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1. INTRODUCTION

Let (2, F, P) be a probability space, (F , n = 1) an increasing sequence of
sub —6 —fields of Fand (Xn’ n & {) a sequence of real — valued random vari-
ables adapted to (Fn, nZ 1), 1. e, each X is Fn — measurable. Throughout

this paper we will use the following definitions and notations:
A sequence (X _, n = 7) is said to be uniformly integrable, if

sup{ / Ix, ldP}~0asa— (L.1)
&N IXRF?Q

Note that (1. 1) implies

sup {aP(lx,l>a)t>0as a—ce (1.2)
nelN

Asequence(X ,n=1)is said to be a martingale differencc,ifE(Xn]Fn_1)= 0
for all n = 7.
An array (ank') of real numbers is said to be a Toeplitz matrix, if for some
M < oo the following conditions are satisfied
( () lima, =021,

H—>22
5 @ %, la,, | SH,nz2 (1.3)
The stochastic convergence of the weighted sumss = 4 -1 E:ﬁl a, X or
n - i v
n k=1 %nk

s, = 3 X, where (X , 2% 1) is a sequence of independent random

variables, (¢, ) is a sequence ol positive real numbers and An = (21?:? ak)‘_,‘m,

was systematically studied by B. Jamison. 5. Orey and W. Pruitt [4], A. Stout (6]
and many others. The purpese of this paper is to extend some of the above
vesulis to magtingale differences (& ao B D-
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In Section 2, we shall show Lhat if (aﬂk) is a Teeplitz matrix theu

22_1 p Xp—~0in probability for any uniformly integrable martingale uli'i’erence
(X N 1’} ifandonlyif max|a  [— 0 as n—s>co. The same rasullis also oblained if

tail probabilities of (X:)_:lre uniformly bounded by tail probabilities of a
randem varialbe X & L7.In Section 3, we shall study the convergence of
(Zhey 2, X, nZ1) in LP (1=p <2) wtih (a_,) being a Toeplitz matrix such
that max, la,tI— 0 as n — o=, In Section 4, we shall study the almost sure

convergence of (A 1 g et a; X = 1) where (X _,n& 7) is a martingale

difference, (@, ) is a sequence of positive real numbers and 4 = 0, 4,1 o=

Recall that a sequence (X, o = 1) of random variables is said to have
uniformly bounded tail probabilities by tail probabilities of a random variable
x € L p> 0)in symbols X,)= x = LF, if there exists a positive constant
such that

P(X,| > x)= C P (X] > )

forallz > 0 and n= 1, 2...

Other definitions and notations related to the problem can be foundin [7}

2. COXVERGENCE IN PROBABILITY

Turoughont this section (a,,)is assumed to be a Toeplitz matrix. Let

n
S, = Zpmg Oy X (0= 1)

n

Let us begin with the following

- LEMMA 1. Lel (a ) bea Toeplitz matrix such that max |a i ! —0 asn - os,
=n

(Xn, n=MNa aniformly integrable martingale difference. Then Sn—> 0 in L1,
Proof. We first establish tke following fact:

f fn: -» R+ where 0 <f =<{fforalln=7and sup (x | (‘17)) — 0 as
. neN
I — o9, then
S 1{
up { -
Sup (gg zf_(x) da:) 0 2.1)

as y-—)- Co, )
To see this, put f *(qc) sup (z f (@)
nEN
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Clearly, :
y ¥

Sap (J S,-,,f (@) dx) =2 lf @ dx forally > 0.

nEN

@ |

[~

]
Thus, it suffices to show that

o}
—:I—Sf*(a:) dr — 0 as y —» oo.
g

0
Sinee f* (x) — 0 as & — oo, for any fixed ¢ > 0, there exists an x, (€} > 0 such
rhat if # > (), y > x, (¢) then
0 < f*(z) e,

x_(e) 2
1 S ° f¥*(x) dx = w5 (c) — 0 asy — oo,
y 21
o
109, e (7 £ .
-— y”(:r:)dxf———Sdg:-—(y—a: e))<<e
35 7 p 5 (2))
x4 (€) x, (5)

[}
Fhe result Tollows, since '

,;_ ng*(x) dx =__;_ g S% (s)f*(:c) dx + Syf*(.v) dx ;.

¢ o x,(2)
Combining (2. 1) and (1, 2) yields
y ,
sup (—E-SacP(an_|>:c)dx)—40 @ 2)
neN \ ¥ J :

28 §j —> oo,
Now, put

X=X L (X = e, =)

where I(A) denotes the indicator function of the set 4, and

re Fii ~
Z,= 2y Xy — B (Xnk|Fk-1)]'

We can suppose a,. + 0 for all n and k. From the assumption we have
for n large enough
E|Z, P=3_,E|X, —KX, |F,_)P
By LE 11 '-(E(Xle“l)]
=2 ElX,

Il
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=220 10 S x PO\X, ] >w)dx

fo<a=\q ™"}

= 9C X nﬂ[ank;}

" zP(|X|>z)dx

-1
{0<$§lﬂnkl }

F l Zn i —90- . (2'3)
On the other hand, since E(X_|F _,) — 0for all m > 1, we obtain
E(X | F,_)=—E(aq X I(1Z 1> | a1 )IF_p

Consequently, for n large enough,

k| Zf;c ; E(X,,|F4)1

= B B (] X 1> a1 7))

gzLI]ank;} S P(1X, | >x)de
{m>lank[_1}

=

= “Ta, 1.5 < Me (by the aniform integrability of (X, n= 1))

Hence E"= EX  NF_4)— 0 in L”. This together with (2.3) completes the
proof of the lemma,

THEOREM 1. Suppose that (a k) is d Toephiz matriz. The three following

state ments are equivalent:
(i) max la, | —0asn—e;
k“:‘:
(ii) for any untfarmly integrable martingale difference (X, n= =1)S — 0
in L*;
(iii) for any umformly integrable marimgale dif ference (X , 1= 1)
S —0in probability.
Proof. (i) — (ii) by Lemma 1.
(ii) — (iij): trivial
(iii) — ().
Supposing that S —- 0 ,
in probability for ~any uniformly mtegrable martingale difference (X ,n=1),
we must skow that m{ax ldy, 1= 0 as n —» o=, To do this, it sufhces to take
k=n -
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(X,,n = i}as asequence of independent randow variables with E X, =0,
ExZ < e ond P (X, 0) =0 n=1, 2,... The rest of the proof follows by using
n
Theorem 3.4.5 [7].
COROLLARY 1. Suppose thal (a ) Is a Toepliiz malriz. S — (0 in probability

for any mariingale dif ference (X Y= Xe ! if and only if marja e |0 as
. =y

T —» oo,

Proof. Tt is clear that E| X | <C eo 1mp11es the uniform integrability of
(X, » n = 1), The corollary fo.lows from Theorem 1.

Bemark 1. We see from Theorem 1 that if (Mn, > 1) is a martingale with
iocrements D =M — M _,, D, = 0 such that DHy=<Xe L7, then M =0

(n~7) in probability and in L7 . Recently J. Elton (see [1]) has proved that
M =0 (n~ 7} almost surely if D, D, ,... are 1den{1cally distributed with D, &
L Log+ L. He has also constructed & very interesting example which shows
thatif X € I ,EX — 6 and X ¢ L Log* L then there exists a martingale dif—i
feremce (U, ,n = 1} with the same distribution as X butt™1 zr_, D, diverges

almost surely.

3, CONVERGENCE IN IF {1 == p < g)

Throughout this section (a ) denotes a Toeplitz matrix with

max | a_, 1—>Oasn-—»ooLets-—E X, .
E=n nx Inkk

THEOREM 2. Let (Xn, n = 1) be a martingale difference such that
X)) =XeLll@g<p=, Then E (| S, |P)-+o as 1 — oo,

Proof. Suppose first that 7 < p < 2. Applyiag the Burkholder 1nequahty
(see [2], p.23) to the martingale array (S =

z}’;:z nka » 1= j= n), we have

X P 3.1)

P _.
E|Sn| E]Z ]

k=1 %ng

n 7 L2
= B(P)E {CGr=g ;. X )2 }

where B (p) is a positive constant depending only on p.

Now, put ‘
Yo, =a, 5 10X 1=la,[?)

a7



where 1{A) denotes the indicator function of the set A, and

Ank = Ok Xk - Ynk"

By the € — inequality E| X Y | I C(E| X +EIY ",
where € =1 if 0 <r =1 and C, = 2 i r = 1, and (3.1) we have
ﬁ n 2 £
EiS, FP=BpE{[Z, W, +Z,) 12} (3.2)

P
=B E{(23_ (V2 +Z)]3
2 n 2 2 L
=29 BV E{[Z=1 Y+ Zpp)l2 }
£ n 2 2
=22 Bp) {E Q=1 V) 2 +
9 - £
+E(ZZ=1?nk)2 ba

since (a 4 b)2 = 2((12 + b? ) for any two real numbers a and b.
Next, nsing again the C_ — inequality with 0 <<r=Pi2=1, and the

assumption that (X ) 2 X e LP, we have

n |v2 VPP <32 E1Y | P
E (Ek=1l Ynk) k=2 By

=zt e 1P S LAP(1X |=2)
4{G<m£|ank[_1}‘
=3 1,1 S ¢p_1P(|Xk|>m)dm
fo<e=lay,| "%
-—""“—',CPE;:IIaﬂkl; -—-a—-i—I-E:; | S xP—I?(1X|>x)dac.
Vil = g 7Y (3:3)

= CpMs, for n large enough, because

Sup {a, Pt S CgPTIP (X <ax)dr—>0
k=n —q ;
{0 <2 =1 ank| }

as sup 1ank[-—>0asn—>oo.
k=n
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Likewise, we obtain

n 2 \P/?
E (Ek=1 an) — 0 as n — o, (3.4)

which, together with (3.3) and (3.2), completes the proof for the case 7 =p<2,
Ywhen p == 1, the uniform infegrability of (Xn, 7 2= 1) follows from the

assumplion X ., X « L1, Indeed
bUPL[lX VLI A | > a) = sup f P(IX I>:v)d:c
neEN nE€Nag>gq
5 C fP(]X]::-a)dx—-Oasa—:-oo.

':z;:>-(1

This together with Lemma lyields the assertion.
4. ALMOST SURLE CONVERGENCE
Throughout this section the following assnmplions are made:

(X , > 1) is a martingale dlifelence a4 = 0k =12, A =0and A T°°
N 0agn—>con S = 22:1 a, X denotes the parli.l weighted surms,

n
Our next purpose is to study the alm":sll sure co - ergense of (Sn /An , 1 >1),

which will imply that n~ /P E};; Xe=s0v . 1< p<<2il{X )= XYDLP,

For this we shall'need the lollowing well known fact..
LEMMA 2 (Kronecker Lemma). Lef (a,n » 1> 1) be a sequence of real numbers

such thal = =z converges, and lel (b , n Z>1) be a monolone sequence of positive

constants with b 1 o=, Then
—1en g
b Zpmy b B0
THEOREM 3. Let }1” >0, 4,> 0,4 {o,a /4 — 0 and (XR' , n>»1)a mar-
tingale difference such that (X, )« X wih EN (|X}) < ees Suppose that

S x P(|X] > ) S (41)
0 yi: x
{ Ny
| i > § 2y 4y
1 [ : -
Then SH/An — 0 a.s.
Proof, Pat Y =X I (|Xn|f A sa ),
T, = zk-z @Y e
49
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Clearly, _ c
5,2 P(X, =Y, )= 50, PO K> 4 7o)
< ¢37, P(XI> A/ a)=C 27, S 4P (% < =)
{a>4, zm
= C:s;’N(o:) dP (J5] < ) = CEN (IX]) < o=

Thus, the sequences (T 4 ) and (5, /4 ) converge on the same set and to
the same limit. We shall show that the series 7 /4 converges a.s. to zero.

.Now, the same method as that used in the proot of Theerem 2.1 [3] gives :
21{21 (ak/Ak)zE [Y;\ - E (Yk IFR._j)]2

2
s 2 (a A EY ) — (E (Y, [Fr-p) )}

Z'ki] (ak/Ak)g EIY};F

I

=2 50, (0 /4,) aP(| %, | > x)dx
fo<=z< Ak/ak}
<203, (0,/ A ) \ 2P( 1 X|> z)de
" {o <= Q'.‘Ak/a_,.\.}
=2CV aP(1X|>x) .z (a,/ A )dz

< iC SxP(lX]>as) S I—\%zdydx‘:m,
0

T

where, for the last inequality we have used the fact that

T (a4 ) = lim T (a4, )
{k:AI‘_/ak:—;—_‘-x} —>roe {k:mfAk/akfu}
: u . u N
= lim S AN(Y) . jim (%112 _N=) g & (y) dy)

2
yz u—roe X y?’
' x

= 0o

and also

e

N(H)._Eg Sﬁr.(si)dy—a-ﬂas i —» oo,

2 i
u
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Hence, in view of the martingale convergence theorem and the Kropecker
Lemma, we get

. .‘1 "
A7 L1 Y, —E(Y |F _J]—0 as (4.3)

Note that
0 =E(Xn ] Fn~1) = E(Yﬂ i Fn_z) 4 E(XRI( | Xn | > An/aa)l Fhml)

and

Z;:I (ﬁ'k/Ak) E( | Xk II ( [ Xk > Ak/ak))'

_2;o=1(ak/Ak) § P([ X, | > x)dz
x>Ak/ak

(a, 7 A,) § P(] x | > x)da
k 1 . {3:>-Ak\ k}

’.II\

"CSP(IXH"QJ) z (@, 4,)dx
1 {k:Ix{Ak/ ak<:c} !

Lo T
<C SP(|X| > x)'SN—(Zy)dgda:-:w.
' P] I
Hence, by the Kronecker Lemma,

....1' ’ :
Az _,a EY,|F_)—~0 as. 4.9

‘which together with (4. 3) comp'etes the proof.
Remark 2. (i) If (X _, n = 1) is a sequence of independent random var:ables

with (X )= X ¢ L1 and if p =1 then we can see that E(X I(X AKX, ]>
> 4, /a o) = EX I( X, 1> An/ an)) =c, — 0 asn -» ., By the Toeplitz

Letnma, we have A Zk 19 ¢ —> 0, 1. e. (3, 4) holds without the assumption
(4. 2). In this case, we obtain Theorem 2 of [1], _ 7
(ii) If the independence of (Xn, n & 1) is omitted, one must use the

assumption (4.2). For example, we consider a,=1/nfork=m,a,6 = 0 for
k> n,ie § = ZZ-_-I X, In this case, if E| X | <e then EN(| X I)f: oo and
(3.1} holds. On the other hand.

JP(lx|5x) f o~ dgde =-[ Log zP(| 2| > ) dz
1 1y 1
E]X|{Logtix]|.

Thaa, Sn/n —0a. s onlyif x eL fLog+L,,as seen in Remark 1.-
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(i) I = p< 2,4 =1, n=1,2,...; 4, —nl/p, we have.
COROLLARY 2. [fI< p < 2,a =1, A = H”‘“(Xn , iz N)is a ma‘rtin-gale
difference such that (x,) < X e LP,thenn iy 5’;1_1 X, -~ 0 as as n —» oo,
Proof. Note that (1.3 )is satisfied by a . = n~ 1P tor n= 1, 20 k= 1,24 0.

It is easy to check that N(z) — xP so (4 1) and 4. 2) hold if X & LP .1t remains
to use Theorem 2 to complete the proof. ,

The next result deals with the case whe : the welghts (a,) are bounded and

(.4.”, are p-norms of a;, 3y s, @, - Recall irom [3]:

LEMMA 3. (see [3], Lemma 2.1), Let 4, = (T a?/?, n=1, 2, .,0<p-\2
(a))el., a, >0and A oo There exzsts d’ positive constant C such that for
x e RY large enaugh

N(:x:) 11’ log .z,

SROPOSITION 1. Lel 1< p < 2,a > 0,(a,) €l 4, = (Z} aPyIP 4t e

If X, n > 1Y is a martingale d:f/erence such- (Rat (X )—e Xe LP Log® L then
h

—»(la.s. as n ~» oo,
it

. Proof. Using Theorem 2 and Lemma 3, it sufflces to check lhe assum:ptions
(4 1) and (4.2). Indeed, we’ ‘have '

nfA

SwP(1x1>x)S LA dgdx = C Sxﬂx!#x}

1]

J”Iogy
S" “dea:
T

QL:S a:'p_: log x P( | X il wdr= C E -l- X P-log fx} << oo,

in the same way, we obtain (4.2) when Xe LP log L
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