the polyhedral convex cone M is an
extreme ray of any subcone of M containing this ray.

To test whether a given element u¥ of a D-feasible system U corresponds
to an extreme point or direction of I is a simple matter. Indeed, suppose that
the matrixA:(aij_) of (1) is of rank m. Then it can easily be verified that

u* gives an extreme point or direction of D if and only if there exists a set
I C {i: hy; = 0} such that uj': =0 for all j & {1,.,n + 1} \ I and the square
matrix (aij, i gl, jel)is nonsingular.

.Therefore, a partition of D into generalized simplices provides all the
extreme points and directions of ). What makes this partition useful for our
purpese-is that it proceeds by successive bisections and generates in each.
intermediate step a collection of generalized simplices whose union covers all
of D. As will be clear shortly, this allows to incorporate a branch-and-bound-

procedure in the partition, so as to reduce the number of gencralized simplices
to be explored.

~ Remark 2. If the system of constraints defining the set D is of form
n . .
2 a,x;,=2b, {f =1,...m)

T; >0 (= 1,.,0

one should convert it into a system of form (1) (2) by using the following
transformations. Assuming the coefficients matrix (aij) to be of rank m, select
a set of m independent columns of this matrix: a; {(jeJ),|J | = m Then,

introducing an additional variable ¥4, and expressing the « basic» variables
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j€J, interms of the cnonbasic» ones, z,, k ¢ K = {1,.., n 4+ 1INJ, we

x:Ezm.r,. jed, x = 1.
. the above system is equivalent to the following one
| I\EK zﬂ‘w{c>0' : (jed) ‘ (37
e, >0 kek) | 47
Tty =1 ' e

I

h is of the form (3), (4), (5) 1equ1red Wlth y=(z,, k € K), 11 (y) =z;
D z,, (Je)
i e

ké’cording to the previous scheme we start from a system U 0 of | K} =

1 1 — m vectors: spanning a subcone of Hf.+

and using elementary
ations on D we ‘transform this subcone into a collectipn of subcones of

ni-1

! whose union equals ]ustR M M, where M is the cone defined

‘he m inequalities (3'). An alternative approach is to start from a
sm Uo of n-41— m vectors spanning a subcone of M and to transform
subcone (also by elementary operations performed-on U 05 into"a collection

n+1

itbecones of M whose union covers just M N R In the latter -approach,

s regarded as spanned -by , k € K, where zk is such that z i for

I z = 1, z.._ 0 for j € K Jj # k lhat is, M s the set ofally._

Z
(=174

2m U, _-{zk k € K} (spanning M). A vector y u now D—feaszble if and

Izk, with , > 0 (k € K). Therefore, we start, for example, from the

i g >0 and all the elementary operatlons are defined, of course. with
ect to this notion of, D-feasibility.

3. PARTITIONING D\ 6 INTO ELEMENTARY PIECES

A subset C of D\ G is called an elementary piece of D\ G if C = S/G, where S
generalized simplex with all its extreme points in D\G and all its extreme
i nearly entirely in D\G (i. e., having an unbounded intersection with D/G)
our purpose the basic pr operty of such a set is that; as shown in Section 1,



the infimum of a concave function over it, whenever finife, must be atlained in
at least one extreme point of the assotiated generahzed simplex S. Therefore,
if we know a finite partition of D\ G into elementary pieces, then Problem (P)
will thereby be decomposed into a finite number of trivial subprob“‘ms

To construct a partition of DG into elementary pieces we proceed as
follows. .

buppose that D has been part:tloned inlo generalized snmphces and consi-
der any one of them, say S. Let § correspond to a D-feasible system U = {u yeres
u"”} ie., a system with the aSSOCIated matrix (&;,) > 0. ‘We shall perform on

U some elementary operatlonl deflned as follows

For every u = (z, 1) & R”H let

[ . e O T I

tg(t—%v} L ift>0 .
By @ =9 1im ag(A"'z) f1=0 (14)
A—0 . :
(so b, ()isa positively homogeneous convex funchon on Rn H, see, €. g.,~

[12], section 8).

L If h (u )/ G for all k = 1,..., n -1, then we denote by U(m S 1 *) ’the
system obtalned from U by replacmo each vector u¥ such that h ’ (u!‘)< 0
with the zero vector. a

IL If A _'I__i(uP) >0 for just one p, we denote by U(m -1, p) the system
m " Lo

obtained from U by replacing each vector uk such that hm i (u*) < 0 with the

vector v* that satisfies
' vk e [uk, ufl, (v )=o.

CIL I .h (u") >0 for more than one k and h » (@) < 0 for at least

one k, let Ds q he two 1nd1ces such that h (uP) <0, h (uq)< 0. Thén wé

denote. by Uim + 1, p.-9). (or U(m +1, 9, p), respectlvely) the ~system obtained
from U by repiamnﬂ' u"i’ (or uP respectlvely) thh the vect01 vk such that

vk e [uP u?l,. h H,(vk), 0. -

' We shall assume that either of the following conditions-holds: .

Y

A) No direction of recession, x of D) exists such that

lim lg(i\ :v) =0,
A0

B) No-direction of recession = of. D exists such that

* lim Ag(A” ) = 0.
AN



This is satisfied, in particuiar, if D has no common direclion of recession
G). | .
Jnder this assu nption, it is easily seen that whenever

R .y _(u) >0, . ,hm—i-i(”.) <0 foru,ve M,
at least one of the numbers u ptq? Uptq 18 positive (i. e, u, or v corres-
8 to an extreme point of D). Therefore, the vector v¥ defined in Cases (II)

above can always be computed.

'ROPOSITION 5. Each U(m+1, *), U(m+1, p), U(m+1, p, q), U(m+i’ a0 p) is
D—feasible, and the corresponding generalized simplices S(m+1 *),
-1, p), S(m+1, p, q), S(m+1, q, p) satisfy: '

S(m4-1, *) D S\ G, (15)
S(m+1, p) DS\ G o (16)
S=8§(m+1, p, q) | S(m+1,q, p) - - (17)

termore, the passage from U to any one of the above sefs increases the num-
f elements u such that h - (u) =0 at least by one.

'roof. The proof is similar to that of Proposition 3, by notmg that each
> mentioned operations replaces one or several vectors of U by posmve
inations of vectors of U, and that whenever a point a and a direction u

ach that g(a) << 0, lim Ag (A~ 14) <C 0 then the ray emanating from a in
A0

irection # must lie entirely in G (see, e.g., [11], Section 8). //

lows that at most n elementary operations of the above described type
ceded to transform a D-feasible:system U = {’l,...,u’®*1} into another
sible system U’ = {m1, .., w'®™} such that & mpd@S =0k =1,.,n11),

the corresponding generahzed simplex provides an elementary pzece of
by wirtue of the following - : - .

ROPOSITION 6. If a D-féasible system U={ul, ..., ur*1 } satisfies —y (k)20
1, v, n+1), then for the correspondmg generalized simplex § = S(U) the

\G is an elementary piece of D\G. :

‘roof« If u=(x, Hel 'with >0, then g(t*ia:)a-t”"]zm +1(11) = 0, hence the

sponding extreme point is Iz & S \ G. On the other hand, if v =(#,0) &

n, from assumption {4) or {B); k. +1§v);= ?{iilolg (* "1y) >0 hence, for

xireme point & of S, g(x 4-8y) <> F-oo as 8 <> 400, This implies.x ¥ 0y e
G for all 6 > 0 sufficienily- large.” Therefore the extreme ray emanating
x in the direction y nearly entxrely lies'in'D \\ G. [/



Thus, given.any gdeneralized simplex S D we can subdivide $ \ G into
elementary picces by using a finite number of appmpriat; bisections. If we
do this for every generalized simplex in a partition of /J, we obtain a partition
of I\ & into elementary pieces. This process can of course be thoughi of as &
prolongation of the process of partiﬁoning D into generalized simplices. So we

n+1

get a unified process, starting from a system U, CR such that cone

U, S M R 1 and terminating with a partition of D \ G into elementary

piecess In this unified process, each system U = { u1 we, 0771 Y is associa-
ted with an'(m + 1) X (n —}— I)-matrix

By )
where

h,—h @, i=Lawwm41, k=101,

h, (.) being defined by (6) for { = 1,.. mand &_ , (.) being defined by (14).
As in Section 2, the test row is the first row s having at lcast one negative
entry. The elementary operations are defined as in Section 2, if s = 1,..., m, and
as in lbhe present section if s = m - 1, (Note that the definitions of elementary
operations given in this section reduce fo the previous ones when the function
¢ is affine.) '

4. ALGORITHM

By partitioning the set D\ & into elementary pieces, as described above, we
reduce Problem (P) to a finite number of trivial subproblems, namely:

min {f(z) iz e S,} | (18)

where cach §, is an elementary piece of the partition. However, since the
partitioning process is by succesaive bisections, it can be incorporated into a
branch-and-bound scheme in order to avoid solving a large number of
subproblems (18).

Specifically, let U, be a system of n + 1 vectors of RmH

such that cone

Uy M n Rn+l For example. one can take Uy = {el,..., @71}, with e being

the " unit vector of R?1, In the case where 2 nondegenerate extreme point
z0 of D is known, one can, of course, take u® rtl — zo, while u,.;, a% 2 are
the n exireme points of D adjacent to 2% _

Denote by I"(UO) a (ree rooted at Uy such that, whenever U is a node of

F(UO), then either S = S(U ) gwves an elementary piece of D\ G (which occurs
when the matrix (h”f) associated with ' &as no negative eniry) and in thal
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vent I is a.terminal node of the tree, or U has one.of two successors, which
re derived from U by a single elementary operation. As ‘s,een'above, suc\h

tree is finite, and the set of all ifs terminal nodes .provides just a
artition of D\G into elementary pieces. Since an optimal solution of Probiem
P) lies in some terminal node, the shortest way to this optimal solution is
bviously the path from the root of the tree to this terminal node, Therefore,
o avoid generating the whole tree F( Uy ), which would require a gsreat deal of
omputation, one should attempt to follow the mentioned path as closely as
\ossible, on the basis of the information available at each stage of the process.

'or this purpose, observe that for any intermediate node U= {u'-L . u“ 1} of

he tree, where uf == (.:c"‘ . i]‘) € Rf X R, the number

1(U) = min {f(cck) : tk o 0} < (19)
ives the minimum of f(z) over the geéneralized ‘simplex S = $(U) génerated by
he set z! e, 27 T1, provided f is unbounded below on every extreme ray of 5.
Tence WL(U) provides a lower bound of the minimum of f over S\ G, i.e., the
vart of DNG conlained in S. So, if x is the best among all feasible solutions

-nown up to this moment («the incumbent »), then the Inequahty w(l) = f(x)
vould mean that the node U and all the branch emanating from U/ can be

liscarded from further examination, and, consequently, this branch need not
e gemerated. In other words, at each stage, only those nodes U are worth

.onsidering which satisty R(U) < f(x).
We are thus Jed fo the following
Algonihm (assummg iof {f(x): € R" b > oo,

Imtzallzaiwn. Set M = {Uo} Compute LL(UO) accordmg to (19) Set 7 = the
sest available feasible solution {for example, for any u € U, such that

u, >0 8= 0@ = Lyensy m 1), ® = () is la feasible solunon)
7 = ¢ if mo feasible solution iz available.

Step 1. Delete all U € M satisfying 1M(U) = 'f(Z). Let R be the list of rema-
ining elements of M, If R = ¢, stop: Z is an ophmal solutlon 0therw1se select

an U € R with smallest /(U) and go to Step 2,
~ Step 2. Compute the matrix (h;,) associated, with U. X h, > 0 for all i, k,
set R\{U} < M and return to Step 1. Otherwise,-go to Step, 3
Step 3. Let s be the test row of U (the first row of the matrix (h k) that has
a negative entry). g ,
@ h << 0 for all k, replace U by U(s+) in the list R, Let M be the new
list. Gompule i(s ) for the new member of the list, Update T and relurn
to Step 1.

16



(b) If .h'sp > 0 for just ome p, replace U by U(s,p) in thz list R. Let M be
the new list. Compute H(« ) for the new member of the list. Update 7 and
return to Step 1. : ' '

(c) If neither (a) nor (b) occur, select p, g such that h p > 0, h <0 and

replace U by U(s,p,q), U(s.q, p) in the, list R. Let I be tue new list.
Compute f( ) for each new member of the list. Update Z and retuin to
Step 1.

Remark 3, If the condition inl'{{f(:c) z & R*} > -0 i . not fulfilled, then in
computing W(U) we may encountera tt=(z,{) eU witu i=0, and av==(y,0) U
such that hm Af(h"1y) < 0 (i.e., f is unbounded below on the ray emanaling

from x= Tc(u) in the dlrectlon y=m(v).) In that event we have Lo sct MU )=-oco
Furthermore, in Step 2, it may happen that h, >0 for all i, k, and (U )=-co

then the Algorithm stops with inf {f(x): ® € D\G} = -o since this would
mean that $ = S(U) gives andelementary piece of D\G an f:is unbounded
below on some ray of this elementary piece.

Remark 4. To facilitate the compulation of the matrix (&, ) in Step 2, it is

convenient to work, not with U itself, but with the mairix U= (ﬁi,..., g ol )
and the vector 2 ., where
T

&
s fa u o +1
HIL n+1 ? hm+1,- e (‘hm-|-1(u1)s---s hm + I(U.'n )),
h

sk

h
mk |
s being the test row index. Indeed, every elementary operation consists of one

or several replacements of a vector u* & U by a vector v¥ =\’ + 1 — Ay,
where ', u” € U and 0 == A = 1. But in view of the linearity of hi (i=1,...,im},
this implies the replacement of W T by V’I\;k =i -E0 =N E; . Therefore,
f we work with U everywhere, then Step 2 is entered with the knowledge of
[h.k) (f=5s,w,m; k=1,.., n+4 1) and we need to updale only the
L ¢
qectorh +1,:
Remark 5. In step 3 (a), if for somers=s one has h R =0 for alllf L..n-+1,
one can replace U by U(r#) in the list R. -
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5 ILLUSTRATIVE EXAMPLE

Fig, 1. presents a two-dimensional example; in which both I} and G are
polyhedral convex sets and the constraint set D\ & is disconnected, the objec-
live fmnction is linear. The constraints are numbered 1, 2, 3, 4, 5, 6, the last
constraint being nonlinear (g is a piece-wise-linear convex funciion).

The algorithm starts from the extreme point (1) of the set D, together with
the directions (2), (3), of the two edges of D emanating from (1). So the initial
system U, corresponds to

7o) = {(1), (2, (3)}-
Here the extreme point (1) is an optimal solution of the problem:
Minimize frx), s.t. zxeD.

The tree generated by the algorithm is depicted below the figare (a brac-
keted number denotes a point or a direction of a generalized

Oi;-iét.tzé
function | ™~
. - ’7‘7" - )
) . :
Y ! - T2
¢3) = —f
e (
(@)t
3 ¢ 8
b
J n 75
4 JJ" H iy / / /
Figure 1,
1 ) 3 ,
/N o .
@3 HDG First incumbent: (4)
7\ S o . :
(B) (D 3) MEBBY Second incumbent : (5)
®) (3) 3). (1) (5) (6) (Optimal selution)

' 7N
(NG GE@)
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simplex generated during the algovitam; for examplie, (4) is a point, (3) is a
lirection), The terminal modes of the tree correspond {o systems U that are
teleted according to the criterion mentioned in Step 1, namely W) = f(x).
Note that among these terminal nodes, only (6) (7) (3) and (5) (4) (3) (which
‘ontains the optimal solution (5)) are elementary pieces of DNG.
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