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PARTIALLY ORDERED SETS OF SEQUENCES AND THE
BEELATED BOOLEAN ALGEGRAS

ALEXANDER ABIAN

In this paper we consider partially ordered sets such as (S, =) where S is
a set of sequences (i. e., functions defined on finite or inflinite ordinals) and
where for every elemeat x and y of S we define z =t y if and only if xis a
(physical) extension of y(including the trivial extension of remaining indentical).
We prove that of every such (S, =) there exists a suprema preserving ismor-
phism from (S, =) into a complete Boolean algehra (¢, S) which also preserves
the infima of finite subsets of S. In many instances this embedding enables
passing from Forcing to Boolean-valued techmiques.

In what follows by a sequence we mean a function defined on a (finite or
infinite) ordinal which also determines the type of the sequence. Thus, a se-
quence defined on an ordinal & is of type k and can be visualized as a k-taple of
symbols, For instance, (a, b, b) is a sequence of type 3, whereas (b,c,c e,y )
is a sequence of type w - 2.

We say thal a sequence x is an exfension of the sequence y if and only if
y is an initial segment of x or y = a. Thus, (a, b, a) is an extension of itself as
well as of (g, b). On the other hand, neither of (¢, b) and (a, m) is an extension
of the other.

For every sequence x and y we define x = y as:

(1) = y if and only if z is an extension of y

If (1) bolds and = » y then we write © < y and we say that x is a proper
exlension of y. :

Let § be any set of sequences (not necessarily all of the same type). Then
it can be readily veritied that (S, =) is a partially ordered set. Thus, we may
use the usual terminology. Accordingly, since (a, b, a) = (a, b, @) we say that
(a, b, a) is less than or equal (in fact, equal) to (a, b, @). Again, since
(@, ¢ ¢, d,...) < (& c) we say that (g, ¢, ¢, d,...) is strictly less than (aq, ¢). Also,
since (b, b, m,...) &£ (b, @, m,..) and (b, a, m,..) & (b, b, m,...) we say that
(b, b, m,...) and (b, @, m,...) are uncomparable (i. e., not comparable),

This work is partly supported by the Iowa state University SHRIL

63



In waat roliows we always let (S ==} b: a partiaily ordered set of saq.ences
and we let bl be defmed as:
) N $;=8§— {max(%, _u)}
Clearly, it (8, =) has no maximum then §; == S.

We define a mapping 2 from S into the powerset (i.e., the set of all subsets)
P{5) of S as follows:
(3} h(x)={y|y < x ory and « are uncomparable}

Thus, 5= {@, 7,8) BT Ty ek B Y1 (B, T, 7% (B Ty Vs Vyoot)} and if we
let a = (Bs 7,5 B, b= B T Ty o), €= (B; ) d= (Br T:T)’ e=={B, ¥, 7, V,..) then
aceording to (2) we have:

S={a, b, ¢, d, e} and $; = {a, b, d, e}
and according to (3) we have:

My = {b, d, e}, h(d) = {a, e}, h(c)= {a, b, d, ¢}, Id) = {q, b, ¢},
h (e) = {a, b}
wh ¢h, as expected, is a mapping from S into P .

Clearly, from 3 it tollmw. readlly that for every elnment x and y of é wa
have:

@ geh@ifadonlyif y=z . -
Also, we remark that in (S, =) Iwo elements have a lower hound if and
only if they are .comparable (and therefore, in (S, =) simply ordered subsets

only may. have lower bounds) from whlcb it can be shown easﬂ) that {§, =) is
a distributive partially ordered set. ‘

It s well known that (P(S,), <) is a complete Boolean algebra (i.c., a
‘complemented distributive complete partlally ordered sef). _
' THEOREM. Le! (S, 5) be a partially ordered set of sequences and (P (Sp), C)
be. thecomplete Boolean algebra of all subsels of S, Then the mapping h das given
by- (3) is one:lo-one from S into P (S,)such that Iz preserves comparability and

the existing teasl upp>r bounds of subsets of 8 and the existing grealest lower
bounds of finite subsels of 8, i.e., for every elemenl sequence)x and y of S,

(B) h(xy =h (y) if and only if x =y

6yx=yifand onty if h' (x)S A (y)

and for every subset E of §

(7) ho(lub E) = (J (R [E]) whenever the left side of the equalily exists

(&) h (ylb Ey = ) (h|E}) whenever the left side of the inclusion exisis

{9 h{glb E) = ﬂ {(h [E]) whenever the left side of ihe equality exists and E is a
T [iniie subsef of §.

_ Pmof "‘o proxe (5), let us observe that h (z) = h (i) if and Only lf for
every ¥ € § it is the case that z § h(x)if and only if z ¢ & (y), and by (4), it is
the case that £ = x if and only if z > y, and therefore if and only if z = y.

' To prove (b) let us observe that x* = y if and only it for every z ¢ S it is
the case that z = y implies z = x, and by (4), if and only if z ¢ & (y)i mplies
z § h {x}), and thf;leiom if and only if A (x) S A (y). "
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To prove (7), we siow thal = ¢ A(lub E) if and only if x ¢ i(1p for every y ek,
But z ¢ i (lub E) by (4), if and only if @ = lub E, and therefore if and only
if x; gy for every y & E, and again by (4), if and only if » ¢ h(y) for every
yek.

To prove (8), we show that x ¢ h(glb E)if » ¢ h(y) for some y - E. But
if x ¢ h(y) for some y & [ thea by (4) we have 2 = y for some y € E and hence
x = glb E and therefore x ¢ h(glh E).

To prove (¥), as mentioned earlier, we observe that (S, =) is such that if
£ is a finite subset of S and glb £ exists then E is a (finite) simply ordered
subsel of 8 and (¢lb E) e E. But then (9) follows readily. .

Remark. In the existing literature (e. g., [2, p» 90]). a partially ordered set
such as (5, =) is nsnally embedded (since (S, =) is separative 2, p. 48]) in the
complete Boolean algebra (RO(S), <), where RO(S) is the set of all the regular
open sets of the topelogy defined on S by taking the sets [z] = {zlzeS and
z << g } for basic open sels (cf. [1], |3]). However, this embedding although
ordered preserving, does not preserve suprema and, in general, infima. For
instance, for every x and y of § it can be readily seen (cf. [3, p. 175]) that
[z} U [y] is a both open and closed set and yet it is not equal to [z V/ yl. Thus,
the embedding resulting from our Theorem, in the case of partially ordered
sets such as (S, =2), is far superior to the embeddings found in the exisling
literature.
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