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INTEGRBAL REPRESENTATIONS OF THE SOLUTION
OF SOME HYPERBOLIC SYSTEMS WITH
DEGENERATE COEFFICIENTS AND THEIR APPLICATIONS

HOANG DINH ZUNG

The aim of the present paper is to establish the infegral representations
and the inversion formulas for a new class of functions which will be callel
(p, q)-wave functions. The resulls aie used to solve some boundary \alue plob-
lems for these functions.

1. T3E (P, Q)-WAVE FONCTIONS

Lut us denote by G a region in the plane of variable x, y.
DERINITION. A function
F(z) = Uix,y) + iVix,y) (1

is said to be (p,q)-wave in tue region G ii U{z y',V(x,y) € C!(G) and the foliow-
ing condilions are satislied:

al U aV
—_—— g — — =0,
ox ay 8y
al/ ol aV
- = 0, )
o P oy + ox @)

where p = p(x,y) and ¢ = q(x,y) «re given real functions of the class C{(G),
z=x + if.

Note that it is always possib.e to find some transformatioss of the inde-
pendent variables such luat any linear hyperl;oli: sysiem

au av
+ I _ a, — = 0)
1a§+2a °a§+4an
aU aL GV av
b, by b 2L 0.
+ ag o an

where a; (3,m) and “j (};,n)GC(G), j=1.2, 4, 4, is reduced io the normal for a (2)-

We uow counsider ihe system (2) 1a 50 ae spicuul cases.
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2, INTEGRAL BEPRREAHRSENTATION OF Yk ~WAVE FUNCTIONS AND INVERSI1ON FORMULA

In the case where p = y¥ and q=2=0 (k being an arbitrary positive constant)
a (p.q)wave function is called a y*-wave funciion. If in addition. & = 0 then it

is called a wave function. Note that for g*-wave functions the system (2)is of
the form
7 v U v
yk_‘)[____ﬁ._Eyk_a_zf_, 8)
oxr an oy ax
Ol serve that (3) implies
o°C Uk aU
ax? ay? v oy
vV PV k av
e T o Ty )
oz oy 4 oy
if Uz, g, V(z, 1) & C(G). It is well known that some problems arising in the
theory of oscillalions of an elaslic solid and wave propagations can be reduced
to those of finding solutions of the equation (4).

2.1, Integral representation

Let f(z) = u(x,y) + iv{x,y) be a wave function in G, C, and C, be real

constants. We shall prove the following
THEOREM 1. The function F(z)=U(x, y) + i V(x,y) defined by the following

formula
g U@, y) —C, ) — iV gy — C,| =
Lk

- —1
= fy(y-—«() (y? —72)3 f(x, v) dY 4
o : -
k B
g 1 :
flx. vy dy. &)

g+ e —vd
4]

is a y¥-wave funciionin G if G contains an entire line segment Joining two arbitra-
ry points of ( with the same abscissa and if one of the following condilions is
satisfied: a, G lies in the upper half-plane and the boundary of G conteins a

segment L of the real axis suci: thal v(x.y),, = 0. b) The region G is symmetric
g /L : Yy
aboul the real axis (y=0) and v{x, i l @ﬂ’gzo) = 0,

Proof. We first observe that F(2) = Uiz, y) + iV(x, y) is a y*¥~wave funetion
in G il and only if the function p(z, y) defined by

k k
oz, y) = P [U, y) —C; ) — iy [V(x,y) —C,), (6)
satisfies Lhe equation
il .o . K -
R A N %
LT oy 2y
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Hence, to provethe theorem it is encugh to find two real functions M (¥.v)
and N(y, v) such that

i . 7 —
@ (@ y) = g (i@ ydy+ [ NG ) fa, v)dy @)
0 .

satisfies (7).
Since f (v,y) is a wave funection, we get
of (zg) _; 3f(z.y)
G By
Tkis equality together with (8) shows that o{a,y) satisfies (7y it
oM aM k

—2= = LA,

oy oy 2y
_ — == — M, (9)

and

M (y.5)=0.
Hence. M (y, v) and V (y,y} are respeclively the solutions of the following-
equations:

2 M BN —; ;oM M 2 2
- + y? (LI.WL)_.AJ—QM___O‘
94 oy oy oy :
82N N —7 ON oN 2oy
T T () e
6y 0y . uf oy 4
Taking account of the zondition (%) we find
_k k_y
M=y -1 @ -1,
_x k g
9. 2 (10

7, 2
Ngv=y "H+Ny —1
Thus, the function (8) where M y v) and N g,7) are given by the last formulas
is a solution of (7). This compleles the proof of the Theorem 1.

Suppose now thai G is an unbounded region and the wave function f(z)
satisfies the following condition: f (z) = 0 (]z| *=%) for z > o, where ¢
is an arbitrary posiiive constant.

Then, arguing as above we obtain

THEOREM 2. The function F(z) = U(x,y. +-iV(x, y)
given by the formula

F(z) = fgylha’f[u(;t, ¥) co.ﬂ‘{—;{— - )TE + v (x, y) sin(—g— — I)JT] +

k

+ iy(llfx, v) sm(% — 1)7: + o(z, ) COS(-g— . 1)WJ;(72_y2)?—

is a y*-wave function in G.

7
dy (11)
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2. 2. Inversion formula

Using the inverse transformation for an integral equation of the Abel 1yp®
we can write the inversion formulas for the representation (5) and (11).

THEOREM 3. Let a y""-wave function F(z) = Ufx, y) + iV(x, y) be expressed in
terms of a wave function f(z)= u(x, y) + w(x, y) by (5). Then, conversely,
f(z) can be represenied as follows

u(x, y) -+ yo(z, iy) =

iy m k—1 1
PR (v MU=, v) — G + dV(mv) = Colb ydy , k= 2m,
oy (B,Y?)m 3 —m
_ s (2 -2 2
o™ {y*T(O(x, y) — CA+ V(2. y) - Cﬂ; )
Ky ( . ; ? , k= 2m, (12)
ay 1}

- —1
where K =2 [1‘ (—g—) r (m — 12{— 4+ 1 )] , m is the integer part of the number

ko _[k
2’ _[2]'

Note that from the Theorems 1 and 3 it follows that the integral represen-
tation (5) provides a one-lo-one correspondence between a yX.wave function

and a wave function.
3. INTECRAL REORESENTATION OF (¥X,YX)—WAVE FUNCTIONS ANB INAERSION FORMULA
We now consider the system (2) when p=¢= gk, In this case, if U(w, y)

and V(z, y) € C*(G) then
U WU | kSU__ kW _,

¥

0zl oy?  YoT Yoy
@V _ PV kv kaV
ax? gt Yoy

3.1. Integral representation
Let the region G and the wave function f(z) = u(z, y) -+ iv(z, y) be defined
as in the previous seetion. We suppose also that

u(.xl H) ‘_; A(y:0)= 0'
THEOREM 4. The function F(2)= Uz, y) + iV(x, y defined by the fermula

y i — DUz, ) — Vi, ) =
i

=S(U iy — e+ nT e vdy +
]
3 k-1 4 e
+{@ =y i -+ T ) v (13)

0
isa (yk, yky — wave function in G:
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Proof. We shall use the same reasoning as in the proof of Theorem 1

Indeed, it is easy to see that F{2) = U(x, 1 + V{z, y) ia aly®, k)_
wave funciion in G if and only if the funclion H(x, ¥) given by the florm‘?;la

i k.
H(z, g) ==g? (1 —§) Uz §) =~ iy 2V, P (14
satisfies the following equation
oH ; oH k. k=
_é"w_\_‘— —ag_'—-— 29 (I—':I)H—‘—@ H, (z, Q)GG. (1’5)

Hence to prove the theorem, it suffices to find M(y, v) and N(z, ¥) such that
the function

g y —_
Hiz, y) = [ My VN ndy + [N iz, v)dy 16)
0 0

satisfies (15).
For this purpose, we can take M(y, v) and N(y, v) as the solution of the
equations
aM oM k P
ST wg = Ey AN gy
ol BN- . k Y .k v
—67'*‘—3?—-—'@5(14‘!)‘“"'1 QyA’ (17)
satisfying the conditions o
ReM(y, Viy=, =0 (18)
ImN(y, Y)l’Y:H = 0. (79
Consequently, the function N{y, ¥) can be chosen as a solution of the following
second-order equation -

o? a0 N 1 . N
,.__N_._g_a__lt_l__;_(jﬂ_i)_aw___‘__(k_;.zi..\_kz)a_N__
572 ayz oyay 2y ]
H 2
y 6y hy?

satisfying (19)
It is easy to verify that this solution is given by

k
N =y 2= =iy — D+ 20)
Similarly, the function
Iy
M=y 2 @-1"ly= @+ +1 1)

is the solution of system (17) satisfying (18).
The proof of the theorem is thus complete.
3. 2. Inversion formula

Applying the invers? transformation far an integral equation of the Abel
type we can oblain the inversion formula for (13).
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THEOREM 5. Lef a (y*, y¥) -wave function F(2) = U (z, y) + 1 V (x, y) be
expressed in terins of @ wave function f(zy= wx, y)+ v (x, y) by (I3). Then
the inversion formula for this represeniation is given as follows
u(x, ) — v, §) =

i 1 3 famV(.’r,y)  dy ks m
Fr(k)I'(m—k+1) dy m o ak—m
= A
1 *viz,y) '
’ (k=D (ay)k = (22)

where m = [k},
" On account of (2) and (22) we see that
ou ov

0y oy

¥
( 1 a..g aml[ K
Y
FEY (m— k4 1) 0y ) gym

14}

1 ok kaU‘_'aU)] ke m
(k— 1)! o [y (Bx ay /3 T

=%

aly all
( — = )] dy s kZm,
ax By (y-?_. T)k'-m

(23)

4. APPLIGATION

In this section using the obtained results we can find explicitly solutions
of some boundary value problems for the (p, q)-wave functions,

PROBLEM 1. Let G4 be the first orthant {(z, y); z > 0,y > O}
Find a y*-wave function F(z) in G, such that -
U0, =Hp O <y <o @4
Uz, 0) = G(x) 0 <z < ) ‘ - (25)
- where H(y) € €% (y > 0), Gx) € C3(x > 0) GO)= H(0).

We shall find the solution F(z) of Problem 1 in the form (5) such that the

real and imaginary parts u(z,y) and v(z, y) of the wave function f(z) are real
wave functions in G, and

b (@0) = 0 (0 < % < oo o 26)

For simplicity of presentatiorn, et us suppose that ¥ = 2, Applying the
inversion formula (12) we bhave from (24) and (25)

K

u(0,y) = —- —;y— (B — €] = hig) ¢ <y < =) @27)
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—s

mwhzgﬂﬂ@—cﬂgﬁﬁméw<mb (28)
where Cyis an arbitrary real constant.

it follows from (28}, (27) and (28) that

ou )
_— =0 (0 L x < o). 29
Sl =< ) 29)
or | ,
s I = g'(x) (0 < & < o0) (30)
=0
6r:
-— =R(y) (0 <y <o) (31)
Jx |z=0
Since u(x,y) and v(x,y) are real wave functions we have
o%u o0%u
ap? T oaxr’ (32)
azv g%v
it 33)

Tt is known [1] that the solutions of the problems (32), (27}, (28), (29) and
(33), (26), (30), (31) are given by
1 .
——[g(rﬂ+y)+ ge—Pl 0 <y <z < o),

uw, g) =
h(y—x)+ [ng)—(I(U'—m)}(O T <Y< o), (34)

r;-[g(~r+y)-—g(w — Pl <y sz <o)

PE DT by~ G+ D+ 9w — O+ RO — g 0)

| 0 <<y <o) (35)
The function F(z) defined by (3), (34) and (35) yields the desired solution
of Problem 1.

PROBLEM 2. Let G:2 be the half-strip { (r, y): 0< x<l, 0= y=oes},
F.nd a y* -wave function F(%) in -G,; such that |

U0 gy =H (W)

U, y= R 0y << ) (36)

U, =G (x) @ <a<]) (37
where H{y) and Rw)e C3 (y>0), Ga)el? 0 r< ), GOy = H(O).

‘We shall consider only the case k& = 2 and find the required solution in

the form (5). Then in view of (12), (36) and (37) we have

u (0, ¢ J)——;i—[y (L) — €] = ),

4l ) = G G- WEG = CI=r) O <y< =) (38)

fi

u(, 0) =_§ [6(z) —Cl =gz ©<z<D (39)

159



Let usset

B 0y <0) ™~ 10 (y=<0,
{ &) (g 2= 0), Ty @ > o
E(x)=;9(ﬂ?) (0 <z ),
where the functions My), (i) and g(x) are given by (38) and (39) with
C; = G(0). Denote by g(z) the 2 l-periodic function which coincides with g{x)
over the interval [, I]. '
1 is known [1] that the problem (32), (29), (38) and (39) has the solution

1 ~

@y = - [§6 + 9 +y(e —pl+

+ 2[R —~a) ~h(@y+2—2@+ Db+

n=o

8

+ Z [ tr— @+ D) TG =2 — (@0 + DY)

n=

O<ae <0<y < oo, (40)

To find t e real wave function v(z, Y), observe by virtue of (33) and (39)
that v(x,y) u t satisfy the boundary conditions

dv

Tl _ =N |

= =rw O<y<w) (41)
T ey : _ .

av s .

- =g O0<zD (42)

g=7
The problem (33), (26), (41) and (42) admits the solution
b y) = [T+ 8) -9z —y)]—
— L [Ry—z 214 (y+x— A+ D)+

n={

+ I gt — 2 LY+ TG = — 2 4 11]

n=g

02l 0 < oo (43)
Thus the solution of 'ro'tlem 2 is given by (5), .40) and (43).
PROBLEM 3. Let GJ be defined as in Problem 1. Find a(yk, yk) — wave function
F(z), in G, such tha :
V0, 9) = M(y) 0 < g < o) (44
where  M(y) e CKT2(y > 1y, 3%y o = 0

1£0



By (13) we fin the solution in the form

¥ o —
U@ 9=y {(y — )"y + v) ot v — ua, v,

(]

L
V(z, = ‘S (59— 1) oz, v) — u(a, v)jdv, 453
o
where u(z, y), v(z, y) € C°(G) and
u(;c,O):u(:n,O):D(O\ga:-e:oo). (4_6)
Without loss of generality we assume that k is an integer-
From (22), (44) and (46) it follows that

1
) = wx,y) — iz, = p (ks
[o(z, 1) = wlz,y) — v(z.y)] l2=0" GoDy7 " )
= m(y) (0 < y < o), (47)
oy -
L0y = 0, % =0 (0 < =)o
¢z, 0) 5 [y:@ (0 <z <o) (48)
By assumption
2 2
2808, (49)
ay? ox?
The solution of the problem (49), (47) and (48) ¢can be writlen in the form
0 0 < yL =< o0),

¢oy) = w@y) — wWzy) = my—x) (0 <z <y=<oce) 0

Combining (50 and (43) yields the desired solution,
PROBLEM 4. Let 62 be defined as in Problem 2. Find a(y*, y¥) — wave
funection F(z) in (r such that
Vo.0) = M(y) (0 < y < o),
Viy) = N(y) (0 < g < =) (51)
where
M. Ny« O @00 @) | =N | =0

I{ can be verified that the desired solution has the form (45) where

B(y) — D(zy) = 3 [ (g m 2= 2f) =B (Y — = — (2] + D]

f=f
O<ze<LO<Y <o), 42
~ 0y < 0), ~ 0y <0)
W= mw) v = 0), a(y) (g > O,

m(y) =- MO, ny) = NE) (0 < y = o),

(k — 1)/ (k—1)/

ay) = 00 < y<D.
k is an arbitrary imteger.



For the above problem to be solvabie the funct ons m () and 7 (y) muest |
satisfy the following cond:tion.

m ) =n{y+DO<y<h
Finally, it is worth noticing that with fhe help of the obtained integral
representations we can also solve other boundary value problems invelving
bounded regions. ’ ' - ‘
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