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ON THE STATISTICAL ANALYSIS OF A RANDOM NUMBER
OF OBSERVATIONS

NGUYEN BAC VAN

1. INTRODUCTION

There exist many practical situations in which the observations are made
atrandom times, and the number of these observations is random. For example,
rainfalls are observed at their random happening moments; and in a fixed time
interval, the number of observations, or that of rainfalls, is random. The [ollow-
ing model will be appropriate for such situations. '

Let (T , n >» 1) be a stricly increasing unbounded segquence of nonhegative
random variables, possibly taking infinite values. ' _

(T, n 2> 1) is called a simple point process (non-explosivé} on the exten-
ded real semiline. It generates a couating process (N, t > 0)by -

N{) =n it TH §i<Tn+1 :
Then lim N(f) =+ iff all terms T_ are finite.
{—¥rtoo n

Let (X _, n > 1) be a sequence of real-valued (for simplicity) random va-
riables. The double sequence (T» X,» 0 2>1) is callled a marked point process,
In a fixed observation interval [0, t], we get a sequenbe of mark observations
(X 1< N (1) : " _

On the basis of the data (1), we shall evaluate the commeon probability
distribution of the variables X, once they are identically distributed, and esti-
mate moments of this distribution.

Nolations and abbreviations: In the sequel, (Q, ¥, P) denotes the basic pro-
bability space, w element of Q, IA the indicator of a set 4, E or EP the expec-

fation with respect to the pronability .nzasure P, E(Y|Z) the conditional expec-
tation of ¥ given z, a. s, stands for ¢ al nost surely », P’ for «in probabilitys, Let
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the realisation of a relation R depends os the element w; lel A be the sel of
all eiements w at w‘nch fi is realized, A can belong to ¥ cr nct. Then R is said

to hold a, s. if A mciudes some almost sure event B i.e. A _) B B E F and
PB =1,

2. PROPOSITIONS

TEMMA 1. Consider tws real-valued random funciions (Y_,r € Q) (N(¥)
t € S), the second Q-valued ; Q and S are upper boundless sets in RI. Suppose that
Y-S Yar >+ e (reQ),

where Y is some measurable function on Q

N(t) > oo asi—a-—}—ce(teS)
Then

N(t)_"“ Yast — + oo (1 eS)
When Q and S are the set cf posmve mtegers, this lemma hecomes Theo-
rem 1 in [1].

" Proof. A, B, C denote sublets of o) defined as follows
_A (YN{t) does not tend to Y as t —» + oo},

= (N (f) does not tend to oo as t — + oo), (1 ES),

‘__C = A (.0. B), -
- D= (¥ _does not tend to Y as r — + oo) {re Q)
Then AC B+ C. (@)

Take an arbitrary element « & C Becausc w e A for ¢ > 0, there exiats in S
a sequence s, — 4 oo aguch that f(_)l every k

[ Y, )(m)-——Y(w)|>s.
N(sA)—->+oobecausemeQ—B '
Hence w € D, i.e. C — D, (b)

The assértion of Lemma 1 is derived from (a), (b) and from the. fncl: thatB
and D) are included in some null events,

Before going iurther, let us recall some concepts used in [2].
For Z=9 (X,, .«), the transt le by k — 1 (k > 1) is defined as follows

/ = (X ch+1 .)

A Borel function fo (X o1 1) is cahed mvauant 1f 1t commdes w1th ali its

'1ranslates If alI such invariant functions dcuenerafc mto a.s, constants, the
'sequcnce (X n > 1)is called lrdecom},osc 1ble, ’
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PROPOSITION 1. Let Z be a real-valued Borel fu.elion of the family (X
nZ>1) withE |Z | < o, and Z, the translate by k — 1 of Z. If
the sequence (Xn, n :;. 1) is stationary
and indecom posable,

P (2)
and N(i)._.) -+ oo as t — 4 oo,
then |
N :
(i) X Z, as EZ as t -+ o \ (3)

k=1

Proof. N (1) = Z I(T, < t) is P - measurable. -
k=1

P
Because N —— + oo a8 { - 4 oo, there exists an incr casing sequence / g >+ oo,
such that N(tk) >, -+ o as k — ce.

Because N(f) is nondecreasing in t, it follows that

N(D ‘-—.—é— ce  as ! -» ce (4)
Let us set

Y =r71% Z, for r 1,
k=1
_Yo = (= an arbitrary constant.

By the ergodic theorem ({2], § 30.4),

as.
Yr___,EAas r—4 oo ©)
Then (3) follows from (4), (5) and Lemma 1. Q.E.D.

Setting sucessively
7 = f(XI ), a real-valued Borel function of Xy

Z=1Iy o > where § is a Borel set in I ,
we obtain -
COROLLARY 1. If (2) is satisfied, then t — q 51 oo
N -
BRI Ty 2 f(x) 25 Ef(x,)
k=1 _
provided E f(X, ) <<+ o,
: No(l)
b) s 22, P(X, e §)
N()
. tohere
N N\(t) ;
(i) = X (6
s Py (X, €8) )



PROPOSITION 2. Lel F(x) = P(XI <)

| N@)

Then, if (2) is satisfied,

s

Sup | Fy,, — F(z)| =5 0

‘ N1
— OD=I el T OO
as t — 4 oo,

Proof. Noticing the fact that, il G(x), Fi(x) are two probability dlstrlbutlon
functions (left-continuons), we have for every r =1, 2,...;

Sup  1G(x) —F(x) <

— 0 = o

A-<~."_1; + I{Max [ 1 G(mrk) — F(z )1, ] G(2 p + 0) — F(2) + o) ] @
=1ye, o1 '

where z , (k = 1., T) ave defined by
x = inf k.r F(x) < ﬁ < F(z + a))
Consider the sets 4, , A, (k =1, r; T =..1’ 2,...) in Q, defined by
Ark = {FN(”(.’L' k) —> F(.’,C Yag i — Jeo }’
A, == {FN(t) (@, +0)~ F(a: 4+ 0) as t —» teo },

and the countable intersection

=) r
n n A A
pd k=1 rk rk

Replacing G() in (7) by F(,,(x), we see that (8) is contained in the set
A4=1{ Sup | Fypl@) — F@) | = 0 as — Feod
— Co=Z et - 00 ' -
Let S = (—oe, ;) OF (—oo, ] in Corollary (1b) then we see also that A

A include almost sure events, so does (8), and hence 4. Q.E.D.

K>

We now pass to a parameter eslimation. The underlying family of probabi-
lity measures will be some class ? of probability dlSlI‘lbullUﬂS of the family
(N(t), X » {120, n>1). On the basis of the data (1), any estimator g of a vector

parameter m=m (P), (PeP), taking values in a space R?, is a RY — yalued

funciion defined on Q by means of X, (w),.. N(t)(m)' i.e,

-}oo
9 gem X)) = 20005 X5 Iy (@

n

where Qn = {co : N(f) = n}. On the set Qn(n == 0), the function g reduces to a
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function g (X, .., X ) The ¢’ s(n > 1) arc supposed to be R? . valued Borel
functions of X1 o X s while 9 is a conslant, :

In practice, once the observations in a fixed time interval [0, t{] have been
collected, one always draws statistical inference in some definite situation
N(t) = n. Se, we introduce the.

DEFINITION 1. A sequence {g (X;,...,X ),n>1}is called a conditi-

onally unbiased eslimator for the vector parameter m, if for every n 2> 1 such
that an >0,

Ep{gn(X . .-..,Xn) IQ} =m
for all I’ € 2.

PROPOSITION 3. Lel (N(f)» + o= as t —» - oo, Then any conditionally
unbiasedestimator defines an asymtoiically (as { — oo) unbiased estimate
of m, according to (9), with an arbitrary constant g, .

Proof. From (9), by the o-additivity of the indefinite integral
[ aX, ey Xap) @P =32 [ g (X 40, X ) dP
4 9@, N 2 5 Il 2

n

provided the left side integral exists.

If PQ > 0, we get
Qf gn (Xi yidey Xﬂ ) dP == PQH s E{gﬂ(XI $heen XH)IQH}

I

Hence, from (10) and by Definition 1, for all P € 2,

n=

= m+(go"'m)PQ0'
It follows that, for all P € 2,

EXAMPLE 1. Let (X , 1> 1) be stationary. Suppose that X, and N(f)

I(N(!)>k) are independent for every k > 1. Let -f(XI ) be any real-valued Borel

function of X, , with Ep | f(X,) 1< o= Then,

NG)
N=I() 2 f(X,) when N() > 0,
k=1

C = const. when N(t) = 0)

is a conditionaliy unbiased estimator for the parameter m = E, f(XI'j.
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7 Indeed, when I’Qn >0,n> 1,

E,(F, 10,)= EI;'(n—f' z f(Xk) Q)

. _—Lf(X) o
because, by Assumphon f(X ) and Q, = N(t) —.n are indepen_dent for
n >k > 1, hence - : :
E, (f(wk)lQ )= B, (f(xk)—E f(:ui

Note that, without any independence between X, and N(f), by Corollary
la, f is a strongly consistent estimaté for m = E, f(X ).

Finally, ia view of an impostant practical ﬂ.pphcauon we give the foIlowmg
proposition, slightly generalwmg the \Vald s lemma in [3] (4 4) wlth a
s:mpler proof. .

PROPOSITION 4. Lel(X n>>1) be staizonary,X and f(,\,(t)> k) be independeni
for each k > 1. Let f(X, ) beany realvalued Borel function of X, . We make the

conveniion that
f(X ) =0 when N(t) =0
lc\< NiD)
If f > 0, then

E{ 3 f()}~ E> o ey @y
E<IN(t) i

If f has an albztrarg szgn, but E)f(Z;)1 = o EN(i) < oo, then (11)
sHIl holds, !

+oa
Proof. % f(Xp) = 2 (X1
ren | F TS T w2k

If f > 0, then by the theorem of the monotone convergence, we haves

E z X = Z E (X, I
L3, fE= L, B vt =

- 21 Ef (X ) Elgyeysp = EFXy)- z P(N(i) >k = Ef(X,).EN{® (12)

If f has an arburary sxgn, the a"ove equalmes are valid for | f 1 inltead of f.
Hence :

EZ |f &) gy =B FED 1 BN < e

k=1
Then, the equalities ;12) hold by the Lebesgue dominated convergence theorem.
: : Q.E.D.
In particular, ¢ ‘ : . : :
EN S(t) = P(X,e 8). EN(t) : (13)

where Ng: 1) is gwen ‘by (6).
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3. APPLICATION

In buildinz sciences, if X, is the inlensity (defined in a suitable manner)
of the k th rainfall since the moment zero, the critical level of rainfall is defin-
ed as a constant a, such that the event (X, > a, ) oceurs in the average one
time during the time interval {0, t].

By setting § = [a, , 4 o=] in (13), we get the important formula
1

P (X =

In the problem of evacuation of rain-wa‘er fo towas, one needs the
expression a,==a(t). It for x > 0, E(z) = P(X, =< x) is strictly increasing in

x, then (14) gives

,=F |1— -———]
EN ()
By Proposition 2, using the empirical distribation function FN(:) (x), we can

seek a suitable form for F(x), If this form containg some unknown moments,
we can estimate them as in E<ample 1. In [4], delails of this statistical analysis
are exposed on the basis of rainfail’s intensity observations, collected by the
Gzatral  Meteorologizal Station in Hanoi, and an approximate numerical
formula for a, = a ({) is obtained.
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