GAUSSIAN RANDOM OPERATORS IN BANACH SPACES (*)

DANG HUNG THANG

I. INTRODUCTION

Let X and Y be separable Banach spaces. By a random operator from X into Y we mean a linear continuous operator from X into $L_0(Y)$ where $L_0(Y)$ stands for the set of all Y-valued random variables. For the motivation of the notion of random operator see our recent paper [8] in which the characteristic function, the convergence and the decomposability of random operators have been studied.

This paper which is a continuation of [8] is devoted to the study of Gaussian random operators in Banach spaces. In Section 2 we introduce the definition of covariance operator of Gaussian random operators. This definition extends the notion of covariance operator of Gaussian cylindrical random variables, see [2], [3]. Theorem 2.4 gives the necessary and sufficient condition for an operator to be the covariance, operator of some Gaussian random operator. We focus on the problem of π_p -decomposability (0 < $p \le \infty$) of Gaussian random operators in Section 3. We present conditions for π_p -decomposability of a Gaussian random operator in terms of its covariance operator, which may be considered as an extension of S. A. Chobanian, V. I. Tarieladzes results [1] for Gaussian cylindrical measures.

II. COVARIANCE OPERATOR OF CAUSSIAN RANDOM OPERATORS

Fix a probability space (Ω, \mathcal{F}, P) . Let X and Y be two separable Banach spaces with the duals X' and Y', respectively. The set of all Y-valued random variables (Y-valued r.v, 's) is denoted by $L_0(Y)$ and is equipped with the topo-

^(*) This work was done while the author was a visitor at the Institute of Mathematics of the University of Wroclaw [Poland] in the academic year 1985/1986. The support of this Institute is gratefully acknowledged.

logy of convergence in probability. By $L_p(Y)$ (0 < p < ∞) we denote the space of Y-valued r. v. 's for which $E \parallel x \parallel^p < \infty$. When Y = R we write L_p instead of $L_p(R)$

A linear continuous operator A from X into L₀ (Y) is called a random operator from X into Y. For some general properties of random operators, see [8].

7

DEFINITION 2. 1. A random operator A from X into Y is called a Gaussian random operator if for each $n \in \mathbb{N}$ and x_1 , x_2 ,..., x_n in X, the Joint distribution of Ax_1 , Ax_2 ,..., A_n is Gaussian. Equivalently, a random operator A is Gaussian if and only if the stochastic process (Ax, y) on X X Y' is Gaussian.

EXAMPLE 1. Let (T, Σ, m) be a finite measurable space. By a Gaussia random measure W on (T, Σ, m) we mean an independently scattered σ -additive set function $W \Sigma : \to L_0$ such that, for each A from Σ , W(A) has a Gaussian distribution with mean θ and variance m(A). Let Y be a Banach space of type 2. It is known [4] that for each $f \in L_2(T, \Sigma, m; Y)$ the random integral fdw is defined. Then a random mapping A from $L_2(T, \Sigma, m; Y)$ into Y given by given in Lemma , in the standard of $Af := \int f dw$ for the substrict over the contraction $Af := \int f dw$

and the first constant of
$$Af:=\int f dw$$
 which is a substitutive constant of the constant of $Af:=\int f dw$ which is a substitutive for $Af:=\int f dw$ where $Af:=\int f dw$ is a substitutive for $Af:=\int f dw$ where $Af:=\int f dw$ is a substitutive for $Af:=\int f dw$ and $Af:=\int f dw$ where $Af:=\int f dw$ is a substitutive for $Af:=\int f dw$ and $Af:=\int f dw$ and

is a Gaussian random operator.

PROPOSITION 2. 2. Let A be a Gaussian random operator from X into Y. Then there exists an unique linear continuous operator M from X into Y such that (Mx, y) = E(Ax, y)Hart British will be the set of the

$$(Mx, y) = E(Ax, y)$$

for each $x \in y, y \in Y$.

Proof. For each $x \in X$ Ax is an Y-valued Gaussian r.v. so $Ax \in L_{I}(Y)$ Hence A may be considered as a linear mapping from X into L_I (Y). By using the closed graph theorem it is easy to see that A is continuous. Put

 $Mx = E Ax = \int Ax$ (ω) $P(d\omega)$, M is a linear mapping from X into Y. $\sup \| Mx \| = \sup \| E Ax \| \leqslant \sup E \| Ax \| < \infty$ Moreover $\|x\| \leqslant 1 \qquad \qquad \text{i. i. } \|x\| \leqslant 1 \text{ for each order}.$ $||x|| \leq 1$

which shows the continuity of M. By the property of Bochner integral we obtain $\mathcal{E}_{\mathcal{F}}(Mx,y) = (E|\mathbf{A}x,y) = E|(Ax,y)|_{\mathbf{A} = \mathbb{R}^n}$

The Proposition is proved.

The operator M is called the expectation operator of A. Without loss of generality, from now on we shall always suppose that M is identical to zero.

Let $X \otimes Y'$ be the tensor product of X and Y'. We turn $X \otimes Y'$ into a normed space by considering, in it the projective norm defined by

$$\| \ominus \| = \inf \Sigma \| x_i \| \| y_i \|$$

where the infimum is taken over all finite sets of pairs (x_i, y_i) such that $\ominus = \Sigma \; x_i \otimes y_i$

The role of the tensor product is emphasized by the fact that it enables us to replace a bilinear mapping on $X \times Y$, by a linear mapping defined on the tensor product $X \otimes Y$. For more information about the tensor product, we refer to [7].

Let L(X, Y) denote the space of all linear continuous operators from X into Y equipped with the operator norm. For each $u \in L(X, Y)$ we define the following bilinear form on $X \times Y$, u(x, y) = (ux, y).

By the property of the tensor product, u determines a unique linear mapping $u: X \otimes Y' \to R$ such that

$$u(x \otimes y) = (ux, y)$$

From now on, we shall denote by $\langle u, \theta \rangle$ the value of u at the point $\theta \in X \otimes Y'$. Note that we have the inequality

$$|\langle u,\theta\rangle| \leqslant ||u|| ||\theta|| \tag{2-1}$$

Indeed, let $\theta = \sum x_i \otimes y_i$ be an arbitrary representation of θ .

Then

From this, the inequality (2-1) follows.

THEOREM 2. 3. Let A be a Gaussian random operator from X into Y. Then there exists a unique linear continuous operator R from $X \otimes Y$, into L(X, Y) such that

$$\langle R(x \otimes y), s \otimes v \rangle = Cov \{(Ax, y), (As, v)\}$$

for all pairs (x, y) and (s, v) in $X \times Y'$

The operator R is called the covariance operator of A.

Proof. Let H_A denote the closed subspace of L_2 spanned by Gaussian $r.\ v'.s'$ (Ax, y). Consider the bilinear mapping T from $X\times Y'$ into H_A given by

$$T(x, y) = (Ax, y)$$

By the property of the tensor product T determines a unique linear mapping T from $X\otimes Y$ into H_A such that

$$T(x \otimes y) = (Ax, y)$$

Now we shall show that T is continuous. We have

$$||T(x \otimes y)||^2 = \int |Ax, y||^2 P(d\omega) \le ||y||^2 \int ||Ax(\omega)||^2 P(d\omega).$$

Because of $Ax \in L_2(Y)$ for each $x \in X$, A may be seen as a linear mapping from X into L_2 (Y). By using the closed graph theorem we find that A is continuous. Therefore, there exists a constant C such that

Thus, we obtain

$$||T(x \otimes y)|| \leqslant C ||x|| ||y||.$$

Let $\theta = \sum x_i \otimes y_i$ be an arbitrary representation of θ . Then $||T(\theta)|| =$ $= \parallel \Sigma T(x_i \otimes y_i) \parallel \leqslant \Sigma \parallel T(x_i \otimes y_i) \parallel \leqslant C \Sigma \parallel x_i \parallel \parallel y_i \parallel.$

From this we get $||T(\theta)|| \leqslant C ||\theta||$ which shows the continuity of T. Next for each $h \in H_A$ we consider the mapping $Uh: X \to Y$ given by

$$Uh(x) = \int h(\omega) \ Ax(\omega) \ P(d\omega) \tag{2-3}$$

Here the Bochner integral (2-3) exists since

Here the Bochner integral (2-5) exists since
$$\iint |h(\omega)| Ax(\omega) || P(d\omega) \leqslant \left[\int |h^2(\omega)| P(d\omega) \right]^{1/2} \left[\int ||Ax(\omega)||^2 P(d\omega) \right]^{1/2} < \infty. (2-4)$$

Clearly, Uh is linear. From (2-2) and (2-4) we obtain

$$||Uh(x)|| = ||E |hAx|| \leqslant E ||hAx|| \leqslant C ||h|| ||x||$$
 (2-5)

which shows that Uh is continuous i. e. $Uh \in L(X, Y)$.

Clearly, the mapping $U: H_A \to L(X, Y)$

$$h \rightarrow Uh$$

is linear. In view of (2-5), we have

$$||Uh|| = \sup ||Uh(x)|| \le C ||h||,$$

 $||x|| \le 1$

proving that U is continuous.

Moreover, we have the transposition formula

$$(T \theta, h) = \langle Uh, \theta \rangle$$
 for $h \in H_A$, $\theta \in X \otimes Y$, (2-6)

Indeed, let $\theta = \sum x_i \otimes y_i$. Then

$$(T \theta, h) = \sum (T(x_i \otimes y_i), h) = \sum \int h(\omega) (Ax_i(\omega), y_i) P(d\omega)$$

$$= \sum (\int h(\omega)Ax_i(\omega) P(d\omega), y_i) = \sum (Uh(x_i), y_i) =$$

$$= \sum \langle Uh, x_i \otimes y_i \rangle = \langle Uh, \theta \rangle$$

Hence, U is called the transpose of T and denoted by T^* Set $R = T^*T$. R is a linear continuous operator from $X \otimes Y$ into L(X, Y). By (2-6) we have

$$\langle R (\mathbf{x} \otimes \mathbf{y}), \mathbf{s} \otimes \mathbf{v} \rangle = \langle T^*T (\mathbf{x} \otimes \mathbf{y}), \mathbf{s} \otimes \mathbf{v} \rangle = \langle T (\mathbf{x} \otimes \mathbf{y}), T (\mathbf{s} \otimes \mathbf{v}) \rangle$$

$$= E [(A\mathbf{x}, \mathbf{y}) (A\mathbf{s}, \mathbf{v})]$$

The proof is thus complete.

Remark. Denote by $X \otimes Y'$ the completion of $X \otimes Y'$. $X \otimes Y'$ is a Banach space and R can be extended to a linear continuous operator from $X \otimes Y'$ into L(X, Y).

The following theorem gives a criterion for a linear continuous operator $R: X \otimes Y' \to L(X, Y)$ to be the covariance operator of some Gaussian random operator.

THEOREM 2.4 For a linear continuous operator $R: X \otimes Y' \to L(X, Y)$ to be the covariance operator of some Gaussian random operator, it is necessary and sufficient that

i) R is positive definite i. e.

$$\langle R | \theta, \theta \rangle \geqslant 0$$
 for all $\theta \in X \otimes Y$,

and symmetric i. e.

$$\langle R \theta_1, \theta_2 \rangle = \langle R \theta_2, \theta_1 \rangle$$

ii) For each $x \in X$ the operator $R_x : Y' \to Y$ given by $R_x(y) = R(x \otimes y)(x)$

is the covariance operator of some Y-valued Gaussian r. v.

 ${\it Proof.}$ Suppose that R is the covariance operator of the Gaussian random operator A. Then

$$\langle \mathbf{R} \, \boldsymbol{\theta}, \, \boldsymbol{\theta} \rangle = \sum_{i, j} \mathbf{E} \left\{ (\mathbf{A} \mathbf{x}_{i}, \, \mathbf{y}_{i}) \, (\mathbf{A} \mathbf{x}_{j}, \, \mathbf{y}_{j}) \right\} = \mathbf{E} \left\{ \sum_{i} (\mathbf{A} \mathbf{x}_{i}, \, \mathbf{y}_{i}) \right\}^{2} \geqslant \mathbf{C},$$

$$\langle \mathbf{R} \, \boldsymbol{\theta}_{1}, \, \boldsymbol{\theta}_{2} \rangle = \sum_{j} \sum_{i} \mathbf{E} \left\{ (\mathbf{A} \mathbf{x}_{i}, \, \mathbf{y}_{i}) \, (\mathbf{A} \mathbf{x}_{j}, \, \mathbf{y}_{j}) \right\} = \langle \mathbf{R} \, \boldsymbol{\theta}_{2}, \, \boldsymbol{\theta}_{1} \rangle$$

where
$$\theta = \sum \mathbf{x}_i \otimes \mathbf{y}_i$$
, $\theta_1 = \sum_i \mathbf{x}_i \otimes \mathbf{y}_i$, $\theta_2 = \sum_j \mathbf{x}_j \otimes \mathbf{y}_j$

It is clear that R_x is the covariance operator of the Y-valued $r.\ v.\ Ax$

Conversely, suppose that $R: X \otimes Y' \to L(X, Y)$ is a linear continuous operator satisfying the conditions i) and ii). Consider on $X \otimes Y'$ the function

$$f(\theta) = \exp\{-\langle R \theta, \theta \rangle\}.$$

It is not difficult to check that f satisfies the conditions stated in Theorem 2.3 of [8]. Consequently, there exists a random operator $A: X \to Y$ such that the joint characteristic function of (Ax_1, y_1) , (Ax_2, y_2) ,..., (Ax_n, y_n) is equal to

$$E \exp \{i \Sigma t_k (Ax_k, y_k)\} = f(\Sigma t_k x_k \otimes y_k) = \exp \{-\Sigma \Sigma t_i t_i (R(x_i \otimes y_i), x_i \otimes y_i)\}.$$

Thus A is a Gaussian random operator whose covariance operator is precisely R_{\bullet}

COROLLARY 2.5 Let Y be a Hilbert space. A linear continuous operator $R: X \otimes Y' \to L(X, Y)$ is the covariance operator of some Gaussian random operator $A: X \to Y$ if and only if R is positive definite, symmetric and

$$\sum_{i=1}^{\infty} \langle R (x \otimes e_i), x \otimes e_i \rangle < \infty \text{ where } (e_i) \text{ is the basis of } Y.$$

PROPOSITION 2.6 Let $R: X \otimes Y' \to L(X, Y)$ be a covariance operator of a Gaussian random operator. Then there exist a Hilbert space H and a linear continuous operator $T: X \otimes Y' \to H$ such that R can be factorized as follows

$$\begin{array}{c} X \otimes Y' \xrightarrow{R} L(X, Y) \\ T \searrow \mathcal{T}^* \end{array}$$

where T* is the transpose of T in the sense that

$$(T\theta, h) = \langle T^*h, \theta \rangle$$
 $h \in H, \theta \in X \otimes Y^*$

and H is minimal (i. e. the image of T is dense in H).

Moreover, the operator T is uniquely (up to an isometry equivalence) defined i. e. if R admits a second factorization $R = T_1^* \ T_1$ where $T_1: X \otimes Y' \to H_1$ and H_1 is a Hilbert space then there exists an isometry $U: H \to H_1$ such that $T_1 = U$ T_2 .

Proof. In proving Theorem 2. 3 we have shown the existence of the desired factorization $R = T^*T$. Suppose that there is another factorization $R = T_1^*$ T_1 where $T_1: X \otimes Y' \to H_1$. Let us define the following mapping $U: T(X \otimes Y') \to H_1$ by

$$U(T\theta) = T_1 \theta$$

Observe that U is well-defined. Indeed if $T\theta = T\theta'$ then $R(\theta - \theta') = T'T$ $(\theta - \theta') = \theta$ which implies $\langle T_1^* | T_1 | (\theta - \theta'), \theta - \theta' \rangle = ||T_1(\theta) - T_1(\theta')||^2 = \theta$ i. e. $T_1\theta = T_1\theta'$. We have $||UT\theta||^2 = ||T_1\theta||^2 = \langle R\theta, \theta \rangle = ||T\theta||^2$ This means that U is an isometry of $T(X \otimes Y')$ into H_1 . U is extended by continuity to $H = T(X \otimes Y')$ and we have $T_1 = UT$.

The operator T in the factorization $R = T^*T$ is denoted by \sqrt{R} and called the square root of R.

DEFINITION 2.7 A Gaussian random operator A is said to be separable if the Hilbert space $H_A \subset L_2$ spanned by Gaussian r. v'. s (Ax, y) is separable.

It would be interesting to know when A is separable.

PROPOSITION 2.8 A necessary and sufficient condition for A to be separable is that the image $R(X \otimes Y')$ is separable.

Proof The necessity is clear. Conversely, let $R(X \otimes Y')$ be separable. It is sufficient to prove that the image $T(S) \subset H$ of the unit ball S in $X \otimes Y'$ is separable. Let (y_k) be a sequence in S such that (Ry_k) is dense in R(S). We shall prove that (Ty_k) is dense in T(S). Let $h \in T(S)$. Then there exists an element $y \in S$ such that h = Ty. Choosing a subsequence $(y_k) \subset S$ such that (Ry_k) convertes to Ry in L(X, Y) we have

THEOREM 2.9. The random mapping $A: X \to Y$ is a Gaussian random separable operator if and only if A can be represented in the form

$$Ax(\omega) = \sum \gamma_n(\omega) B_n x \tag{2-7}$$

where (B_n) is a sequence in L(X, Y), (γ_n) is a sequence of real-valued independent standard Gaussian r. v.'s. The series (2-7) is a.s. convergent in Y.

This representation of A is called the spectral decomposition of A. The sequence (B_n) is called the spectrum of A.

Proof Let A be a Gaussian separable random operator with the covariance operator R. We have the factorization $R = T^*T$ where $T: X \otimes Y' \to H_A$, H_A is separable. Take an orthogonal basis in H_A

$$e_n = \gamma_n(\omega)$$
 $n = 1, 2, ...$

representing a sequence of real-valued independent standard Gaussian r. v'. s Put $B_n = T^*e_n \in L(X, Y)$. For each $x \in X$, $y \in Y'$ we have

$$(Ax, y) = T(x \otimes y) = \Sigma (T(x \otimes y), e_n) e_n = \Sigma (T^*e_n, x \otimes y) e_n = \Sigma (B_n x, y) \gamma_n.$$

where the series converges in L_2 hence in distribution. Thus

 $Ax(\omega) = \sum \gamma_n(\omega) B_n x$ for almost every ω by Ito-Nisio's Theorem.

Conversely, if (B_n) is a sequence in L(X, Y) and (γ_n) is a sequence of real-valued independent Gaussian r. v. 's such that for each $x \in X$ the series $\sum \gamma_n B_n x$ is a.s. convergent in Y then by using the Banach-Steinhaus Theorem for random operators ([8]), it is easy to see that the random mapping $A: X \to Y$ given by.

$$Ax = \sum \gamma_n B_n x$$

is a Gaussian separable random operator.

Remark. If N_x is the set of all ω such that the series (2-7) does not converge to $Ax(\omega)$, then the set on which the convergence fails for at least one $x \in X$ is $N = \bigcup_{x \in X} N_x$, an uncountable union of sets of probability θ , and therefore not $x \in X$

necessarily of probability θ . As we shall see later (Proposition 3-4) the assertion that for ω outside a set of probability θ the series (2-7) converges to $Ax(\omega)$ for all $x \in X$ holds if and only if A is decemposable.

III. π_p — DECOMPOSABILITY OF GAUSSIAN RANDOM OPERATORS

Recall that a linear operator $u: X \to Y$ is said to be p-summing (o if there exists a constant <math>C such that

$$\Sigma \parallel ux_n \parallel^p \leqslant C^p \sup_{\parallel x' \parallel} \{\Sigma | (x_n, x')|^p\}$$

$$(3-1)$$

for any finite sequence (x_n) in X. Alternatively, u is p-summing if and only if

 $\Sigma \parallel ux_n \parallel^p < \infty$ for each sequence $(x_n) \subset X$ such that $\Sigma [(x_n, x')]^p < \infty$ for all $x' \in X'$.

The minimal C for which the inequality (3-1) holds is denoted by $\pi_p(u)$. The class of all p-summing operators from X into Y is denoted by $\pi_p(X, Y)$. $\pi_p(X, Y)$ is a Banach space equipped with the norm $||u|| = \pi_p(u)$. If 0 then

 $\pi_p(X, Y) \subset \pi_q(X, Y).$

One often refers to a linear continuous operator u from X into Y as an ∞ — summing operator.

DEFINITION 3-1. A random operator A from X into Y is said to be $\pi_p - dec$ omposable $(0 if there exists an <math>\pi_p(X, Y)$ —valued r.v. B such that $A x (\omega) = B(\omega) x$ for each $x \in X$ and for almost every ω . Instead of saying that A is π_∞ —decomposable, we say that A is decomposable.

PROPOSITION 3. 2. For each π_p - decomposable Gaussian random operator A, the decomposing random variable B must be Gaussian. To prove the Proposition 3. 2, we need the following

LEMMA 3.1 Suppose that E is a Banach space and M is a linear subspace of E's such that, for all $x \in E$,

(x, x') = 0 for all $x' \in M$ implies x = 0. (3-2) Then an E - valued r. v. B is Gaussian if for all $x' \in M$, (B, x') is Gaussian.

Proof of Lemma 3. 1. We observe that M is dense in E' for the weak topology $\sigma(E', E)$ on E'. Indeed, suppose in the contrary that $M \neq E'$. When E' is equipped with the weak topology. E can be regarded as the dual of E'. By the Hahn-Banach Theorem there exists $x \in E$, $x \neq 0$, such that (x, x') = 0 for all $x' \in M$. In view of (3-2) it follows that x = 0. A contradiction. Now let x' be an arbitrary element of E'. We have to show that (B, x') is Gaussian. Because M is dense in E' there exists a sequence (x'_n) in M such that (x, x'_n) converges to (x, x') for all $x \in E$. From this $(B(\omega), x'_n)$ converges to $(B(\omega), x'_n)$ is Gaussian, $(B(\omega), x'_n)$ is Gaussian.

Proof of proposition 3. 2. It is clear that every tensor $\theta \in X \otimes Y'$ defines a linear continuous form on $\pi_p(X,Y)$, name by $u \to \langle u,\theta \rangle$. Moreover, $\langle u,\theta \rangle = 0$ for all $\theta \in X \otimes Y'$ implies u = 0. On the other hand, for each $\theta = \sum x_i \otimes y_i$, $\langle B,\theta \rangle = \sum \langle B,x_i,y_i \rangle = \sum \langle Ax_i,y_i \rangle$. Since A is Gaussian, $\langle B,\theta \rangle$ is Gaussian. It then suffices to apply the above lemma.

THEOREM 3. 3 Let A be a Gaussian separable random operator with the spectral decomposition

 $Ax = \sum \gamma_n B_n x$

Then A is π_p – decomposable (0 < $p \leq \infty$) if and only if the sequence (B_n) be longs to π_p (X, Y) and the series $\Sigma \gamma_n B_n$ is a. s. convergent in π_p (X,Y).

Proof. The necessity: Suppose that A is π_p -decomposable. By definition there exists an $\pi_p(X,Y)$ -valued $r.\ v.\ B$ such that $A \times (\omega) = B(\omega) \times$ for each $x \in X$ and for almost every ω By Proposition 3.2 B is Gaussian. Let \widetilde{R} be the covariance operator of B. It is known [9] that \widetilde{R} has the factorization $\widetilde{R} = \widetilde{T}^*\widetilde{T}$ where $\widetilde{T}: \pi_p(X,Y)' \to H$ and H is the closed subspace of L_2 spanned by Gaussian r.v.s. $(B,u'), u' \in \pi_p(X,Y)'$. When proving Proposition 3.2 we have seen that H is precisely H_A . The sequence (γ_n) represents an orthogornal basis in H_A . It is known [1] that the series $\Sigma \Upsilon_n \ \widetilde{T}^* \gamma_n$ is a.s. convergent in $\pi_p(X,Y)$. Now our assertion will follow if we show that $B_n = \widetilde{T}^* \gamma_n$. Indeed, for each $x \in X$ and $y \in Y'$ we have

$$\begin{split} \widetilde{(T}^*\gamma_n(x),y) = &\langle \widetilde{T}^*\gamma_n, \ x \otimes y \rangle = (\gamma_n, \widetilde{T}(x \otimes y)) = \ (\gamma_n, \langle B, x \otimes y \rangle) \\ &(\gamma_n, (Bx, y)) = \ (\gamma_n, (Ax, y)) = \ \gamma_n, \ \Sigma \ (B_k x, y) \ \gamma_k) = (B_n x, y) \end{split}$$

Consequently, $B_n = \widetilde{T}^* \gamma_n$, as desired.

Conversely, suppose that the series $\Sigma_{Y_n} B_n$ is a. s. convergent in $\pi_p(X,Y)$. Set $B = \Sigma_{Y_n} B_n$. B is an $\pi_p(X,Y)$ -valued r.v. and for each $x \in X$ we have

$$B(\omega)x = \sum \gamma_n(\omega)B_n x$$
 for almost every ω .

So

$$B(\omega)x = Ax(\omega)$$
 for almost every ω ,

i. e A. is π_p -decomosable.

PROPOSITION 3. 4 Let A be a Gaussian separable random operator with the spectral decomposition (2-7). Then A is decomposable if and only if there exists set N of probability O such that if $\omega \notin N$ then the series

$$\sum \gamma_n(\omega) B_n x$$

is convergent in Y for all $x \in X$.

Proof. Suppose that A is decomposable. From Theorem 3.3 it follows that there exists an L(X,Y)-valued r.v. B and a set of probability O such that if $\omega \notin N$ then

$$B(\omega) = \sum_{n} \gamma_{n}(\omega) B$$
 in $L(X,Y)$

Therefore, for all $x \in X$ and $\omega \notin N$ we have

$$B(\omega)x = \Sigma \gamma_n(\omega) B_n x$$

Conversely, for each $\omega \in N$ we define a mapping $B(\omega): X \to Y$ by $B(\omega)x = \sum \gamma_n(\omega) B_n x$.

The Banach-Steinhaus Theorem shows that $B(\omega) \in L(X,Y)$. Thus we have an L(X,Y)-valued r.v. B such that

$$B(\omega)x = \sum \gamma_n(\omega) B_n x$$
 for almost every ω

So
$$B(\omega)x = Ax(\omega)$$
 for almost every ω ,

i. e. A is decomposable.

The following result is basis

THEOREM 3.5. Let A and A_1 be two Gaussian separable random operators with the covariance operators R and R_1 , respectively. Suppose that for all $\theta \in X \otimes Y$ $\langle R_1\theta,\theta \rangle \leqslant \langle R\theta,\theta \rangle$ and A is π_p —decomposable (0 \leqslant \infty)
Then A_1 is also π_p —decomposable.

We begin with the following

LEMMA. Let R be the covariance operator of the Gaussian separable random operator A. Then we have

$$\langle R \theta, \theta \rangle = \Sigma |\langle B_n, \theta \rangle|^2$$

where (B_n) is the spectral sequence of A.

Proof. Let $T: X \otimes Y' \rightarrow H_A$ be the square root of R and (γ_n) —an orthogonal basis in H_n . We have

$$T\theta = \Sigma(T\theta, \gamma_n) \gamma_n = \Sigma \langle T^* \gamma_n, \theta \rangle \gamma_n$$

We have seen that (Theorem 2.9) $B_n = T^* \gamma_n$. From this we get $\langle R, \theta, \theta \rangle = \|T\theta\|^2 = \sum \|\langle T^*\gamma_n, \theta \rangle\|^2 = \sum \|\langle B_n, \theta \rangle\|^2$.

Proof of Theorem 3.5. We shall split the proof into two steps.

Step 1. Suppose that $\langle R_1 \theta, \theta \rangle = \langle R \theta, \theta \rangle$ for all $\theta \in X \otimes Y$. Let (B_n) and (B_n^I) be two spectral sequences of A and A_I , respectively. By the above lemma we have

$$\langle R\theta, \theta \rangle = \Sigma \mid \langle B_n, \theta \rangle \mid^2 = \langle R_1 \theta, \theta \rangle = \Sigma \mid \langle B_n^1, \theta \rangle \mid^2$$
(3.3)

At first we show that $B_n^1 \in \pi_p(X, Y)$ (n = 1, 2, ...) Suppose that A is π_p —decomposable by $\pi_p(X, Y)$ valued r.v. B. Then for each $\theta \in X \otimes Y$ the $r.v. \langle B. \theta \rangle$ is Gaussian with variance $\langle R\theta, \theta \rangle$. Hence for each p > 0 there exists a constant C_p such that

$$|\langle R \theta, \theta \rangle|^{p/2} = C_p \int_{\Omega} |\langle B(\omega), \theta \rangle|^p P(d\omega).$$

In view of (3-3) we have

$$|\langle B_n^I x, y \rangle|^p \leqslant \langle R(x \otimes y), x \otimes y \rangle^{p/2} = C_p ||f| ||f| ||f||^p ||f|| ||f||^p ||f||^p$$

Hence

$$\parallel B_{p}^{I}x\parallel^{p}\leqslant C_{p}\int \parallel B(\omega)x\parallel^{p}P(d\omega)$$

For any finite sequence (x_k) in x we have

$$\Sigma\parallel B_{n}^{I}x_{k}\parallel^{p}\leqslant C_{p}\S\Sigma\parallel B(\omega)x_{k}\parallel^{p}P(d\omega)\leqslant$$

$$C_{p} \left\{ \| B(\omega) \|^{p} \sup \left\{ \sum \left\{ (x_{n}, x') \right\}^{p} \right\} P(d\omega) = C_{p} C \sup \left\{ \sum \left\{ (x_{n}, x') \right\}^{p} \right\}, \text{ where } \| x' \| \leqslant 1$$

 $C = \int ||B(\omega)||^p ||P(d\omega)|| < \infty$ (since B is Gaussian). Consequently, B_n is p-summing.

Let $A_I x(\omega) = \sum \gamma_n - \omega - \frac{1}{n} x$ be the spectral decomposition of A_I . Consider the series $\sum \gamma_n - (\omega) B_n^I$ in $\pi_p(X, Y)$. For each $\theta \in X \otimes Y$, we have

$$E \exp \langle \stackrel{n}{\Sigma} \gamma_k(\omega) B_k^I, \theta \rangle = E \exp \stackrel{n}{\Sigma} \gamma_k(\omega) \langle B_k^I, \theta \rangle = \exp \{ -\frac{1}{2} \stackrel{n}{\Sigma} | \langle B_k^I, \theta \rangle | 2 \}$$

converging to exp $\left\{-\frac{1}{2}\sum_{i=1}^{\infty}|\langle B_{i}^{i},\theta\rangle|^{2}\right\}=\exp\left\{-\frac{1}{2}\langle R\theta,\theta\rangle\right\}=E\exp\left\{i\langle B,\theta\rangle\right\}.$

By using the fact that $X \otimes Y$ is a total linear subspace of the dual $\pi_p(X, Y)$ and the same argument as in the proof of the Ito-Nisio theorem we find $\pi_p(X, Y)$ valued r.v.s such that

$$\langle S, \theta \rangle = \sum \gamma_n(\omega) \langle B_n^1, \theta \rangle$$
 P-a.s.

for each $\theta \in X \otimes Y$

In particular, taking $\theta = x \otimes y$ we get

 $(S(\omega) \ x,y) = \Sigma \gamma_n(\omega) \ (B_n x,y) = (Ax(\omega),y)$ for almost every ω . From this it follows that

 $A_{I}x(\omega) = S(\omega)x$ for almost every ω , i.e. A_{I} is π_{p} —decomposable.

Step 2. Suppose that $\langle R_1\theta,\theta\rangle\leqslant\langle R\theta,\theta\rangle$ for all θ . Put $R_2=R-R_1$. By using Theorem 2. 4 it is easy to show that R_2 is a covariance operator of some Gaussian separable random operator, say A_2 . By the above lemma we have

$$\langle R_1 \theta, \theta \rangle = \Sigma |\langle B_n^1, \theta \rangle|^2, \langle R_2 \theta, \theta \rangle = \Sigma |\langle B_n^2, \theta \rangle|^2$$

where (B_n^1) and (B_n^2) are two spectral sequences of A_1 and A_2 , respectively. Setting

$$C_{2n-1} = B_n^1$$
, $C_{2n} = B_n^2$ (3 - 4)

we have

$$\langle R\theta, \theta \rangle = \langle R_1\theta, \theta \rangle + \langle R_2\theta, \theta \rangle = \Sigma |\langle C_n, \theta \rangle|^2$$
 (3-5)

Now let us consider the spectral decomposition of A

$$Ax = \sum \gamma_n(\omega) B_n x$$

and the series

$$\Sigma \gamma_n(\omega) C_n x$$

For each $y \in Y'$ we have

Eexp $\{(\stackrel{n}{\Sigma}\gamma_k(\omega) C_k x, y)\} = \exp\{-\frac{1}{2} \stackrel{n}{\Sigma} | (C_k x, y) |^2\}$ converging to

$$\exp\left\{-\frac{1}{2}\sum\limits_{n=0}^{\infty}|\left(C_{n}x,\,y\right)|^{2}\right\}=\exp\left\{-\frac{1}{2}\langle R\left(x\otimes y\right),\,x\otimes y\rangle\right\}=\operatorname{E}\exp\left\{i\left(Ax,\,y\right)\right\}$$

By the Ito — Nisio theorem we conclude that the series $\Sigma \gamma_n(\omega) C_n x$ converges a.s. in Y for each $x \in X$. Set

$$\widetilde{A} x (\omega) = \Sigma \Upsilon_n (\omega) C_n x$$
.

 \tilde{A} is a Gaussian separable random operator. By lemma and (3-5) we get

$$\langle \tilde{R}\theta, \theta \rangle = \langle R\theta, \theta \rangle$$

where \widetilde{R} is the covariance operator of \widetilde{A} .

From step 1 it follows that \widetilde{A} is π_p —decomposable. Hence, by Theorem 3. 3 the series $\Sigma \Upsilon_n$ (ω) C_n is a.s. convergent in π_p (X, Y). For any bounded sequence of real numbers (t_k) the series $\Sigma t_k \ \Upsilon_k$ (ω) C_k is also a.s. convergent in π_p (X, Y). If we put

$$t_{2n-1}=1$$
 , $t_{2n}=0\ \tilde{\gamma}_n=\gamma_{2n-1}$,

then by (3-4) the series $\Sigma \tilde{\gamma}_n B_n^1$ is a.s. convergent in $\pi_p(X, Y)$.

Put

$$\tilde{A}_{1}x(\omega) = \sum \tilde{\gamma}_{n}(\omega) B_{n}x.$$

 \overline{A}_{1} is π_{p} -decomposable and we have

$$\langle \tilde{R}_1 \theta, \theta \rangle = \Sigma |\langle B_n^1, \theta \rangle|^2 = \langle R_1 \theta, \theta \rangle$$

From step 1 it follows that A_1 is π_p -decomposable. The proof of the Theorem is thus complete.

COROLLARY 3.6. Let A and B be two independent Gaussian separable random operators with the expectation operators zero. If A+B is π_p -decomposable then both A and B are π_p -decomposable.

In the sequel we shall find conditions on the covariance operator R such that the corresponding Gaussian random operator A in π_p -decomposable.

DEFINITION 3.7 Let Z be a Banach space. A linear operator T from $X \otimes Y'$ into Z is said to be (r, π_p) - summing $(\theta < r < \infty, \theta < p \leqslant \infty)$ if for each sequence (θ_n) in $X \otimes Y'$ such that $\Sigma \mid \langle u, \theta_n \rangle \mid^r < \infty$ for all $u \in \pi_p(X,Y)$ we have $\Sigma \mid\mid T \theta_n \mid\mid^r < \infty$. Equivalently, T is (r, π_p) - summing if and only if there exists a constant C such that

$$\Sigma \parallel T \theta_n \parallel^r \leqslant C^r \sup \left\{ \begin{array}{l} \Sigma \mid \langle u, \theta_n \rangle \mid^r \right\} \\ \parallel u \parallel \leqslant 1 \\ \pi_p \end{array}$$

for any finite sequence (θ_n) in $X \otimes Y$. Because of $\pi_p(X,Y) \subset \pi_q(X,Y)$ whenever p < q, the (r, π_p) -summing operators are (r, π_q) -summing if p < q. As we shall see later, the converse is not generally true, unless Y is finite — dimensional.

Company of the second

By the same argument as in the proof of Pietsch's theorem we get THEOREM 3.8 A continuous linear operator $T: X \otimes Y' \to Z$ is (r, π_n) -summing

if and only if there exists a finite measure μ on the unit ball U of $\pi_p(X,Y)$ such that

$$||T \theta||^{r} \leqslant \int_{U} |\langle u, \theta \rangle|^{r} \mu(du)$$

for all $\theta \in X \otimes Y$

THEOREM 3.9 Let Λ be a Gaussian random operator from X into Y with the covariance operator R. If Λ is π_p - decomposable then the operator $T=\sqrt[7]{R}$ is (r,π_p) -summing for all r>0.

Proof Suppose that A is π_p -decomposable by an $\pi_p(X,Y)$ -valued r.v. B. Then for each $\theta \in X \otimes Y$ the $r.v. \langle B, \theta \rangle$ is Gaussian with variance $\langle R \theta, \theta \rangle$. Hence for each r > 0 there exists a constant C_r such that

$$||T \theta||^{r} = C_{r} \int_{\Omega} |\langle B(\omega), \theta \rangle|^{r} P(d\omega)$$

For each finite sequence (θ_n) in $X \otimes Y$ we have

$$\Sigma \parallel T \mid \theta_n \parallel^r = C_r \int \Sigma \mid \langle B(\omega), \theta_n \rangle \mid^r P(d\omega) =$$

$$C_r \int \parallel B(\omega) \parallel^r \Sigma \mid \langle \frac{B(\omega)}{\parallel B(\omega) \parallel}, \theta_n \rangle \mid^r P(d\omega) \leqslant$$

$$C_r \int \parallel B(\omega) \parallel^r P(d\omega) \left\{ \sup \Sigma \mid \langle u, \theta_n \rangle \mid^r \right\} = C_r C \sup \Sigma \mid \langle u, \theta_n \rangle \mid^r$$

$$\parallel u \parallel \leqslant 1 \qquad \qquad \parallel u \parallel \leqslant 1$$

where $C = \int \|B(\omega)\|^r P(d\omega) < \infty$ (since B is Gaussian). Thus T is (r, π_p) -summing

THEOREM 3. 10. Suppose that $\pi_p(X,Y)$ is of type 2. Then a Gaussian separable random operator $A: X \to Y$ is π_p -decomposable if and only if the operator $T = \sqrt{R}$ is $(2, \pi_p)$ -summing, where R is the covariance operator of A.

Proof. By Theorem 3. 9 it remains to prove the «if» part. Assume that T is $(2, \pi_p)$ -summing. By Theorem 3.8 there exists a finite measure μ on the unit ball U of $\pi_p(X, Y)$ such that

$$\parallel T \theta \parallel^2 \leqslant \int_U \langle\langle u, \theta \rangle|^2 \mu (du). \tag{3-6}$$

Since $\pi_p(X, Y)$ is of type 2 by a result in [4], there exists an $\pi_p(X, Y)$ -valued Gaussian r. v. B such that

$$E\exp\left\{i\langle B, u'\rangle\right\} = \exp\left\{-\frac{1}{2}\int_{a'}\left|\left\langle u, u'\right\rangle\right|^{2}\mu(du)\right\}$$

for all $u' \in \pi_p(X, Y)'$. Taking $\theta = u'$ we get

$$\operatorname{E} \exp \left\{ i \left\langle B, \theta \right\rangle \right\} = \exp \left\{ -\frac{1}{2} \int_{H} \left| \left\langle u, \theta \right\rangle \right|^{2} \mu(du) \right\}. \tag{3-7}$$

Let \widetilde{A} be the Gaussian random operator generated by B, .. e.

$$Ax(\omega) = B(\omega)x$$
.

From (3-7) we have

 $\langle \widetilde{R} | \theta, \theta \rangle = \iint_{R} \langle u, \theta \rangle^{2} \mu (du)$, where \widetilde{R} is the covariance operator of \widetilde{A} .

From (3-6) we get $\langle R \theta, \theta \rangle \leqslant \langle R \theta, \theta \rangle$. By Theorem 3. 5 we conclude that A is π_n -decomp-sable.

THEOREM 3. 11. Suppose that $\pi_p(X,Y)$ is of cotype 2. Then a Gaussian separable random operator $A: X \to Y$ is π_p -decomposable if and only if the transpose T^* of $T = \sqrt{R}$ is an 2-summing operator from H_A into $\pi_p(X,Y)$, where R is the covariance operator of A.

Proof Suppose that A is π_p -decomposable. Then there exists an $\pi_p(X,Y)$ — valued Gaussian r.v. B such that

$$Ax(\omega) = \dot{B}(\omega)x$$
 for almost every ω

Let \widehat{R} : $\pi_p(X,Y) \to \pi_p(X,Y)$ be the covariance operator of B. \widehat{R} has the factorization $\widehat{R} = \widehat{T} * \widehat{T}$ where \widehat{T} : $\pi_p(X,Y)' \to H_A$ (see the proof of Theorem 3.3). Since $\pi_p(X,Y)$ is of cotype 2 by the result of [1], the operator \widehat{T}' : $H_A \to \pi_p(X,Y)$ is 2-summing. Now our assertion will follow if we show that $T^* = \widehat{T}^*$. Indeed for each $h \in H_A$, $x \in X$ and $y \in Y'$ we have

$$\widetilde{(}T^*h\ (x),y) = \langle \widetilde{T}^*h,x\otimes y\rangle = (h,\widetilde{T}\ (x\otimes y)\) = (h,\langle B,x\otimes y\rangle\) \\
= (h,(B(\omega)x,y)) = (h,(Ax,y)) = (h,T(x\otimes y)) = \langle T^*h,x\otimes y\rangle \\
= T^*(h(x),y).$$

Hence $\widetilde{T}^* \equiv T^*$ as desired.

Conversely, assume that $T^*: H_A \to \pi_p(X, Y)$ is 2-summing. In view of the Schwartz Radonification theorem [6] $H = T^*(\gamma_2)$ is a Radon measure on $\pi_p(X, Y)$, where γ_2 is the Gaussian cylindrical measure on H_A with the characteristic

function exp $\left\{\frac{-\|h\|^2}{2}\right\}$ The characteristic function $\widehat{\mu}$ is equal to

$$\widehat{\mu}(u') = \exp\left\{-\frac{1}{2} \| (T^*)^* u' \|^2\right\} \qquad (u' \in \pi_p(X,Y)')$$

where $(T^*)^*$: $\pi_{\mathbf{p}}(X,Y)' \to H_A$.

For each $h \in H_A$ and $\theta \in X \otimes Y'$ We have

 $((T^*)^* \theta, h) = \langle \theta, T^*h \rangle = (T \theta, h)$

which shows that $(T^*)^*\theta = T\theta$. Hence

$$\widehat{\mu}(\theta) = \exp\left\{\frac{-\|T\theta\|^2}{2}\right\}.$$

For each $\theta \in X \otimes Y$, we have

$$E\,\exp\,\langle\,\stackrel{n}{\Sigma}\gamma_{k}(\omega)B_{k},\,\theta\rangle = \exp\,\big\} - \frac{1}{2}\,\stackrel{n}{\Sigma}\,|\langle\,B_{k},\,\theta\,\rangle\,|^{2}\Big\} converging to$$

$$\exp\left\{-\frac{1}{2}\sum_{n=1}^{\infty}\left|\left\langle B_{n},\theta\right\rangle\right|^{2}\right\}=\exp\left\{-\frac{1}{2}\left\|T\theta\right\|^{2}\right\}=\widehat{\mu}(\theta),$$

where (B_n) is the spectral sequence of A.

By the same argument as in proving Step 1 of Theorem 3.5 we conclude that A is. π_n -decomposable.

Remark. Let us observe that the if part is always true without any additional assumption on $\pi_n(X,Y)$.

Theorems 3.10 and 3.11 lead us to the question of which Banach spaces X and Y have the property that $\pi_p(X,Y)$ is of type 2 or is of cotype 2.

THEOREM 3.12. Let H be a Hitbert space. Then

- 1) $\pi_2(X,H)$ is of type 2 if X is the dual of a Banach space of type 2.
- 2) $\pi_9(H, Y)$ is of cotype 2 if Y is of cotype 2.

Proof 1) Assume that X = E'. Let $\Lambda_2(E', H)$ denote the set of all operators T from E' into H for which the function

$$y \rightarrow \exp \{-\|Ty\|^2\}$$

is a cheracteristic function of some E-valued Gaussian $r.v.X_T$. It is known [5] that $\Lambda_2(E'H)$ is a Banach space equipped with the norm.

$$\|T\|_{A_{2}}^{2} = E\|X_{T}\|^{2}.$$

The correspondence $T \to X_T$ is an isometry of $\Lambda_2(E', H)$ into $L_2(E)$

When E is of type 2, it is known [1] that $\Lambda_2(E', H) = \pi_2(E', H)$, Hence there exist two constants C_1 and C_2 such that

$$C_2 \parallel T \parallel_{\Lambda_2}^2 \leqslant \parallel T \parallel_{\pi_2}^2 \leqslant C_1 \parallel T \parallel_{\Lambda_2}^2$$

Let r_1 , r_2 ,... be the Rademacher sequence on the probability space ([0, 1], \mathcal{B} , dt) and let T_1 , T_2 ,... T_n be a finite sequence in $\Lambda_2(E', H)$. Then

$$\int_{0}^{1} \| \sum T_{n} r_{n}(t) \|_{\lambda_{2}}^{2} dt = \int_{0}^{1} E \| \sum X_{T_{n}} r_{n}(t) \|_{2}^{2} dt =$$

$$E\int_{0}^{1} \| \Sigma X_{T_{n}} r_{n}(t) \|^{2} dt \leq K E \{ \Sigma \| X_{T_{n}} \|^{2} \} = K \Sigma \| T_{n} \|^{2}_{A_{2}}$$

The last inequality used the fact that E is of type 2.

Hence $\Lambda_2(E', H)$ is of type 2 so is $\pi_2(E', H)$

4.

2) Suppose Y is of cotype 2. Then by the results of [1] $T \in \pi_2(H, Y)$ if and only if $T^* \in \Lambda_2(Y, H)$ and we have the constants C_1 , C_2 such that

$$\bullet \quad C_2 \parallel T^{\star} \parallel_{\Lambda_2}^2 \leqslant \parallel T \parallel_{\pi_2}^2 \leqslant C_1 \parallel T^{\star} \parallel_{\Lambda_2}^2.$$

Let T_1 , T_2 ,..., T_n be a finite sequence in $\pi_2(H, Y)$. Then

$$\int_{0}^{1} \| \sum T_{n} r_{n}(t) \|_{\pi_{2}}^{2} dt \geqslant C_{2} \int_{0}^{1} \| \sum T_{n}^{*} r_{n}(t) \|_{\Lambda_{2}}^{2} dt =$$

$$\int_{0}^{1} \| \sum T_{n} r_{n}(t) \|_{\Lambda_{2}}^{2} dt = C_{2} \int_{0}^{1} \| \sum T_{n} r_{n}(t) \|_{\Lambda_{2}}^{2} dt =$$

$$C_2 \int_0^1 E \| \sum X_{T_n^*} r_n(t) \|^2 dt = C_2 E \int_0^1 \| \sum X_{T_n^*} r_n(t) \|^2 dt \geqslant$$

$$C_{2} C E \{ \Sigma \| X_{T_{n}^{*}} \|^{2} \} = C_{2} C \Sigma \| T_{n}^{*} \|_{\Lambda_{2}}^{2} \geqslant C_{1}^{-1} C C_{2} \Sigma \| T_{n} \|_{\pi_{2}}^{2}$$

This proves that $\pi_9(H, Y)$ is of cotype 2.

PROPOSITION. 3. 13 Let X, Y be two separable Hilbert spaces and $A: X \rightarrow Y$ a Gaussian separable random operator. Then the following assertions are equivalent

- 1) A is π_p decomposable for 0
- 2) A is π_2 decomposable.
- 3) $\sum_{i} \sum_{i} \langle R(e_i \otimes f_j), e_i \otimes f_j \rangle < \infty$
- 4) $\sum_{i} \sum_{i} ||B_{i}||^{2} < \infty$.

Here R is the covariance operator of A, (B_j) is the spectral sequence of A and (e_i) , (f_j) are the basises in X, Y, respectively.

Proof 1) \leftrightarrow 2) is trivial because all the classes $\pi_p(X, Y)$ coincide (0 .

2) \rightarrow 3): By Theorem 3.10 the operator $T = \sqrt{R}$ is (2, π_2)—summing. For each $u \in \pi_2(X, Y)$ we have

$$\sum \sum |\langle u, e_i \otimes f_j \rangle|^2 = \sum_{i,j} |\langle ue_i, f_j \rangle|^2 = \sum_{i} ||ue_i||^2 < \infty.$$

So

$$\Sigma\Sigma\langle R(e_i\otimes f_j), e_i\otimes f_j\rangle = \Sigma\Sigma \|T(e_i\otimes f_j)\|^2 \leqslant \infty.$$

3) \rightarrow 4): It is not difficult to check that

$$\Sigma \Sigma \parallel B_i \mid e_i \parallel^2 = \Sigma \Sigma \langle R(e_i \otimes f_i), e_i \otimes f_j \rangle$$

4)
$$\rightarrow$$
 2): We have $\Sigma \parallel B_n \parallel_{\pi_2}^2 = \sum_{i \neq j} \parallel B_j e_i \parallel^2 < \infty$.

Because $\pi_2(X, Y)$ is a Hilbert space it follows that the series $\Sigma \gamma_n B_n$ is a.s. convergent in $\pi_2(X, Y)$. By Theorem 3.3 A is π_2 —decomposable.

Finally, we give an example showing that there exists an (r, π_{∞}) — summing operator which is not (r, π_p) — summing for $p < \infty$.

Let H be a Hilbert space with the basis (e_n) and (s_n) be a sequence of numbers such that $\sup |s_n| < \infty$.

We define a Gaussian separable random operator A from H into H by means of.

$$Ax(\omega) = \Sigma(x, e_n) e_n s_n \gamma_n(\omega)$$

By Proposition 3.13 A is π_p -decomposable $(p < \infty)$ if and only if.

$$\sum_{i,j} \|B_j e_i\|^2 = \sum |s_n|^2 < \infty. \tag{3-8}$$

On the other hand, as shown in [8], A is decomposable if and only if.

$$\sum \exp\left\{-\frac{t}{|s_n|^2}\right\} < \infty \text{ for some } t > 0.$$
 (3-9)

So if the sequence (s_n) is chosen such that (3-9) holds but (3-8) fails then by Theorem 3.10 and Theorem 3.9 the operator $T = \sqrt{R} : H \otimes H \to L_2$ is (r, π_{∞}) -summing but not (r, π_p) -summing $(p < \infty)$.

REFERENCES

- [1] S.A. Chobanian, V.I. Tarieladze, Gaussian characterization of certain Banach spaces; J. Multivar. Anal. 7, 1 (1977), 183 203.
- [2] S.A. Chobanian, A. Weron, Banach space valued stationary processes and their linear prediction, Dissertationes Math. 125 (1975), 1 45.
- [3] S.A Chobanian, A. Weron, Existence of the linear prediction for Banach space valued Gaussian processes, J. Multivar. Anal. 11,1 (1981), p. 69-80.
- [4] J. Hoffmann-Jorgensen, Probability in Banach Spaces, Lecture Notes in Math. 598 (1977), 1-186.
- [5] W. Linde, Infinitely divisible and stable measures on Banach spaces, Teubner Texte zur Mathematik Band 58, Leipzig 1983.
- [6] L. Schwartz, Geometry and probability in Banach spaces, Springer Verlag, Lecture Notes in Math. 852 (1981).
- [7] F. Trever, Topological vector spaces, distributions and kernels, Academic Press New York 1967.
- [8] D.H. Thang, Random operators in Banach spaces (Submitted to Probability and Math-Statistics).
- [9] N. Vakhania, Probability distribution in linear spaces, Thilisi 1971.
- [10] W.A. Woyczynski, Geometry and martingales in Banach spaces, Part II, Advances in Probability and Related Topics, 4 (1978), 267 517.

 Received April 10, 1987

DEPARTMENT OF MATHEMATICS, HANOI UNIVERSITY, VIET NAM