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AN OSCILLATION CRITERION FOR AN N ORDER
DIFFERENTIAL EQUATION WITH DAMPED TERM

S. R, GRACE* and B. S. LALLI**

The aim of this note is to give a new oscillation criterion for the equation

B+ pt) ) gy 2ty =0, t e fly, =), where n is even, p(l) and g(¢)
‘e non-negative contimuous functions on (£, =) '

Consider the nth order equation with damped term

a:(")(t) + p(D) ;v(“_ﬂ(t) + g(OHx(t) = 0, n even, M
here p, q : [to, s2) — [0, o) are continous and ¢(!) is not identically zero on

iy ray of the form [f*, o) for some ¢ = [

We shall resirict our attention to solutions of (1) which exist on some ray
, o). A solution of (1) is called oscillatory if it has no largest zero ; otherwise
is nonoscillatory. Equation (1) is said to be oscillatory if every solution is
cillatory. ’

For second order equation.

=) + PO + 90 =0, (. =) @)

were p, q: [to. o) = R = (—e0, «) are continuous, Yan [7] proved that the
nditions

- :
lim sup == § (t — $)*SPq(s)ds = oo,
i

{00 0

£ : - :

Lim sap =% [ [( —9) p(s)s + as — Bt — 5)]2(1‘ — 5)*2%*"2ds = w0

t—>ce 1‘0 :

> some x&(1, «) and B &[0, 1), are sufficient so that all solutions of (2) are

sillatory. His result improved those obtained by Kamenev [3] and Yeh [8, 9].
In this note we proceed further in this direction and present a new oascilla-

n theorem which extends and improves Yan’s criterion.

** The research of this authour was partially supported by a special grant from
sident’s NSERC Fund
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The following three lemmas will be neededin the proofs of our resullss The
t two can be found in [5] and the third appeared in [4].

LEMMA 1. Let u be a positive and n-fines dif ferentiable function on an interval
, o) If u® s of conslant sign and not identically zero on any inlerval of th,
m [t* ce), then there exist a i = {, and an infeger I, 0 <<l < n with n 1
1 for u’® nonnegative or n + 1 odd for u(?) nonpositive and such thai

1> 0 impliesul® (t) > 0 fort >t k=0, 1~ 1)

l=n — 1 implies (—1)etk ul®) (1) > 0 for
t=t (k=L1l+1u,n—1)

LEMMaA 2. If the function u is as in Lemma 1 and
.H(Il—.'l) (9 u(ﬂ) (t) =0 ]cOI' every i > £y
1 for every A, 0 << X < 1, we have '

1—n

u(Mt) = '("2”% Sz =1 -1 e G O @
n— 1}
all large ¢.
LEMMA 3. Let
. t - s : -
t_lf:oi exp (— [ p(T)dt) ds= oo for every ! = to. (4)
¢ t |

en if x(t) is a nonoscillatory solution of (1), we have x(t) P (t) > 0 for
large t = t,. _ ' *

Our resnlt is as follows:

THEOREM 1. Let condition (4 ) hold. Suppose for some a&(1, =) and B &[0, n—1),

. ¢
imsup == 1 (1) £ g(s) ds = o, (5)
to . :
lim su —a ! a—2 ﬂ;-n
f_mP £™% [[(t—$)p(s)s+oas—BA—P U—s) "5 T ds<e (6)
fo

en every solution of equation (1) is oscillatory. .

Proof. Let z({) be a nonoscillatory solution of equation (1), say z(f) > 0 for
Tty =iy By Lemma 3, there exists {,=1, such that on=1) (ty>0fort >t
om (1) we obtain x\?(#)=50for t = t,. The hypotheses of Lemma 1 are satisfied

[f,» o), which implies that there exists & = t, such that z () > (0)for = £,

is easjr to check that we can apply Lemma 2 for u == x, A= 1’/2 and conclmle
94—2n n—2 :c(n—i) '

it there iz a f,’_ = t3 50 that ';E[t/'?] = .(_n_____z_).i [f/2} for Zf4.

ing the fact ihat a:(“'—i)(t) is a positive non-increasing function we obtain



T 9t — 2n 9
— i = - — 1 .
m[g} = =y {n afn — 11y for =t )

(n— 1)
Yefine w(l) = i . Then. it follows from equation (1) that
z [/ 2] q (1)
: (i) 0 z[t/2
w(t) =— q(t) — 5= YT —p()w(l)~1/2 T w(t)

Jsing (7) and the fact that @ is positive nondecreasing function on [{,, o)

ve get
. 93—2n
w(t) + &":2—)*';”"2 w? () + p(t) w(l) +q(t) =0, t=1,.

[ence
¢

t -
¢ — 5)%Pw (s)ds + |

23—?::

W(t —s)2sBTn=2 205y ds &

i t
+ [ (t—s)* sgp (s) w(s) ds+ | (1 —5)%s)%sPq (s) ds = 0.

t, iy
{oting that
t t
S (t—s) AgBrp (s)ds= af (1=s)*1 sBw(s)ds
t
i
4

4
t
-—-BS (t — s)OL sB%i w(s)ds — w(t, ) (t — iaft)d ti.
b

re obiain
t

(t-——s)°"sB q(spds=w(f,)({ — té)“i[pg—? S f(t,s) g (t, 5) ds —
f
& 4

._S g2 (t, s) ds,

by
there .
e e B—-—-—I B_" ’
ts)— (r=2)! (ft—s)? s 2 [(t —s)p(s)s + as — B (1 —s)]s
2 23—2n

P i B+n—2
o(t,s) = V(,, ;),(f 9fs P w(s)
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use the fact that — 2f(f, s) g(f, s) =< F2(4, s) -+ ¢° (I 5), then we divide by .
| take limit superior as { ~» o= to obtain

f
Lim sup £ f{t — &)™ sF q(s) ds < w(l,) tﬁ
[—>oe ty
(n—=2)7

1 .
lim sup (—* f (t — $)*"2 B"72 [t — 5) p(s)s +-

f~>oo f‘{L

-1-0;3—-[3(1‘—-3)]2 ds < oo

.ch contradicts condition (3). This completes the proof.

Let p(f) = 0. The conditions (4) and (6) are automatically satisfied and thus
have: '

COROLLARY 1. Suppose for some o €(1, o) and e [0, n — 1), condition (5) s
sfied. Then all solulions of equation (1) are oscillatory. '

95— 2n

Remark 1. Corollary 1 improves and generalizes our Theorem 1 in [1].
One can extend the above result to the following equation.
20 (4 pty =D @y + (1) Fld)] =0, (8)

ven, where p and q are as given above, f: R — R is coctinuous and xf(x) >0
x = . We stale: : ' .

COROLLARY 2. Suppose .
f'ix) exists and f' (@) = k > 0, ('= ._d_) , _ )
dx
some constant k and all x = 0. If conditions (4) — (6) hold, then equation @
scillatory.
If the fanction f in (8) is not monotonic (i. . if condition (9) fails),

we have
following result.
COROLLARY 3. Suppose |
) - >0 f _~ 0 ‘
z = 17 orx = 0. o

onditions (4y — (6 hold, then equation (8) is oscillatory.

Remark 2. The result of this paper holds for « =0 and 8 e [0, n — 1]. For
1ils we refer the reader to our Theorem 2 and 3 in [2]. ' |
Remark 3. /T n = 2, the functions p and g need nol to be of fized sign and
ce our theorem and Y an’s Theorem in{7] are the same.

We enlarge the domain of applicability of Theorem 1b
ons (3) and (6), and obtain the following results:
THEOREM 2. Let conditions (5) and (6) in Theorem 1 be replaced by

y combining con-

lim sup t-* jt’ (t — $)* 28 [(t — s)zq(s) _
£

—>oo 0

(11)
92n "5(11 — 1 {(t — S)P(s)s + as — Bt — s)}zjds == oo,

some o & {1, o0) anc'i B'é [0, n— 1]. Then the conclusion of Theorem 1 holds,
Proof. The proof is similar to that of Theorem 1 and hence is omitted,



COROLLARY 4. Lel corditions (5) and (6) in corollary 2 be replaced by
condition (11). Then the conclusion of corollary 2 holds. a

COROLLARY 5. Lef conditions (5) and (6} in corollary 3 be replaced by condi-
tions (11). Then the conclusion of corollary 3 holds.

The following examples are illustrative:

Example 1. Consider the differential equation

& () 4 et 7 x(t) == 0, 12

where n is even, f 3» 1 and c>22n_5(n — 2l (n — 1)2‘ Condition (11) with. a=9
and 8 = n — f takes the form

lim sup r‘21§ le—2" % tn—2)1(n—=1? 1257~ 2t 4 5) —

f{—roco

— 22230 _ )1 [s—(n— 1) ({—$)] ds= oo

Thus codition (11) is satisfied and Theorem 2 ensures the oscillation of the
solutions of equation(12). On the other hand, it is easy to verify that conditions
(5) and (6) fail fo rall « € (7, o) and B € [0, n — 1), and hence Theorem 1 cannot
be applied here. We note that our results in [1] hold for B == 0, and hence fail
to apply to equation (12).

Example 2. Consider the differential equation
o)y 17 a2 () T a@) =0, (13)

where nis even, t =7 and ¢ > 2% 9 (n—-2)1 (n—2)? , As in example 1, we
let « = 2 and p = n — 7 and note that

22—

t
limsup 2§ {fc—22 " (n—-2r(n—91 (s — 2t 45 —
i

{—oco
— 25 (n D is —(n —2) ({ — )]} ds = oo,

which shows that condition (11) is verified, and hence all solutions of equation
(13) are osillatory by Theorem 2. Once again Theorem 1 fails {o apply to equa.
tion (13), since B < n — 7 and hence condition (5) is violated, alsoc Theorem 2
in [2] cannot be applied to equation (13), since p(f) == 0. One can easily check
that Yan’s Theorem in [7] and Yeh’s Theorems in [8 9], cannot be applied to
sgquations (12} and (13).

Example 3. Consider the differential equation

(n) (& 4- 171 a:(“'"i)(t) +ci hg(ly exp (sin a(t)) = 0, t =1, | (14)
where n is even and ¢ >e 2227 9(n — 2)1 (n — 2)° . Here
f(

—— exp (sinx) = L for all x,
T e

ind condition (11) is satisfied for e == 2 and B = n — 7. The hypotheses of
sorollary 5 are satisfied and hence all solutions of equation (14) are oscillatory.
¢ is easy to check that Theorem 2 in [1], Theorem 3 in [2] and Corollary 3 are
1ot applicable to equation (14),
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xample 4. The differectial equation
)@y 171201 (1) & ot Psinh () =0,1>0 (15)

. r is even and ¢ > 2275 (n — 2)! (n — 2)% ,is oscillatory by Corollary
o= 2and § = n — /. As we mentioned inthe above examples the results
— 3} and [7 — 9] fail to apply to equations (13) — (15). We believe that
scillatory behavior of the equations (13) — (15) are not deducible from
known oscillation criteria.

cknowledgment. The authors thank the referece for making some very
11 suggestions.

REFERENCES

S.R- Grace and B.S. Lalli, An oscillation crilerion for nth order nonlinear differential
equations with functional arguments, Canad. Math, Bull. 26 (1983), 35—40.

8. R. Grace and B.S. Lalli, Oscillation theorems for nth order differential equations
with devialing argumenis’ Proc. Amer. Math. Soc., 90 (1984), 65— 70.

L V. Kamenev, Integral Criferion for oscillufions of linear differential equations of
second order, Mat, Zametki 23 (1978). 249—251.

» A.G.Kartsatos, Recenf resulls on oscillation of solution of forced and perturbed nonli-
near differentiul equalions of even order, Stubility of Dynamical Systems: Theory and

Applications, Lecture Notes in Pure and Appliced Mathematics, 28, Springer, New
York, 1977, pp. 17— 72,

V.A. Statkos, Basic results on oscillafion for differential equaiions with deviating
arguments, Hiroshima Math, J.. 10 (1980), 485 — 516.

+ A, Winther, 4 criterion of oscillatory stability, Quart- Appl: Math., 7 (1649), 115—117.

. J. Yan, A note on an oscillation criterion for an equation with dampled term, Proe.
Amer. Math. Soc., 90 (1984), 277—280.

. CG.C. Yeh, An oscillalion criterion for the second order nonlinear differential equations
wilh functions arguments, J. Math. Anal. Appl.. 76 (1980), 72— 74.

» C. G+ Yeh, Cscilllation lheormes for nonlinear second order differeniial equations with
damped ternt, Proc. Amer. Math: Soc., 84 (1984), 397—402.

Received October 1, 1986

PARTMENT OF MATHEMATICS, P.O. BOX 1682, UNIVERSITY OF PETROLEUM ANRD
JERALS DHAHRAN, SAUDI ARABIA

PARTMENT OF MATHEMATICS, UNIVERSITY OF S&SKATCHEWM\ SASKATOON,
SKATCHEWANSIN 0W0 CANADA



