: ACTA MATHEMATICA VIETNAMICA. . o
Vol 13 : . Mo 1¢1988)

 DECOMPOSITIONS AND LIMITS FOR MARTINGALE-LIKE
SEQUENCES IN BANACH SPACES ‘
' DINH QUANG LUU

0. INTRODUCYION .

The notion of games which become fairer with time .(éee 'defini't.idn in the
next section) was first introduced by Blake (1970) who proved that every
real-valued game which becomes fairer with time (X ), (:_o'nvei'ges in L7 , pro-

vided | Xn | =X a. e, forsome X e_LE and for all n € N. Three ycai‘s later,

Mucei (1973) and Subramanian (1973) extended (independently) the above-men-
tioned result to the real-valued uniformly integrable case. In the present note

we prove first that every L7 -bounded real-valued game fairer with time con=
verges in probability, using the structure results of Talagrand (1985) [or mar-

tingales in the limit, Furtiber, Neven (1972) proved that every L1 .bounded
Banach space-valued martingale converges (strongly) to zero a.e.if it converges
scalarly to zero a. e, In this note we extend also this wellknown result of Neveu
to Banach space-valued games which ‘become fairer with time. Finally, using
this extension and the structure resuits of Talagrand (1985) we show that every
11 bounded Banach space-valued game fairer with time (X )can be written in
aunique form: X =M _+P ., where (M) is a uniformly integrable martin-
gale and (P ) is a game fairer with time that goes to zero in’ probability. Hence,

‘every such g game fairer with time taking values in a Banach space having the
Radon-Nikodym property, converges in probability, Thus, the main convergence
problem for games which become fairer with time is solved. ‘

1. DEFINITIONS AND PR_ELIMINARIES

. ‘Throughout this paper, let (Q, -4, P) be a complete probal?ility 'sp:ace,. (aeﬁn)
an increasing sequence of sub-o-fields of o4, E a real separable Banach space

and F# the topological dual of F. As usual, Lli? denotes the, Be{pacb space of all
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(equivalence classes of) -4 — measurable functionsX :'Q — F such that
E(HXH)_:A | X[ dP < ee.

All sequences (Xn), considered in this paper are assumed to be adapted to

(ain), i. e, X s o4, — measurable for any n.

A sequence (Xn) is said to be a martingale, if Xn(m)=Xn(m =nc
€ N), where X (m) denotes the -4 — conditional expectation of X (cf. [7]).

It is clear that every martingale (X)) is a mil, 1. e.

Y 3¥@=mP (sup IX, @) —X II>w)<Te. - (LD
E > pn _q‘—-.n

The above-mentioned concept has been recently introduced by Talagrand
[9], in which the following results are proved.

THEOREM 1. ([9), Theorem & Everg real- valued mil (X )w:th lim_inf
E(IX 1) < oaconvergesa e.

THEOREM 1.2. (19], Theorem 6). Let (X o) be anE valued sz with lim i, f
E(px 'ﬂ) << oo, Suppose that (X ) converges scalarly 1o zero a.e. that is fu
each x* € F* the sequence (.r* (X0 converges to " zero a.e. Then (X ) converges
(strongly) to zero a.e. C

THEOREM 1.3 ([9], Theorem 8). Let (X)) be an E-palued mil with lim inf
E(II X 11} < oo, Then there exisls a unique decomposition: X - M 4P where

M) isan L’.' bounded martingale and (P_ ) is a mil that goes to zero a. e.

Let us remark that the proof of the above Theorem 8 in [9] could be
improved as follows :

a) The function g — EY h, defined in the proof of Theorem 8 (9] is not -

"suitable, It should be replaced by the same function A. This replacement is essen-
tial, since the inequality «fi = g a. e. », used in the proof is not true even in

* the real-valued case. This inequality should be thusreplaced by « fi:/: ha. ey,

b) The martingale (M )ié indeed uniformly integrable since Talagrand

‘proved that for each g € N we have i M Il = E7(h) a. e. This observation is
esscntial for the proof of the uniqueness of tie decomposition for games which
become fairer wilii time in the next section.
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2. DECOMPOSITIONS AND LIMITS FOR GAMES WHICH BECOME FAIRER WITH TIME

DEFINITION 2. 1 (see, [1, 2,3]). A sequence (Xn) in L; is said to be a game

which becomes fairer with time, if

P
X, (m)—X ) — 0as m = n — oo, L&,
v 3 ¥ PUIX, m—X I =)<= @.1)

£=0 p m=n=p

Clearly, by (1.1} and (2.1), every mil is a game which becomes fairer with
time.

Now, let (Xn) be a real—valued sequence such that

a) (X ) converges in L,
b} (X ) does not converge a. e,

Then by (a), (Xn) is a game which becomes fairer with time. On the other

hand, by (a — b) it follows from Theorem 1. 1 that(X )can not be a mil.

The main purpose of this note is to establish some decomposition and limit
theorems for F—valucd games which become fairer with time, using the struc-
ture results of Talagrand [9] mentioned in the previous section. The following
lemma is the main tool which will be frequently needed in the sequel.

LEMMA 2. 1. If (X)) isan F-valued game which becomes fairer with time, then

X)) conlains a subsequence (Xnk) which is a mil,

Proof. Let (X ) be as in the lemma Then by Definition 2. 1, we have

¥ . g ¥ POIX, (m — X, > 25 <2k @2.2)
Eon nZ=ny k k ' '
We shall show that the subsequence (XI1 ) is a mil. Indeed, let ¢ > 0 be given.
X ‘

Choose p € N such that 9—pFl < ¢ Then for all k = p, by 2. 2) it follows

that
P( su X myY—X_ {f=>¢)
k
=3 P(IX, () — X, =9
g=p 7 q

k :
=3 P(JX_ (a,)—X, |> 2—9)
q=p q g
k o
=3 9270=<3 279=2"P <o

. qg=p q=p
Thus by Definition 1. 1, (X, )isa mil which completes the proof of the lemma.
k
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THEOREM 2 -3+ Let _(X. ) be an LI .-bounded real-valued , game which becones
P
fazrer wzth iune Then there isanXe L suciz that X — X as n— oo,

Proof Let (X } be an Lt hounded game which becomes falrer w1th time
To prove the theorem, it suffices to show that every subsequence of (X, ) con-

fains a subsequence which converges z.e. For thxs purpose, let (X, ) be a
subsequence of (X ). It is clear that(X )1s 1tselfa game ~which becomes

fairer with time. ,,Thus.--by_‘Lemme 2.2, lt‘follo_ws that there existsa subsequence
(n 1) of (m k) such that (X‘"k) is a mil. This fact together with Theorem 1.1 shows

that (X“k) must converge a.'e. The proof of the theorem is thus complete.
LEMMA 2. 4. Let (P, ) be an L? -bounded F-valued game which: 'béc'o}‘ﬁee ‘foire;'

wzth tune Sappose that for each a:* € F* P ) -_> 0 asn — oo Theu P Lo
as n —> oa,

Proof Let (P,) bé as’in the lemma.  Again, it suff'i’c"es to show that every
subsequence.of (P ) contains a suksequence’ which;.converges to zero a.‘e. For
thxs purpose, Iet (P ) be a snbsequence of (P ) Clearly (P ) is ltselfa game

whlch becomesfalrer w1th tlme. From th:s, lt follows by Lemma 2. 2 that 05 )
contains a subsequence’ (Pnj) which is-a mil; Consequenily, by the hypothesis of

the lemma and Theorem 1. 1 we have x'v'e(P; y =0 aj'e. as k<> o<, Hence, by
k

Theorem 1. 2, P‘ "'_; 0a c.as k> o Hence, P_ 5 0as n— oo and the
lemma is proved.

We are now in a position to prove a decomposition theorem for games
fairer w1th time which’is the main result of the paper.

+ ‘THEOREM 2.5+ Let (X ) be an L -bounded F-palued game which becomes fairer

with time, Then there exisls a unique decomposztlon X, =M - P, where
(M ) is a uniformly integrable mariingale and (P ) is a game fazrer wtt]z fime
that goes to zero in probability.

Proof. Let (X ) be as in the theorem. By Lemma 2.2, it follows that there
exisis a subseqnence (X”k) of (Xn) which ‘is a mil. Thus by The orem 1.3 and
the remark about this theorem, (X' ) can be ‘wrilten inla nn'ique form:
X =AM —|—P o where (M ) is a unltormly mtecsrable martmgale and

k
(P )15 2 mll that goes [o ze.ro a, e, Hence (X ) can be also Wntten ina iorm
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Xn"'—' M+ P, where (M) is the unifbrmly 'inte'graf)ie thartiﬂgale:%hiéh is
defined in the natural way by the uniformly integrable martingale (M ) and
7, )contams the subsequence (P ) which has been just proved io be a mil
converging to zero a.e. The main part of the proof is devoted to show ‘that
(P ) is a probability potential, i.e. (P ) goes-to zeroin probability, To do this
let 2 € E*.Then by Theorem 2.3 .it follows that(x*(x )) converaes in tha'

b!hty to some function x= € LR Hence the unli'ormly 1nteglabie martingale

(z* (M, )) converges to X% ae. and in LT since the mil (z* (P )) converges
to zero a.e. Eurther since (M }is a umformly mteorable martmcale, we mfer

that (z* (Mn)) must eonverge 1tself to X=* a.e. and in L1, This" implies - that
(z* (P,)) converges to zero in probability since X =M 4 P (a € ¥) and
(z* (X)) converges to x= in probability. On the other hand, (P 2 is also a

game which becomes falirer with time such that sup E ([P, [|) < oo, 80 by
Lemma 2.4, (P ) converges to zero in probablllty This proves the existence of

the decomposition given in the theorem. Thus it remains to prove only that the
decomposition is unique. ‘This fact depends on our remark about Theorem 1.3.
Namely, since the martingale (M ) is umformlv 1ntegrable and P ) is a

prohah:lny potential 50 such a decomposmon 13 always unique. Thus the
theorem is completely proved. . _ _
COROLLARY 2. 6+ Let (X)) be a unif ormly mtegrable sequence in L Then the

fol[owmg condztlons are equivalent : o
@) (X ) is a game which becomes fairer with time, .

b) (X)) has a Riesz decomposition: X =M —{—P where (M ) is a martmgale

and (P) isan L} — potential, Le. lim E(|| P ) =0.

n

ol

©) (X L) is an L1 - amart, i e.
E(lX(m) X||)—>0asm%n—»oo.

" Proof . (¢ — a) follows from the same definitions. (¢ — b) is an easy ¢onse-
quence of the theorem. Finally, (b—-»c) has been recently proved by the author
[5] even for-the: multivalued caze. . ‘ A .

CO..OLLARY 2. 7. Let F be a Banach space with the Radon—Nz'kodym pro-

perty and (X ) be an F — valued LY — bounded game which becomes fairer

with lime. Then (X ) converges in probability lo some X e Lfg..

Clearly, Proposition 2 [6] and Theorem 2. 1 [8] are easy consequences of
the real—valued version of the latter Corollary.

5.
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Remark 2. 8. The Talagrand structure method used in [9] suggests a pew
simple proof of the Chatterji's martingale limit Llheorem [4]. Indeed, let

F be a Banach space with the Radon-Nikedym property and (X o) be an i

bounded F—valued martingale. Then it follows from Theorem 1. 3 ant
the remark about this theorem that (X ) fcan be writien in a unique form:

X =M, 4 P, where (M) is a-uniformly integrable martingale and (P ) goes
to zero a. e. Further, a much more simpler proof given in [4, 7] shows that as
a uniformly integrable martingale in a Banach space with the Radon—Nikodym
property, (M ) must be a regular martingale which converges in particular, a.e.
hence so does the martingale (X ). This completes the proof of the Chatterji’s
martingale limit theorem given in [4].

Acknowledgment. The anthor would like to express his thanks to the referee
for several useful improvements.
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