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ON THE PARABOLIC PSEUDODYFFERENTIAT, OPERATORS OF
VARIABLE ORDER INSOBOLEV SPACES WITH WEIGH {ED NORMS

NGUYEN MINH CHUONG

Elliptic pseudodifferential operators (y.d.o.) of variable order have been
first studied by A. Unterberger and J. Bokobza [6], and then by many others,
for instance by M.I. Visik and G.E. Eskin [8—10], R. Beals [1], L.R. Volevich
[12], ete... In our recent papers [2—5] we have investigated parabolic y.d.o of
variable order. Most of our results, however, were announced without proofs,
The aim of the present paper is to give the detailed proofs of the main
results presented in [4].

The paper consists of 5 sections. In Section 1 we introduce Sobolev spaces
ol variable order with weighted norms. In Section 2 we define the class of
symbels of the operators to be considered. In Section 3 we present some
auxiliary results. Section 4 deals with boundary value problems of parabolic
.d.o0. in a bounded cylindrical domain of R*%/in Sobolev spaces with weighted
norms. Finally, in Section 5 we consider boundary value problems in a
noncylindrical domain,

To SOBOLEV SPACES OF VARIABLE ORDER WITH WEIGHTED NORMS

Denote by & = (), T 50w, T )= (xy, ) e Rrtl 4 point of the (n+ 1)-
dimensional Euclidean space R” +1 and g = (go, E o B )_ (go, £)e R ot 1

its donl variables, Let ¢ (x) e C™ (RnT ") ¢(x) = Const for (x| > R, where R

is a real number and] |'is the Euchdean norm, and the oscxllatlon of the
function ofwx) is sufficiently small, ¢, == max ¢(x), ¢_ = min ¢(x). Let
X x
% k
w, () = x; +0(z"), when |z | ~ Lo, ()5 0 when z 3 0 and

cok(xn) = {Sgn (L‘” )k when l xn ] > 1i.



Denote by H(P (x)y s M (R"‘”) = HCP () Yo M the space of functions u(z)

equal to zero when z, <0 and having the following finite norm

M 2 _ P(x)+k
Wl o = T (77 10y ol Iy oyl ooy )
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where .1, is the normin L, (R ), Sy =1+ EY+El v=L0. g, i
the usual Sobolev-Slobodeskii norm, and Fu = ,z; is the Fourier transform of

2
a, F71C(z,:) is the inverse Fourier transform of C(x, &) with respect to the
second variable &. '

Let R;ﬂ be the half space z > 0 (x, << 0). Denote by Hy )\ (R;H)

the space of functions u(x) admitting a continuation [u onto R""1 and having
the following finite norm

+ .
u _
gy, o = P 0y ot
0,
+ s P n+1 s
We say that ufx) e H(P(x),'Y,M if u(x) e H(p(x), - (R y and vanishes

when x_< 0 (x_: 0) and when X, < 0.
n n :

Later, in Section 4, we shall define other kinds of Sobolev spaces of
variable order. ‘

2. CLASS OF SYMBOLS

We say that A(z.8)e Oﬁ(m)a v, M if
a/ A(x,t) € C* inx € R2t1 is continuous for ;gofz/Y + |zg’12 =1 together with
its derivatives of all orders with respect to §, and is analytic im '&,0 for
Im ‘go ~ 0
by A, 1T, ) = 19 A, D), 1> 0, Im & > 0, |
Denote by Ea(x), e M the class of functions Az, &) e Ocp(r), T which sa-
tisfy the following conditions:

of [A@, &) — Atz, D] < C(& — DT + |E —7[X

1 1
X [(@ 45l T + 18D T 4 @+ I} T pw ¥
dl A@, &) = 0 ¥z, ¥E 4+ 0,Img >0,Im & < 0.
1 : e .
We say that A(x, &) € Ya(a:),y, o iE A, §) satisfies condition a/ and, additionall¥
i) A(x, £) € €7 in (z, £) when § 3 0.
i) A(x,E)=0 when |z | >R — 8,, where R and &, are positive numbers,
o ” o : + € EE) —
i) | Dg Dg., Dgz A, B < CpM<E>°§x) g | 9,



where 0 <17 | L0 q, SM+1,1<|pl < =, le’ 1 +4q, >0,
= @y Qpeg) T= (0,50 90 ) D= (py s Pyoens P
lq” | = q; + e+ 9,1 [ (Ez, En_z), and ¢ is an arbitrary positive
number, ¢ = 0 when p = 0.

Finally, we denote by Dg(m)’ v, y the class of functions G(z, &) satisfying

conditions a/ b/ i) ii) and, in addition,
—i 7T ofz)

() n (n)
DErDlw G(a™, 0,0, —1) = (—1)1 7 le DInDEm) G, 0, 0, 1),
n

where 50 = (5,80 wn b, 0 oW = @ 2,z g = (@y>Gyome o)

- 3. SOME AUXILIARY RESULTS

In this section we present some lemmas and propositions that we shall
need for proving .our main results,
a(x)

and | D2 DL DI Ay (@, ) | < €, (5) 717170 (1)
Then . _
| DIl fr Ayl <0 () Wl e )
Proof. This follows from Leibnitz formula and the inequality
| DP (5) ﬁ(“’) < cC@Ey@Te 3)

LEMMA 2. Under the same conditions as in Lemma 1 we have
~ -1 € -1
IDPA@ e —DP 4w, m|<Cle—n]| [@)3@) T4 <”>;(x) +€] @

Proof. We give only a sketch of the proof since the argument is analogous
to the one in [9].
First, when p = 0, using the Lagrange formula we can write 14 (z,8) —

A(x,n)I<ID§ A@, D JE =], i=E+0¢E—1),0<0<1.

If « () — 1 > 0, then in view of the obvious inequality
(By < € By + (M)
the desired inequality follows from the hypotheses of the lemma,

&, -+ ()
Suppose now that « () —1 << 0. If | { — 1| T< _LZ___.Y.

then:
<§>y + ()
Oy>—g—=




Conscquently,
| Dy A DS C @22 " < ¢ (@)
Whence (4).

a(zx)— 1 oz) — 1)

1 By + (W
On the otherhand,if\&—-ﬂl'f}—'\-’——zﬁ—l,

"~ then

| Az, &) — A (@ W) | < <A@ B+ 1 4@ <

4(<§>¢(x) 4+ <n>Y(w))

6, (@@ =14 @39 1) 1l

Thus the estimate (4) holds for p =0
For | p| > 1 the proof is similar.

.1
PROPOSITION 1. Let A(x, &) € Ym(x) vo M and B(z, &) € Y B(ch vs M T hen

for the . d. 0. A and B with symbols Az, &) and B(z, §) respectively, we have

= (4B) + J )
where (AB)isav. d.o. with symbol A(z, §). Bz, §) and Jis an operator
satisfying

”Ju“s Ys M C”ll” s+a++B+—1+€o,T M (6)

where C = Const, ¢g > 0 and ||. r’ M is the Sobolev-Slobodeskii norm wilh
weights (see [107).
PROPOSITION 2. Let a(@) & CF (R 1y, Then

laull g, v, u S 08X La@) | 180 ), yo o
z .
+ C(a) hu] a(x)—%,y,M (7)
where
Clay < C max| DF a(z) |, 1 k1< losl+ M+ 1
The proofs of Propositions 1 and 2 can be foand in [3] (p. 11 — 12).

PROPOSITION 3. Suppose that A(x, £) € Yi(x), vo M Then the . do 0. A with
s;mbol Az, &) acts boundedly from H(p(r) vy M inio Hcp(,r) (@), Y M

Proof. In yiew of Proposition 1 and iie relation
D’gnwk(x y=C_ (@) @p_, @) Crp@y) e Gy (R')
the preof is similar to that of Lemma 5. 2 in [3 ] (p. 15).
LEMMA 3. Let | ¢(x) | < —;— and @y — @< —2— Then for the operator 8, (the

operator of mulliplication with a Heaviside function 8 (%)), we have

8



+*

< Clruj O(z)T M

I 8lu (), T, M

Proof. Set B = /\‘ﬁ(x) 0 A :‘P(x) , where
() % 1o(z)
/\i is the W.d.o. with symbol (&, 4 i{(1 +[&E" )£ &™)
Then as in [11], it is not difficult to show that the operator B acts boundedly
3 n+IN ﬁ+ n+4 : . : s .
from H(), M(R+ ) into o1 (R"7%). The desired inequality follows by noting
that

. 2 o(x) 1
G — (A H1E ) =2 €T

LEMMA 4. The inequality
- . te—| ¢’ .
[Dx D{. A(-r,é)l < Cpg <§>°;(x) =191 )

implies

alx)+e—1

[p2 P 4wy | < Cor (% g| il (10)

o

Proof. Obvious, since

(Exy > 18|

4« BOUNDARY VALUE PROBLEMS IN CYLINDRICAL DOCMAINS

Let Q.= (0,T)x Q C R", where Q is a bounded domain with a
smooth boundary 8, and let § = [0,T] X aQ

Let A(x.£) = Ai(x,k). A_(x,k), where ord A4(x,t) = X(x) with X(x) being
a smooth function on S, and A_(x,%) = a(x) — ¥%(z). Denote by {wj QJ.} a par-

tition of unity on QT . Let Aj (x) be a smooth function such that
N 1
hj(@)=Xw) + 8;(), | 8;(x)] <, ¥z eQ
Denote by H(X(x))+B(:c),T, y (%) the space of functions u (z), z e, with

the finite norm

QT M
I =inf £ X ||A

-+ || lu | A-g, T,

7\1-(9:)4-B(x)+1c

M w, vl +

ere lu is the continuation of u onto R”'H, lu = 0 when x0<0, /\‘P(T’ is

he ¥, d, o. with symbol < g>?;(%k(“') € €= () o w=a @) +06%,
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C < a (x) < Cj, r is the distance from x to S, w (x) = 1in sz o A=
n min (Kj(a:) ~+ B(x)) and € > 0.

= mi
J x
O oS
The space H(X(m) 4 Ble) ¥ M (Qq) is defined as the closure of the set C,, (£2)

in the norm of H(x(x)) B, v, M () The space [T(X(x))—FB(x),Y,M s defined
as usual.
 Let djk(x, 2(n)y be the fuunctions defined by the following formulas :

For Q > L
(2,50 )= ine ™+ G (@ B AT @ 8 1<k<0I<i<0—L A1)

+ s - - -1
djk( x,E(n)>=hjk (x.E(n>) - 7\'.'+Bj(:11, S)E+L Q A+ (z, &) X
- -1
x 18l 6, @y Al @ E) 1<k<Q Q—-L=<)<¢ (12
For L> Q:
dy (2,80 V=E, (7 8W) —n n B, (5, 9879 44 (2,9 X
X 7t GA- (2, &) X gQ—L A7 (x, &), I<k<Q I js L (13)

. (@, g — n* B, (z, g)‘k QA (2,8),Q+1< k<L i<j <L, (14)

Where 7” is the operator

2n
Yn—to =7

N 17 - 13
= f(z, €78, = lim — Sf (x, 8¢ je ‘Vntndg, (15)

—~

7+ is the operator defined by =™ = o.f

y =

Dendte by [djk(x, ()] ﬁhe matrix of functions dﬂ{(a:, E‘;(”)).

H-

n

1
i1e | ey

Let us now consider the following problem in the domain QT:

Q
pa, + 2 G0 =@ v ey "
¢ (n)y () g .
1p BJH+ Z Ej]cplc::gj(-x Y e S, 1< J< L. 17)

where pt and v, are the operators of restriction to 2 and S respectively, and
A, Bj, G, and E . are . d. o. with symbels A(x, &), B (z, §), G, (x, &) and

E ;= 8) 1‘espechvely.
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THEORFM 1 Assume that

, ) 7
D 8@ 8 € Yoy B am v O D €D o oy,

-t % 0 A f
Ep@ 9 DBj(r)+ak (e)-a(x)+1y.r» By (T 8) € 0;3] (x)sYsM
r
b 1 4 ° . o
and Bj(:(:) <A +Q—L-— 5 A~ = min %, (x), and I:?j(x, &) satisfies, ina!di-
5z

lion, the conditions ) — iii) in Section 2.

2) At each point x € S the condition det [djk(a:, E(“))] # 0 is satisfied in the
local coordinate system corresponding to x.

Then the operator defined by (16) — (17) is a topological isomorphism from
the space

0 )
( Heop+0- 1y By )= agoitg- L+a, + —;~ y,O(S))
to the space

H(X(.r))—05(17,)+Q“L7Y,M(QT)’ H;X(x))—ﬁj(x)+Q—L_%_ 'YsO(S)) )

Proof. First, in the half space Riﬂ, we consider the problem

Q
A(ll+, 'Dk) = p+(druy + 2 GK r pK)= f, (18)
k=1 3
Bj(u-h Pk)="/’1 p:*_ BJ.I" u, -+ l\z;jEjKr,pk = gj,, 1<j<IL (19)

where Ar isthe y.d. o. with symbol A(z, &) r(g) ¢ Yi(m)’ vo M ord A(x,? = a(r),

A(x= E) r(g,) # 0 V‘xv V. E ?5 09 IID EO >/ 0, Im E’ _ 0 and le", B_] I", E,[‘I" are
the . d. o. with symbols a

’ £} 0 @
G (x, &) r'E") e D"‘k (), 7, u> OTd G, (x, £) = (),

ir3n -1 -
B8 r@E) et B va b ord B;(x, %) = B; () <

‘ . 1 (n
<X@+8+Q—L—, E].k( KON >\ r(e”) eng(x)—{—ock(a:)—-oc(x)—l-j,y,M

~and P+, -(; are the operators of restriction to the haif space H”:I and to the

l‘z’me x, = 0 respectively. The functions r(¢) and r'(t”) are defined by the
relations
r@® =€+ DY ¢ it + e " (20)
ren =11 14 M (21)
Set U = (4, 8;), o = (> g;) (22)

1



For > L, the parametric V of 9 is constructed as follows
1

Vo = A_:Ir,‘_/\_li’__Qﬂ_F/\g__LA: rlf-
Q 4 L-Q 0-L ,~1,
ij:1A+r+/\+ 0 ,AY TA_G Vb (23)
Vo= 3 HOrc, 1< )
K _j=1 k,] Cj! ~ {QQ (24}
V=(V_,V,)
where hg}), c; are the operators with symbols
o).
@™, €, e @ 8, K@ ™) = e @™, 0, €™ and [, (@™
J "

is the inverse of the matrix [djk(x,E("))]. The functions cj(:c, E(")) and 7+ ()
are defined by

¢, (@ &y = im 8O 47w, 1 <j<0 - L (25)
ef@ €)= g &™)+ w B AT @ 5 278 x
x wt el AT i@ pife, 1<k<00-L<j<0 (26)
ry@)= €, 118 1" /G, +id+ )1 )M
For Q < L the parametric V of % is defined by the formulas
Voo o= A7Tr, AX %0 A0 Tatif—

Q L “L =1 .,
§1A+r+A—Q°+A9 A_ r’Gkrchb+

L
, 1.(n) + , a1 L—0 -1 -1
k=2+1A+kr hkj(gj—"YIP Bjr A+ A T4 9+A— Ag I‘lj), (27)

L
N o . + 5 ow =1 L—Q -1 Q-1
Vk o = IEj hij (gj—-Yjp Bjr. A+ rLND TR AT AT T, (28,
V:(Y/:\v/k) 1<k<Q
(o]

where A, is the operator with symbol A:z (x, &) Eﬁ_g_Q and hsz.) isthe opera-
tor with symbol hf,{‘;? (x, §_(")) defined similarly to the case Q >> L by the functions
djk (x, E(")) mentioned in the formulas (13), (14).

Now with the help of Cauchy formula for integral decomposition (see [8],
[10]), and using Proposition 1 on the commutators in Seetion 3, it is not difficuit
to show that the above defined operator v (\\7) is just the parametric of <.
Fuartier, note that the lemma of Visik-—Eskin on Volterra operators (see [Y],

12



p.179—180) is still valid in Sobolev spaces with weighled norins. Using then
the partition of unity {v;, Qj} on ﬁT , and reasoning as in [8], we obtain the
desired conclusion. This completes the proof of Theorem 1.

5. THE CASE OF NONCYLINDRICAL DOMAINS

Let Q; be a «curvilinear » cylinder with base Q and lateral surface S*, nowhere

tange.t fo the plane @, = Const. Assume that the section Q, of O by the plane
Z, = tis an n-dimensional domain with a smooth boundary. In this case the
condition iii) is replaced by

iy | Dl Dgg A, B) | < €y <& >;(x)Tz—vqo

P pdo pd.. pan sx)+e—ygo— | ¢” | —¢
'Daz DESDE”DEH Az, §I< CpM <§>Y n
where 0 < g, S UKigIS,0<q, <M, ,1<Ipl<oe
19”149, > 0 and ¢ = 0 when p = 0,

By the change of variables z, = T, X = S ; (xo, "), the equation of QS

takes the form z, =0,
In the same way as in [5], [9], it is easy to derive the following
THEOREM 2. Assume that the hypotheses of Theorem 1, with [if’) replacing fit),

are fulfilled in the domain Q*, Then the operator defined by (16) — (17) is a one-
{o-one continuous mapping of the space

4]
( " (’X.(x))"'Q =L, Y,M (Q})’ II’(X(:C)) —&(X)+Q—~L+ ﬁ]{-(x)"f'*;’ Y, 0 (S)*)
onto the space

(H( K@) - a()+0—Ly v, 1 (20 Hirney )-p j@+0-L- 12_, vs0 € S)*)
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