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GAUSSIAN RANDOM OPERA_TORS. IN BANACH SPACES™
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I. INTRODUCTION

Let X and Y be separable Banach spaces. By a random operator from X
into Y we mean a linear continuous operator from X into L (V) where L, (Y)

stands for the set of ‘all ¥-valued random variables. For the motivation of the
notion of random operator see our recent paper [8] in which the characteristic
function, the convergence and the decomposahlllty ol random operators have
been studied.

This paper which is a continuation of [8] is devoted to the study of Gaussian
random operators in Banach gpaces. In Section 2 we introduce the definition of
covariance operator of Gaussian random operators. This definition extends the
notion of covariance operator of (aussian cylindrical random variables,
see [2], [3]. Theorem 2.4 gives the necessary and sufficient condition for an
operator to be the covariance, operator of some Gaussian random operator. We
focus on the problem of T, -decomposability (0 < p < =) of Gaussian random

operators in Section 3. We present conditions for T, -decomposability of a

Gaussiap random operator in terms of its covariance operator, which may be
considered as an extension of S. A. Chobanian, V. L Tarleladzes results [1] for
Gaussian cylindrical measures,

II. COVARIANCE OPERATOR -OF QAUSSIAN RANDOM OPERATORS

Fix a probability space (Q, ¥, P). Let X and Y be two separable Banach

-spaces with the duals X’ and Y, respectively. The set of all Y-valued random

variables (Y-valued r.v, '5s) is denoted by Lo (Y) and is equipped with the topo-

(*) This work Was done while the author was a visiter at tke Institute of Mathematies
of the University of Wroelaw [Poiand] in the academic year 1985/1986. The suppert of
this Institaie is gratefully scknowledged.
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Jogy of comvergence in probability. By Lp (V) (0 < p< ) we denote the space
ot: Y—valued r. v’ for which Effz[|? < e When ¥ = R we Wr.ite LP
instead of LP(R)

A linear continuons operator A from X into L, (Y)is called 2 random

, operator from Xinto Y. For some general properties of random operators, see [8}

“DEFINITION 2. 1. A random operator A {rom X into Y is called 2 Gaussian
random operatorif for eachn eNand x; , X5 5000 X in X, the Joint distribution

of Ax, » AXg seems An is Gaussian. Eguivalently, a random operator A is
Gaussian if and only if the stochastic process (Ax,y) on X X Y’ is Gaussian.

EXAMPLE 1. Let (T, Z, m) be a finite measurable space. By a Gaussia ran-
dom measure W on (T, X, m) we mean an independently scattered c-additive
setfunction W Z: — Lj such that, for each A from 2, W(A) bas a Gaussian
distribtion with mean 0 and variance m{4). LetY bea Banach space of type2.
It is known [4] that for each f.€ Ly(T, 2 m; Y), the random ’i_‘n_tegraltjfd w is
defined. Then a random mapping A :from_LQ (T, Z, m; Y) into, Y given by

is a Gaussian random operator.

" PROPOSITION: 2.'2. Let A be a Gaussian. random operator from X into Y. Then

there exists an unique linear continuous operator M. from X into Y such that .
T (M, g) = E(4z,'Y) " |

for each x €Y,y & Y. g o » e

.. Proof. For each ze X Ax is an Y-valued Gaussian r.v, so Az € L, (Y) Hence

‘A may be considered as a linear mapping from X into L, (). 'By_‘gu_sing!_ the

closed graph theorem it is easy to see that A is E(‘,oni!:im.ums._ Put .
© Mz = E A = §dz (@) P(dw), M is a linear mapping from. X into Y.

Moreover supllMzi = sup | EAc] < sup Epdsf <o

lall <1 <l | " TR SRS,

which shows the continuity of M. By the property of Bochner integral we

obtain
Co(Mayy) = (E Az, y) = E (Ax, y)

"Thé Propesition is proved. P ELF I
“The, operator M is called ‘the expectation operator of A. Without loss of gene-
rality, from now on we shall ‘always suppose that M is identical to zero. -

Tet X ® Y’ be the tensor product of X and Y, We turp X ® Y' into a
-pormed space by.considering.in it the projective norm defined by = .~

Jon =m0 Iy b
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wacre the infimum is taken over all finite seis of pairs (z,, y; ) such that
O=Z2Zz® ¥

The role of the tensor product is emphasized by the fact that it enables as
to replace a bilinear mapping on & X Y’ by a lineir mapping defined on the

tensor product X ® Y. For more information about the tensor product, we
refer to [7].

Let L (X, Y) denote the space of all linear continuous operators from X
into Y equipped with the operator norm. For each u ¢ L (X, ¥) we define the
following bilinear form on X X Y’ u (x, y) = (ux, y).

By the property of the tensor produet, u determines a unique linear mapping
u: X ® Y’ — R such that
ulz @ y) = (uz, y)

From now on, we shall denote by (u, 6) the value of u at the peint 8 ceX®Y"
Note that we have the mequahty

| G o3| < fall o) @13

Indeed, let 8= 2z, @ ¥, be an arbitrary representation of 8.

Tnen
[, 1= 2 (H,x Oy <l e ®y)| =2 @)l <
Efull e, | ty, I=0tualZiz 1 Iy, |
From this, the inequality (2-—1) follows. : S

THEOREM 2. 3. Lef A be a Gaussian random operaior fromX into Y. Then there
exisls a unique linear confinuous operator R fromX @ Y into L (X, Y ) such that

(R(x®@ Yy).s ® v) = Cov {(Aa:, ), (4s, v)}
for all pairs (z,y) and (s, v) in X X Y

The operator R is called the covariance operator of A.

Proof. Let HA denote the closed subspace of L?spanned by Gaussian r. .5
(Ax, y). Consider the bilinear mapping T from X XY’ into H, given by

By the property of the tensor product T determznes a umque linear
mapping T" from X @ Y’ into i, such that

4 T@®y)= (4, y)
6 — 2289 81



Now we shall show that T is continuous, We have

1T (@ ® y) 2= § 1 Ax, 5) 2 Pldw) <1y 11§ Ax(@) ] 2 P(dw).

Because of Ax e L, (Y)for each x € X, A may be seen as a linear mapping
from X into L, (Y). By using the closed graph theorem we find that 4 is conti-

nuous. Therefore, there exists a consfant C such that

§ | Az(o) |2 P(dw) < C? 2112, | @2—2)
Thus, we o})tain :

[T o nl<Cliciiyl

letg= X z, @y, be an arbitrary representation of 0. Then. || T(e) u' =
— |27z, 0 g [ <E T @y )< C 2zl g,
From this we get || T(0) || < C || 0 )| which shows the continnity of T.
Next for each h € H, we consider the mapping Uk: X — Y given by
Uh(@) = §h(w) Az(w) P(dw) @—3)

Here the Bochner integfal (2-3) exists since
§ll Be) Ay ) Pdo) < (§ 1 5@ 1 Pew))*[§il Azl P(dw) < o 2—4)
Clearly, Uh is linear. From (2—2) and (2—4) we obtain
(UA@) || = |E hdz || < E |hz | < Gkl iz ) 2—5)
which shows that Uh is continuous i. e. Uk € LX, Y),
Clearly, the mapping U : H, — L(X, Y)
' h—»Uh

is linear. In view of (2—5), we have
| Ua Y| = sup W@ < CH AL
=l <1

proving that U is continuous.
Moreover, we have the transposition formula

(T6, ky=(Uh g) forheH,¢eXQ@Y (2-6)
Indeed, let § = 3 z, ® g; Then -
(T o h) == (T, @ 9, 1) = 2 § h(w) (4z; (@), ;) P(dw)
— 5§ ho)Ae, (o) Do) 5,) = U ). 9,) ="
= 3 (Uh, 2;® y,) =(Uhk 0)



Hence, U is called the iranspose of T and denoted by T* o
Set It = T*T. R is a linear continuous operator from X @ y* |
(2-—6) we have ® ¥ into L(X Y) By
Ry, s@Hn=MTCTTERy) sB®V)=(TEo
— E [(Ax, ¥) (As, V)] ™ TEov)

The proof is thus complete.

Remark. Denote by X@Y’ the completion of X @ Y. X @ v is a
Banach space and R can be extended to a linear continuous operator from

X® Y into L(X, Y).

The following theorem gives a criterion for a linear continuous operator *
R: X ® Y - L(X, Y) to be the covariance operator of some Gaussian random
operator.

THEOREM 2. 4 For a linear continuous operator R: X @ Y’ — L(X, Y) to be
the covariance operafor of some Gaussian random operaior, it is necessary and
sufficient that
i) R is positive definite i. e. _

(R0,0) >0 for all 8¢cX®Y,
and symmeitric 1. e,
<R B1y O ) = (R o, 91>
if) For each x € X the operator Rw : ¥ — ¥ given by

R (y)=R(x®y)(x)
is the covariance operator of some Y-valued Gaussian r, v,
Proof. Suppose that R is the covariance operator of the Gaussian random
operator A.Then
(R8,80)=ZE {(Ax y) (Ax » _)} =E {2 (Axi, yi)}2 > 0,
is f i

(R, 0) = Z 2 E {(Ax, y) (Ax,, ¥} =Rz 0
Ji

whereﬂ:fo@y Y 91:‘?xf®yi’ Bz:%.xj@’ !

It is clear that R is the covariance operator of the Y-valued r, ». A2

Conversely, suppose that R:X @ ¥’ —->L(X Y) is a linear continuous
operator satisfying the conditions i) and ii), Consider on X ® Y® the
fanction

f (6) = exp {—(R 0, 8)}.
it is not difficult to check that fsatisfies the conditions stated in Theorem 2.3
of [8]. Consequently, there exists a random operator A: X — Y such that
the joint characteristic function of (4x,, Y1), (AT2 Ya) e (Ao:n, y,) is
equal to
Eexp {{Z1 (Ax,, y )} =f (2t z, @ yk)=.
= exp {—Zz ti tj ( R(xi ® yi)!mj @ yj>}'

Thus A is a Gaussian random operator whose covariance opé&ratoris precisely R.
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COROLLARY 2.5 Lef Y be a Hilbert space. A linear coniinuous operator
R:X® Y — L (X, Y) is the covarianceoperator of some Gaussian random ope-
rator A: X - Y if and only if R is positive definite, symmelric and

2‘. (R (z®¢), T@e ) << o where (¢ y is the basis of Y,
i=1
PROPOSITION 2.6 Let R: X @ V' — L (X, Y) be a covariance operator of a

Gaussian random operator, Then there exist a Hilbert space I and a linear
continuous operafoz T: XY - H such that R can be factor zzed as follows

10y 4 L(X, )
N, /1

where T* is the iranspose of T in thc sense that
(78, By =(T*h, 8 ) heH,1eX®Y’
and H is minimal (i. e. the image of T is densein H).
Moreover, the operator T is uniquely (up fo an isomeiry equivalence} defined i. e.

if R admiis a second factorization R=T3; T, whereT,: X ®Y" — H; and H,
is a Hilbert spuce then Lhere exists an isomeiry U: H — H, such that T, = U T.
Proof. In proving Theorem 2. 3 we have shown the existence of the desired

factorization R = T*7. Suppose that there is another {actorization R = 2"‘" T,
where T, : X @ ¥’ — H,. Le! us define the followmg mappingl : T X @ Y')—
H, by

U(Te) = 17,8 : :
Observe that U is well-defined. Indeed if 70 = T¢’ then R(6 — 6 =TT (@ — B)
= 0 which implies (75 T, (8 —0,86 —8 )=[T,06) — 7,0l 20
i. e, 140 = T4’ We have uUTen = T,9 l] ?m e Ra, e>_[}Teu
This means that I/ is an isometry of T (X @Y" into H,.Uis extended by con-
tinuity to f =T (X ® Y ) and we have T, = UF

The operator 7 in the faciorization R T#T is denoted by VR and called the
square root of R.

. DEFINITION 2.7 A Gaussian random operator A is said to be separable if the
Hllhert spaceH, C L, spanned by Gaussian r. v’. s (4x, y) is separable.

It would be interesting to koow when A is separable.

PROPOSITION 2.8 A necessary and sufficient condition for A io be sepamble
is that the image R (X ® Y’ ) is separable,

Proof The necessity is clear. Conversely, let R (X ® Y"') be separable. It is
sufficient to prove that the image T (S} C H of the unit baliSin X @ V' is
separable. Let (y,) be a sequence in S such that (Ryk) is demse in R (5), We

shall prove that (Tyl } is dense in T'(S), Let h € T(S). Then there exists an ele-
medat y € S such that h = Ty. Choosmg a subsequence W) & S such that
(Rg )comrezles to Ry in L(X, Y\ we have
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2 __ 2 _
Fh — Ty, 17=1T@ — g, )" = R G—y )y —y. )<
Rty — Ry Mg — g, | — 0, which completes the proof.

THEGREM 2.9. The random mapping A: X — Y is a Gaussian random separable
operator if and only if A can be represented in the form

Az(w) = Z vy (w) B x (2-7)
where ( Bn ) is a sequence in L(X, Y ), (y_ ) is a sequence of real-valued indepen-
d-nt standard Gaussian r. v.’ s. The series (2-7) is a.s. convergent in ¥,

This representation of A is called the spectral decompos1tmn of A. The
sequence (B ) is called the spectrum of A.

Proof Let A be a (Gaussian separable random operator with the covariance
operator R. We have the factorization R = 7*T where T': X @ I’ — H ;, H4
is separable. Take an orthogonal basis in /I,

6y = Yp(0) n=1 2
i‘epl'esenting a sequence of real-valued independent standard Gaussian r. v'. s
Put B, =T%e .« L(X,Y, Foreachx e X, y € Y’ we have :
(Az, y) =T(z @ y) =2 (T(x @ y). e, ) e =
Z(Te,x®yde, =X (B z,y)vy,

where the series converges in L2 hence in distribution. Thus

Ax(w) = Z v _(w) B, x for almost erery w by Ito-Nisio’s Theorem.

Conversely, if (B ) is a sequence in I(X, Y) and (v,) is a sequence of real-

valued independent Gaussian r.o». 's such that for each x & X the series
Z v, B, # is a.s. convergent in Y then by using the Banach-Steinhaus Theo-

remm for random operators ({8]), it is easy to see that the 1andom mapping
A: X - Y given by.
Az =2y B =

is a Gaussian separable random operator.
Remark. If N is the set of all w such that the series (2-7) does not converge
to Ax(w), then the set on which the convergence fails for at least one x € X is
N = v Nx, an uncountable union of sets of probability 0, and therefore not

r€X
necessarily of probability 0. As we shall see Jater (Proposition 3-4) ihe assertion
that for w outside a set of probability 0 the series {2-7) converges to Ax{w) for
all x € X holds if and only if A is decomposable.

{118 TEP — DECOMPOSABILITY OF GAUSSIAY RANDOM OPERATORS

Recall that a linear operator u: X— Y is said to be p-summing {0 = p < o)
if there exists a constant C soch that

Zluz, 1P < CP sup {Z|(x,, x7)]P} (3-1)

fl 1
for any finite sequence (xn) in X. Alternatively, # is p-summing if and only if
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Zftuz, [| P < oo for each sequence (z ) < X such that Z{(x , )P < o for all
e X' ,

The minimal C for which the inequality (3-1) holds is denoted by =, (u). The
class of all p-summing operators from X inoto Y is denoted by 7, (X, Y)
Ty (X, Yy is a Banach space equipped with the norm [ ull = np(u): I
0 < p << qthen ‘

z, X, Y) < T X Y)

One often refers to a linear continuous operator u from X into Y as an o —
summing operator.

DEFINITION 3— 1. A random operator A from X into Y is said to be T, dec-
omposable (0 < p < o) if there exists an 7 (X, Y) —valued r.v. B such that

Az (w) = B (0)x for each z ¢ X and for almost every o. Instead of saying
that A is 7., — decomposable, we say that A is decomposable.

PROPOSITION 3. 2. For each T, - decomposable Gaussian random operator
A, the decomposing random variable B must be Gaussian. To prove the Propo-
sition 3. 2, we need the following

LEMMA 3.1 Suppoée that E is.a Banach space and M is a linear subspace of E’
such that, for all x ¢ E, _

(@,2) = 0 forallz’ e M implies x = 0. T (3-2)

Then an E - valued r. v. B is Gaussian if forall x’ e M, (B, x’)is Gaussiarn.

Proof of Lemma 3. 1. We observe that M is dense in £’ for the weak topo-
logy o (E’, E) on E'. Indeed, suppose in the contrary that ¥ # E'. When F’
is equipped with the weak topology. E can be regarded as the dual of E’. By the
Hahn-Banach Theorem thero exists @ € E, > 0, such that (z, ) =0 for all

x ¢ M. In view of (3—2)it follows that x = 0. A contradiction, Now let x* be
an arbitrary clement of E’ . We have o show that (B, x") is Gaussian. Because

M is dense in E’ there exists a sequence (x I’l) iz M such that (z, a:l:) converges to
(x, z’) for all x € E. From this (B (w),‘ m;) converges to (B (w), ') for all w,

As (B (w), x])is Gaussian,(B (» ), ®) is Gaussian.

Proof of proposition 3. 2. It is clear that every tensor 0 & X ® Y’ defines a
linear continuous form on T, (X,Y), name ly a — (u, 8). Moreover, (u, 6) =0

for all9 ¢ X ® Y implies u = 0. On the other hand, for each o
§ = Xz, @y, (B, 8y = Z(B T, Y, ) = E(Aa:i ) Y ). Since A is Gaussian, (B, 6)is

Gaussian. It then suffices to apply the above lemma.
THEOREM 3. 3 Let A be a Gaussian separable random operator with the spectral
decom position : : - '
' Ar =2y B x
n n
Then A is T, — decomposable (0 < p <o) if andonly if the sequence (B )
be longs {0 T (X, ¥) and lhe series 2 x B isa.s. convergent in Ty (X,Y).
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Proof. The necessity: Suppose that A is'np-decomposable. By definition there
exisls an np(X,Y)—va_Iued r. v. B such that Ax (w) = B{w)x for each x€ X and for

almost every » By Proposition 3.2 Bis Gaussian. Let R be the covariance ope-

ratorof B. It is known [9] that B has the factorization B — T*T where T : Tp
(X,Yy — H and H is the closed subspace of Lzspanﬁed by Gaussian r.v.s. (B, o),
u e . (¥,Y). When proving Proposition 3.2 we have seen that H is precisely

HA.'.[‘he sequence (v ) represents an orthogornal basis in H,.1t is known (1]

lhatthe series 27 T*y  is a.s. convergent in 7t (Y,¥).Now our assertion will

follow if we show that Bn = ﬂf‘* Yo Indeed, foreachxz e X and y € ¥’ we have

Ty, (x),y)—(f?v r®Y) =(v,» Tz Q) = (v, B,z @ 1))
(v, (Bz, 1)) = (v, (42, o = v, % B2 §) v,)=(B,% Y

Consequently, B = T*'Yn' ag desired,

Conversely, soppose that the series 2y B, is a. s. convergent in TCP(X,Y).
Set B=Zy, B .Bisan %, (X,Y)-valued r.v. and for each x €X we have

B(w)r = Zvy (w)B x for almostevery w.
So
B(w)x = Az(w) for almost every w,
i.e A.is T, -decomosable,

PROPOSITION 3. 4 Let A be a Gaussian separable random operator with the
spectral decomposition (2—7). Then A is decomposable if and only if there exists
set N of probability O such that if » ¢ N then the series

Zy(w)B x
is convergent in Y for all x € X. :

Proof. Suppose that Ais decomposable. From Theorem 3.3 it follows that there
exists an L(X,Y)-valued r.v. B and a set of probability O such that if w ¢ N then

B(w)=Zv (0)B in LX) s
Therefore, forallz e X and 0 § N we have
B(w)r = Z'y (w)B x
Conversely, for each w ¢ NV we defire a mapping B(w): X—>Y
by Blw)x = Z v, (co)B x.
The Banach-Steinhaus Theorem shows that B(m) e L(X,Y). Thus we have
an L(X,Y)-valued r.v. B such that
B(w)r = %y (w) B x for almosl: every w
So B(w)xr = Ax(w) for almosl every w,
i. e, A is decomposable.
The following resuit is basis



. THEOREM 3.5. Let A and A be lwo Gaussian separablerandom operaiors with
the covariance operalors R and IR, respeclively. Suppose that forallte X ® Y’
(B8, ) << (f8,8) and A is T, —decomposable (0 < p < o) '

Then 4, is also ,Lp—decomposable.
We beain with the following

LEMMA. Let R be he covariance operator of the Gaussian separable random
operator A. Then we have
(RO, 0) =2 | (B, 0)|?>
where (B ) is the speciral sequence of A.

Proof .LetT : X®Y'—>H , be the square root of R and (y, ) —an orthogonal
hasm in H . We have

To = 3(T8 v,) v, = Z(T* v,, v,
We have seen that (Theorem 2.9) B = T™* Y- From this we get (R ¢, 8) =
= [[Tol2 =2 {{T*Y,,, 0 12=Z2 (B ,8)|2%
- Proof of.Theorem 3.5. We shall split the proof into two steps,

Step. 1. Suppose that (R 0, 6) = (R6, 6) forall 6 ¢ X ®@Y" Let (B,) and
(Bi) be two spectral sequences of A and A, respectively. By the above lemma
we have ’

(Ro8) =2 (B, )P = (R, 0,0)= X1 (B, 0) | (8.3
At first we show that Bi s T, X, Y)(n=1, 2,...) Suppose that Ais np-—-decoxm
posable by T, (X, Yy valued r.v. B. Then for each6e X @ Y’ the ro. (B. 6) is

Gaussian wrth variance (Rf, 6). Hence for each p > 0 there exists a constant
CP such that

[(R 6,0){P2 = €, 8 (B(w), 8) |P.P(dw).
Q
In view of (3—3) we have’

(B % 9 <(R(z@y) =8 J>P/‘°’— C, §1(B(w)a )’ P(dw) <
o Iyl § 1 B(w)xi? P(dw).

Hence _
BRI, [ Be) |’ P(d)
For any finite sequence (z,) in © we have

SUBz 17 <C 8 Z1Bwz, |P P(do) <

G, 81 B 1P sup {21 (x,, @) | P} Plde) = C C sup {21 @, @) | }, where
= || <1 e | <1
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C = §[IB)? P(d») << o (since B is Gaussiaa). Consequently, B is p-sum-
ming.

Letd () =2y, o ix be the spectral decomposition of A,. Consider the

series Ty (W)Bi: in np(X, Y). For each 8 X @Y’ we have
E ex (g (w)Bl 8) = E ex gl 7, {w) (BI 8) = exp {—_1. %[(BZ R
P2y B, 8 = 15 "x’kr I 3 w0 12}

converging to exp {— —;—- s (Bi, 012} =rcxp {— % (R9, 8) } = Eexp {i{B, 0)}.
By using the fact that X @ 1" is a total linear sabspace of the dual -xp(X, Yy

and the same argument asinthe proof of the Ito-Nisio theorem we find m:p(X, )
valued r.v. s such that
(S 8y =T y () (B , 0) P—a.s,

foreachte Y @ V°
In particular, taking 6 = x @ y we get
(8() yy) = Zy () (B,x,y) = (Ax(w),y) for almost every o. From this it follows
that .
Ay #(w) = S(w)x for almost every w, i e. A, is xp—-decomposable.'

Step 2. Suppose that (R ,8, 8) < (R, 0) for all 6, Put R, = R — R,. By using
Theorem 2. 4 it is easy to show that R, is a covariance operator of some Gaus-

sian separable random operator, say A,. By the above lemma we have
| 1 2
(R, 0y =31(Bl 0|7, (R,00) =3 (B, 0|

where (Bi) and (B':i) are lwo spectral sequences of A4, and 4, , respectively.
Setting

¢, _,=B.,c, =B (3 —4)

2n—1 2n

we have

2 (3 —5)

(B8, 0) = (R, 8) + (R, 8)=Z | (C_, 0|
Now let us consider the spectral decomposition of 4
Ax = Xq!n(w) Bn:!:

and the series
Zy (w) C =
For each ¥ € Y’ we hLave
n R it
Eexp {(Zy (@) C z, y)} = exp {— }2— Zi(C % y) | 9} converging to
| 1= 1 .
exp {—5 £ 1(C,m 1) | °} = exp {— (R (= @ y), = @ p} = Eexp {i (4z, n)}

8



By the Ito — Nisio theorem we conclude that the series Zy (w) G x converges
a.s. in Y for each z € X, Set

Az (@y=31_(Cz-

A is a Gaussian separable random operator. By lemma and (3 —5) we get
(Ro, 8 = (B9, 6)
where R is the covariance operator of 4.

From step 1 it follows that A is ™, decomposable. Hence, by Theorem 3. 3 the
series 27 (w) C, isas convergent in 7 (X, Y). For any bounded sequence of
real numbers ({;) the series Zt, v (w) C, is also a.s. convergent in T, X, Y),
If we put
f?n—-.1= 1, ii’n =0 Tn = T?n—-I ,
then by (3 —4) the series Z?n Bfl is a.s, convergent in T X, ¥)a
Put ' :
o A z(w) = T v,(@) Bz
21 is T, -decomposable and we have
(Ry0, ) = T1(BL, 0) = (R0, 0)
From step 1 it follows that A, is 7 p-decc)mpo:able. The proof of the Theorem
is thus complete,

COROLLARY 3.6. Let A and B be two independent Gaussian separablé random
operators with the expectation operators zerc. If A+ B is Ty -decomposable

then. both A and B are T -decomposable.
In the sequel we shell find conditions on the covariance operator R such
that the corresponding Gaussian random operator A in® -decomposable.
DEFINITION 3.7 Let Z be a Banach space. A Tinear operator T from X ® ¥’
into Z is said to be (7, ‘TL'P) -summing (0 < T < o, 0 < p < o) if for each
sequence (8, ) in X @ Y’ such that T [ 1,8 )| T < o forall ue =, (X,¥) we

nave 2176, 7 =< oo EquiValehtly, T is (r, TCP) - 'summing if and omnly if there
exists a constant € such that

BITe, 1T < C oup{Zicme)’}

fell< 1

)
r

for any finite sequence (8_ ) in X ® Y. Because of T, X, Ty (X,Y) when-
ever p < ¢, the (1, T, }- summing operators are (r, 7rq) -summing if p < ¢q.

As we shall see later, the converse is not generally true, unless Y is finite —
dimensional, }
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By the same argument as in the proof of Pietschs theorem we get
THEOREM 3.8 A continuous linear operatorT: X @Y — Zis(r, 5 ») - summing

if and only if there exists a finile measure W on the unit ball Iy of %, (X,Y)
such that _

1Toef” SQS [ (u, 017 W(du)
foralloe X @Y Y

THEOREM 3.0 Let A be a Gaussian random operator from X into Y wiih the
covariance operator R, If A is T decomposable then the operator T == JR|

is (r, T, ) -summing for all r > 0.

Proof Suppose that A is T -decomposable by an Ty (X,Y) -valued r.v. B,
Then for each 8 € X @ Y' the rwv. { B, 8} is Gaussian with variance ( R 6,6),
Hence for each r = 0 there cxisis a constant Cr such that

WT 01" =C, § 1<Bw), o)l Pldo)

For each finite sequence (8.} in X ® Y’ we have

S To, I =C \Z[(Bw),o, N Pde)=

oo ={ B [ o

C, f | B (v) {|F P(dw)} { sup Z [u, 6. N b= C.Csup w8 ar
Nuii<< 1 i< 1
where C = [ || B(w) |7 P(dw) << o= (since B is (Gaussian).
Thus T is (r, T, )-summing
THEOREM 3. 10. Suppose that T, (X, Y) is of iype 2. Then a Gaussian separable
random operaior A:X — Y is ‘;cp —decomposable if and only if the operator
T =VR is(2 Tp J)-summing, where R (s the covpariance operator of A.

Proof. By Theorem 3. 9 if remains to prove the «if » part. Assume that
T is (2, np)-summing. By Theorem 3.8 there exists a finite measure X on

the unit ball I/ of T (X, Y) such that

T8 < 5 K u, 0) p (du), (3-6)

Since T, (X, ¥Y) is of type 2 hy a resuit in [4], there exists an
1)

(==
u,
forall w' e TCP(X, Y).  Taking 8 = u’ we get

Eexp {7 (B, 8 )} = exp }—--;— S (u, B)’z w(du) { -7
U

WP(X, Y)-valued Gaussian r. v, B such that

Eexp{i(B,u )} = exp ?-—-;—-g

L(du) f

il



Let A be the Gaussian random operator generated by B, .. e

Az(w) = Do)z
From (3-7) we have '

(E 8, 0) = {|(u, #* K (du), where R is the covariance operalor of A
U :

From (3 —6) we get (R8,0) <(R 6, 6. By Theorem 3. 5 we conclude
that 4 is n.p-decomp sable.

 THEOREM 3: 11. Suppose thal 7t (X Y) is of cotype 2. Then a Gauss:an separable
random operalor A: X — Y zs-n: -decomposable if and only if the transpose T*
of T.= R is an 2-sumining operator from H, into T, (X,Y), where R is
the covariance operator of A.
Proof Suppose that A is Jtp-decomposahle; Thenthere exisls an r.P(X,Y)—
valued Gaussian r.v. B such that
dx(w) = Blw)x for almost every w

Let R: T (X,Y) —~ T, (X,Y) be the covariance operator of B. R has the factori.
zation B=T*T where T: rcp(X,Y)’-—r’ HA (see the proof of Theorem 3.3). Since
™, (X,Y)is of cotype 2 by the result of [1], the 6perat6r T H, —~ Ty (X,Y) is

9-summing. Now our zssertion will follow if we show that T* = T, Indeed for
each he H,, zeXand yel’ we have

e (x),y) = Tha@ =T (2 ®y) )= (L, (B.x2 1))
= (b (Bo}) = (b (42.9)) = (b T@ © y ) =(T*h, = @y)
= T*(h(x), Y)-
Hernce T* = T* as desired, _
Conversely, assume that T%: IIA - &rp(X, Y) is 2-summing. In view of the
Schwarlz Radonification theorem {6] !t = T*(y,)isa Radon measure on rcp(X, ),
where vy, is the Gaussian cylindrical measure on HA with the charagleristic

. — A2 ‘es ~
functicn exp ;—%—H— f The characteristic function p is equal to

W)= expl—— | @y 1F @ & 7 (X))

wiere (T%)*: WP(X,Y)' — E{%1 .

For each I & HA andf € X ® Y’ We have
((T#y* 8, By = (9, T*hy= (T 0, k)

which shows that (T*)*8 == T8, Hence .

By = exp}———— 112T9 H _2 {



f'or cach 8 ¢ X® Y’ we have

n . n
Eexp(Zy ()8, 0= exp; ——-ém Z|{ By, B)]giconverging to

exp —-_12-—-D§](Bn.8>|2%=exp’——;— ||Teu2f=’ﬁ(ﬂ).

where (B ) is the spectral sequence of A.

By the same argument as in proving Step 1 of Theorem 3.5 we conclude that A
ise ﬁp-decomposable.

Remark. Let us observe that the ¢if » part is always true wnhout any additional
agsumption on = (}x Y.

Theorems 3. 10 and 3.11 lead us to the question of which Banach spaces X
and Y have the property that = (X,Y) is of type 2 or is of cotype 2,

THEOREM 3.12. Let H be a Hitberl space, Then
1) 7o (X.H) is of {ype 2 if X is the dual of a Banach space of type 2
2) Ty (H,Y) is of cotype 2 zf Y is of c:olype 2.

Proof 1) Assume that X=E’. LetAz(E H) denote the set of all operator. T
from E'into H for which the function

y = exp {— [ Ty?}

is a cheracterislic function of some E-valued Gaussmn r.o. X . Itis known [5)

that Az(E H) is a Banach space equipped with the norm,
"2 g 2
N7, = EnXpus
The correspondence T — X, is an isometry of 4,(E’, H) into L, (E)
© When E is of type 2, it is known [1] that Ao (B, H) = -:2 (E’, H), Hence
there exist two constants C; and C, such that’ ‘
GITYE < ITH7 <G UTH?
Let r , Iy e be the Rademacher sequence on the probablluy space ([0, 1], ‘B, dt)
and let T, Ty, T be a fm1te sequence in AQ(E II) lhen
i L . 1
nZTr(z)n? df = SE”ZXT ro(t))edt =
-on

(]

[ I B

1 ‘
ESHEX P (DIF U< KE{Z) X, 1% =K 217,02,
o _ ) _ . . .
The last inequality used tne fact that E is of type 2.

Hence 4,(E’, H) 1s of type 2 so is w,(E", H)
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9) Suppose Y is of cotype 2. Then by the results of [1} T & m,(H, Y)if and
only if 7% € A, (Y, H) and we have the conslanis C,, C, such that @
® Cg;[T*IQ <15T1'.2 CIIT*H?
Let T, Tyseiy T bea fmlte sequence in 7, (I, 1) ‘Then
1 1 ‘ T
S!I LT r (t) uftz dt > CQS |2 Tﬁrrn(i) ;|i2dt= |
0

o
1 1

C*?S ENE Xper, (1) I* di = cgES 12 Xpur, (11 dt >
0 bt _

CQCE{EIIXT,;"%} = C,CZ| T% ufm>c1—10 C 2T, 02

This proves that n,(H, Y) is of cotype 2.

PROPOSITION. 3. 13 Let X, Y be two separable Hilbert spaces and A : X — Ya {
Gau.man separable random operator. Then the following assertions are equivalent
1) Ais T, — decomposabie for 0 < p <t oo

2) Ais m, — decomposable,

3)22(3(8 ®f;)e; ®F; )<°o
Joi
4)22!]3 e; [| % < o,
Ji
Here R is the covariance operaior of A, ( B, ) isthe s pectral sequence of A and

(¢; » (fj) are the basises in X, Y, respectively.
Proof 1) «» 2 is trivial because all the classes & ’ (X, Y) coincide (0<<p<Tee).
2y — 3): By\:'Theorem 3.10 the operator T = yR is (2, %, )—summing. For
eachus TCZ(X, Y) we have

SE | (e, @ f; ) E =22 | (ue, f, 32 =2 | e, |2 <on,
: ' ij i 3
So : _
SE(R(e,® f; ), e, @ f;) =ZEIT(e,®F,) | 2L oo,
3) — 4): It is not difficult to check that
IZ| B, e, | = 2% (R(e, ® fj), e, ® f;).

4) > 2): We hare 3} B, ||2 ~22;; e ]2 < o

A

Because 7, (X, Y) is a Hilbert space 1t follows that the series £ y, B, is a.s.
convergent in 7, (X, Y). By Theorem 3.3 4 is my —decomposable.

Finally, we give an example showing that there exists an (r, %) —summing
operator which is not (1, rcp) ~—summing for p <C oo, .
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Let H be a Hilbert space with the basis (e, ) and (s ) beasequence of num-
bers such that sup | s [ <o

We define a Gaussian separable random operater 4 from H into H by
means of,

Ax(w) = Z(x, en) e, S, 'Yn(“’)

By Proposition 3.13 4 is Ty -decomposable (p < o) if and only if,

I 2 __. 2
;Ejil Bie <= 2Zls,|"< oo (3—8)
On the other hand, as shown in [8], A is decomposable if and only if.
Z exp }FI 5 < oo for some { >0, (3—9)
Spl

So if the sequence (s, ) is chosen such that (3—9) holds but (3—8) fails then
by Theorem 3.10 and Theorem 3.9 the operator 7'= YVR:H@H -~ Lyis (r, m,)

summing but not (1, wp)- samming (p < oo).
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